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Outline	
	

1.	Constructing	the	Unruh	state	semi-classical	stress-energy	tensor	
(SCSET)	for	large	Schwarzschild	black	holes	

	 A.	basic	assumptions	
	 B.	interpretation	of	numerical	results,	old	and	new	
	 C.	myths	about	the	origin	of	Hawking	radiation	debunked	
	 D.	first-order	backreaction	on	geometry	
	
2.	Implications	for	the	black	hole	information	paradox	
	 A.	black	hole	horizons	are	locally	just	Rindler	horizons	
	 B.	no	storage	of	quantum	information	in	a	"stretched	horizon"	
	 C.	Hawking	radiation	is	entangled	with	fields	in	the	deep	interior	

of	the	black	hole	
	 D.	no	firewalls	
	
3.	How	might	the	semi-classical	picture	break	down	by	the	Page	time?	
	
4.	Is	a	quantum	black	hole,	assuming	an	initial	non-compact	Cauchy	

hypersurface,	necessarily	singular	in	its	interior?	



The	context	
	
The	focus	of	this	talk	is	on	large	Schwarzschild	black	holes	with	mass	

 M ≫ mp ,	mp 	the	Planck	mass,	formed	by	spherically	symmetric	
gravitational	collapse	in	an	asymptotically	flat	spacetime,	such	
that	in	the	distant	past	the	spacetime	is	approximately	
Minkowskian.		The	collapse	leads	to	the	formation	of	trapped	
surfaces	and	an	apparent	horizon	at	r ≅ 2M 	that	persists	for	
many	dynamical	times.	There	may	or	may	not	be	a	true	event	
horizon,	since	the	classical	energy	conditions	that	establish	its	
existence	are	not	valid	in	quantum	field	theory.	

	
Quantum	fields	are	considered	small	perturbations	on	a	classical	

background	spacetime,	whose	metric	is	a	solution	of	the	classical	
Einstein	equations.		There	is	every	reason	to	think	that	this	semi-
classical	approximation	is	extraordinarily	well	justified	on	and	
outside	the	horizon.		For	the	black	holes	known	to	exist,	with	
 M >1M⊙ ,	the	quantum	corrections	are	of	order	mp

2 /M 2 <10−76 .		
	
My	units	are	G = c = 1 ,	 ! = mp

2 .	



Hawking	radiation	
	

Hawking's	landmark	result	from	1974-1975	showed	that	in	the	semi-
classical	approximation	black	holes	radiate	with	a	quasi-thermal	
spectrum	at	the	Hawking	temperature		

TH =κmp
2 / 2π ; 	

the	surface	gravity	κ = 1/ 4M 	for	Schwarzschild.		The	luminosity	
for	a	spin	 s 	massless	field	has	the	form		

LH = 4πM 2σTH
4ks = 6πM

2P0ks . 		
The	coefficients	ks ,	calculated	by	Page	for	 s = 1,2 	and	Elster	for	
s = 0 ,	are	k0 = 14.36 ,	k1 = 6.4928 ,	k2 = 0.7404 .			
	

The	prospect	that	black	holes	might	evaporate	down	to	the	Planck	scale	
and	disappear	on	a	time	scale	of	order	M 3 /mp

2 	has	raised	
profound	questions	about	quantum	gravity	and	quantum	field	
theory	that	are	still	unresolved	after	more	than	40	years.		Would	
this	conflict	with	unitarity?		What	would	it	take	to	preserve	
unitarity?		Is	there	some	breakdown	of	local	quantum	field	theory	
at	the	horizon?			

	
How	is	Hawking	radiation	created?		By	pair	creation	or	tunneling	very	

close	to	the	horizon,	or	tidal	disruption	of	vacuum	fluctuations	in	
the	general	vicinity	of	the	horizon?			



The	semi-classical	stress-energy	tensor	
	

The	renormalized	expectation	value	of	the	quantum	stress-energy	
tensor.		Spherical	symmetry	implies	4	independent	components.		

	 In	a	static	frame:	energy	density	E = −Tt
t ,	energy	flux		

F = − 1− 2M / r( )−1Ttr ,	radial	stress		Pr = Trr ,	transverse	stress		
Pt = Tθ

θ = Tϕ
ϕ .	

Conservation	equations	∇νTµ
ν = 0 ,	with	no	t-dependence	and	 x ≡ 2M / r :		

	 energy	F = πM 2( )−1 LH = 3 / 8( )ksP0⎡
⎣

⎤
⎦ x

2 / 1− x( ), 		

	 momentum	Pr =
x2

1− x
3 ′x − 2( )

′x 3 Pt ′x( )− 1
2 ′x 2 T ′x( )⎡

⎣⎢
⎤
⎦⎥
d ′x

1

x

∫ +CF.	

No	singularities	in	a	free-fall	frame	if	radiation	is	purely	ingoing	at	the	
horizon	in	the	static	frame:	 E ! Pr →−F 	as	 x→1 	 C = −1( ) .		Then	
E reg ≡ E + F 	and	Prreg ≡ Pr + F 	are	finite	on	the	horizon.	

The	trace	of	the	SCSET	T = −E + Pr + 2Pt = −E reg + Pr
reg + 2Pt 	is	given	by	

the	trace	anomaly	T anom = 96qsP0x
6 	for	conformally	coupled	fields,	

with	q0 = 1 ,	q1 = −13 ,	q2 = 212 .	



Numerical	results	
	
Based	on	point-splitting	renormalization	(Christensen,	Christensen	and	

Fulling	1970s)	
Quantum	state:	Hartle-Hawking	(HH)	or	Unruh,	with	only	the	Unruh	

state	directly	relevant	for	an	evaporating	black	hole.	
Conformally	coupled	fields:	only	need	to	calculate	Pt 	from	scratch,	

results	published	for	0.4 ≤ x ≤1	 1≤ r / 2M ≤ 2.5( ) 	as	graphs.			
						Spin	0	HH,	Howard	(1984)		and	Anderson,	et	al	(1993).	
						Spin	1	HH,	Jensen	and	Ottewill	(1989).	
						Spin	0	and	spin	1	Unruh,	Jensen,	et	al	(1991).		
						Table	of	HH	and	Unruh	spin	0	data	preserved	in	Visser	(1997).	
						Unpublished	table	of	1≤ r / 2M ≤ 3 	Unruh	spin	1	data	recently	

obtained	from	Visser.			
Can	try	to	extrapolate	to	 x = 0 ,	subject	to	the	constraint	(for	the	Unruh	

state)	that	 x−2Prreg( )x=0 ≡ r2 = 2 x−2F( )x=0 ,	using	a	polynomial	fit	to	Pt 	
data.		It	was	usually	assumed	that	the	lowest	power	in	the	Unruh	
Pt 	is	 x4 	(as	in	Visser	1997).		But	for	spin	0	a	significantly	better	fit	
is	obtained	including	a	 x3 	term.			

	



Polynomial	fits	for	conformally	coupled	spin	0	Unruh:	
Pt = P0 0.2484x

3 + 25.5877x4 − 57.7703x5 + 37.6939x6( ), 	
Pr
reg = P0

10.769x2 +10.2722x3 −14.9429x4

+ 49.1583x5 −13.0164x6
⎛

⎝⎜
⎞

⎠⎟
, 	

Z ≡ 0.5 E reg + Pr
reg( ) / 1− x( )

= P0 10.769x
2 + 21.2896x3 + 31.9344x4 + 23.3224x5( ).

		

	
From	Levi	and	Ori	(2016)	0.04 ≤ x ≤1	data,	polynomial	fits	for	

minimally	coupled	spin	0	Unruh:	
Pt = P0 1.5242x

3 −145.91x4 +108.19x5 +153.8558x6( ), 	
T = P0 2.2196x

3 − 273.02x4 + 365.55x5 + 336.63x6( ), 	
Pr
reg = P0

10.769x2 + 7.7206x3 +155.362x4

−17.1713x5 − 58.6505x6
⎛

⎝⎜
⎞

⎠⎟
. 	

There	is	no	satisfactory	polynomial	fit	to	the	spin	1	Unruh	data.	
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Interpretation	
	

The	myth:	
	 Hawking	radiation	is	originates	very	close	to	the	horizon	by	pair	

creation	or	tunneling.			A	Hawking	partner	with	negative	Killing	
energy	is	left	inside	the	horizon,	decreasing	the	mass	of	the	black	
hole.			

If	so,	close	to	the	horizon	the	singular	energy	flux	there	should	
represent	an	outflow	of	positive	energy,	with	F ≅ +E ≅ +Pr .		This	
would	imply	 r2 = limx→0 x−2Pr

reg( ) = 0 	,	which	is	inconsistent	with	both	
the	spin	0	Pt 	and	the	direct	calculation	of	Pr 	by	Levi	and	Ori.		Even	
more	seriously,	this	would	be	an	extreme	violation	of	
conservation	of	energy	and	momentum	in	a	local	inertial	frame,	
where	both	the	Hawking	particle	and	its	partner	would	have	an	
enormous	energy	and	outward	momentum,	coming	from	nothing.	

	
The	alternative,	as	argued	originally	by	Unruh	(1977)	and	Fulling	

(1977),	is	that	the	Hawking	radiation	originates	from	vacuum	
fluctuations	propagating	along	and	straddling	the	horizon.		As	
these	are	radially	stretched	by	geodesic	deviation,	they	contribute	
positive	energy	to	the	SCSET	at	larger	radii	and	are	interpreted	as	
particles	excited	from	the	vacuum	at	 r≫ 3M .		There	is	negative	
energy	inflow	near	the	horizon	that	does	not	have	any	clear	
particle	interpretation.			

	
	



Backreaction	
	

The	general	spherically	symmetric	metric	in	advanced	Eddington-
Finkelstein	coordinates	is		

	 ds2 = −e2ψ 1− 2m / r( )dv2 + 2eψdvdr + r2 dθ 2 + sin2θdϕ 2( ).		
The	inverse	metric	has		
	 gvv = 0, gvr = e−ψ , grr = 1− 2m / r.		
The	stress-energy	tensor	in	terms	of	the	static	frame	components	is		
	 Tv

v = −E reg , Tr
r = Pr

reg , Tθ
θ = Tϕ

ϕ = Pt , 			
	 Tv

r = − 1− x( )F, Tr
v = 1− x( )−1 E reg + Pr

reg( ) = 2Zs .		
The	Einstein	equations	include	an	evolution	equation		
	 ∂m / ∂v( )r = − 3 / 2( )πks 2M( )2 P0 . 		
and	two	initial	value	equations,	
	 ∂m / ∂r( )v = −4πr2Tv

v 	and	 ∂e−ψ / ∂r( )v = −4πrTr
v ..			

Strictly	speaking	the	semi-classical	approximation	is	only	valid	as	long	
as	the	background	geometry	is	essentially	unchanged.		However,	
note	that	 ∂m / ∂v( )r 	is	independent	of	 r .		As	long	as	 ∂m / ∂v ≪1	
and	 m∂ψ / ∂r ≪1 	for	r ≈ 2m ,	the	geometry	remains	
Schwarzschild	with	M = m 	to	an	excellent	approximation	in	the	
vicinity	of	the	horizon,	even	as	M 	decreases	substantially	from	its	
initial	value.			

	



A	black	hole	information	paradox?	
	
Allowing	quantum	information	to	propagate	acausally	in	a	macroscopic	

spacetime	seems	an	extremely	serious	violation	of	basic	
principles.		

Entanglement	of	fields	outside	the	black	hole	with	fields	in	the	deep	
interior	is	a	generic	property	of	non-degenerate	black	holes.		
There	is	no	way	the	entanglement	can	be	restricted	to	a	small	
region	near	the	horizon,	since	"outward"	radial	null	geodesics	
diverge	away	from	the	horizon	on	both	sides.		The	degrees	of	
freedom	entangled	with	the	Hawking	radiation	do	not	propagate	
along	the	horizon,	as	assumed	in	complementarity	(Susskind,	et	al	
1993).			

Locally	a	large	black	hole's	event	horizon	(assuming	one	exists)	is	
almost	indistinguishable	from	a	Rindler	horizon	in	Minkowski	
spacetime.		No	one	would	suggest	that	quantum	information	
cannot	cross	a	Rindler	horizon,	or	that	it	can	be	"copied"	into	
modes	propagating	along	the	Rindler	horizon.		An	accelerating	
detector	hanging	just	above	a	black	hole	horizon	or	a	Rindler	
horizon	sees	thermal	radiation,	the	Unruh	heat	bath,	but	this	is	
just	a	property	of	the	detector	interacting	with	the	local	vacuum.		
The	Hawking	radiation	that	distinguishes	a	black	hole	horizon	
from	a	Rindler	horizon	is	a	nonlocal	effect.	



Firewalls?	
	
What	if	the	quantum	information	necessary	to	preserve	unitarity	for	an	

external	observer	starts	leaking	out	at	some	point,	through	subtle	
correlations	between	the	Hawking	particles?		This	hypothesis	
requires	acausal	propagation	of	quantum	information,	as	long	as	
the		black	hole	is	still	essentially	Schwarzschild.	

	
Almheiri,	et	al	(2012)	argued	that	entanglement	of	late	Hawking	

radiation	with	early	Hawking	radiation	and	the	emission	of	the	
Hawking	radiation	from	near	the	horizon,	consistent	with	low	
energy	effective	field	theory,	implies	the	existence	of	a	"firewall",	
because	from	the	no-cloning	theorem	the	late	Hawking	particles	
cannot	also	be	entangled	with	their	partners	inside	the	horizon.		
Absence	of	the	latter	entanglement		implies	very	high	energy	
excitations	at	the	horizon.	

	
Forming	a	firewall	would	require	enormous	amounts	of	energy	

suddenly	appearing	from	nothing	in	a	free-fall	frame.		Putting	the	
firewall	right	at	the	apparent	horizon,	so	gravitational	potential	
energy	cancels	the	local	energy,	is	of	no	help,	as	argued	earlier.		
Therefore,	I	consider	a	firewall	to	be	impossible	unless	one	
supposes	that	spacetime	suddenly	ends	and	general	relativity	
breaks	down	at	the	horizon,	as	the	result	of	some	cataclysmic	
phase	transition	(e.g.,	a	Mathur	fuzzball).			



Entropies	
	

What	is	the	entropy	of	a	black	hole?		The	Bekenstein-Hawking	entropy	

 
SBH = A / 4!( ) = 4π M 2 /mp

2( ) ,	where	A 	is	the	area	of	the	event	
horizon	(assuming	one	exists),	has	the	role	of	thermodynamic	

entropy.		But	what	about	the	microscopic	(von	Neumann)	entropy	

SvN ?		Normally,	in	local	quantum	field	theory	this	is	infinite,	
unless	it	is	renormalized	so	as	not	to	include	the	short-range	

correlations	of	the	vacuum	across	the	boundary	of	the	region	

being	considered.		Such	renormalization	carried	out	at	the	horizon	

of	a	black	hole	yields	a	net	SvN 	equal	to	the	number	of	entangled	
degrees	of	freedom	involved	in	the	initial	collapse	and	any	

subsequent	accretion,	plus	the	trapped	vacuum	fluctuations	or	

Hawking	"partners"	entangled	with	qbits	of	the	emitted	Hawking	

radiation.			

	

As	the	black	hole	evaporates,	the	net	SvN 	increases	and	SBH 	decreases.		
They	become	equal	at	the	Page	time,	when	the	black	hole	has	lost	

about	1/2	of	its	original	mass.		What	happens	at	that	point?		If	the	

black	hole	continues	emitting	Hawking	radiation	that	is	entangled	

with	the	interior	of	the	black	hole,	eventually	 SvN ≫ SBH .		On	the	
other	hand,	if	this	late	Hawking	radiation	is	assumed	to	be	

entangled	with	the	earlier	Hawking	radiation,	to	keep	SvN ≤ SBH ,	
one	is	faced	with	the	need	to	propagate	quantum	information	

acausally	and	the	issue	of	"firewalls"	(Almheiri,	et	al	2012).		This	

is	the	information	paradox.			



Possible	resolutions?	
	
1)	A	phase	transition	to	a	"fuzzball"	(Mathur)	or	to	a	"bose	

condensate	of	gravitons"	(Dvali),	or	some	other	breakdown	of	the	
notion	of	a	spacetime	described	to	good	approximation	by	GR,	at	and	
inside	the	horizon	of	a	large	black	hole.		Drastic	revisions	of	
conventional	quantum	field	theory.		I	find	all	of	these	extremely	
distasteful	and	implausible	for	any	large	black	hole.			

2)	Evaporation	continues,	with	quantum	information	remaining	
trapped,	until	the	black	hole	approaches	the	Planck	scale,	when	it	
dissolves	into	vacuum	fluctuations	containing	all	the	trapped	
information.		Unruh	and	Wald	have	argued	that	there	are	no	compelling	
reasons	to	reject	this	scenario,	though	they	seem	to	be	in	the		minority.	

3)	The	Bekenstein-Hawking	entropy	is	a	measure	of	the	total	
number	of	quantum	degrees	of	freedom	associated	with	the	interior	and	
horizon	of	the	black	hole,	and	the	unrenormalized	von	Neumann	entropy	
on	the	horizon	is	SvN

bare = SBH .		At	the	Page	time	the	Hawking	radiation	
stops,	because	there	are	no	more	quantum	degrees	of	freedom	to	be	
"pulled	out	of	the	vacuum".		The	black	hole	survives	as	a	massive	non-
radiating	remnant.		(But	this	seems	inconsistent	with	inflation.)	

4)	There	is	a	connection	between	entanglement	and	geometry	
that	prevents	the	macroscopic	entanglement	entropy	on	a	light	sheet	
normal	to	a	compact	two-surface	from	exceeding	1/4	its	area	in	Planck	
units,	by	modifying	the	geometry	as	this	limit	is	approached.		See	
Bardeen	(2014,	2017)	for	a	toy	model	implementing	this	idea.		

	



A	quantum	singularity	theorem?	

	

Bousso,	et	al	(2017)	argue	that,	under	rather	general	assumptions,	there	

is	a	theorem	valid	in	quantum	theory	similar	to	the	Penrose	

singularity	theorem	of	classical	GR.		The	area	of	a	null	geodesic	

congruence	is	replaced	by	a	generalized	entropy		

Sgen = Sout +
1
4
A σ( )
mp
2 , 		

	 where	A σ( ) 	is	the	area	of	a	compact	2-surface	σ 	dividing	a	
Cauchy	hypersurface	into	two	regions,	with	Sout 	the	von	Neumann	
entropy	of	the	"external"	non-compact	region.		The	"theorem"	is	

based	on	a	"quantum	focusing	conjecture"	(QFC),	that	deforming	

σ 	along	a	congruence	of	normal	null	geodesics,	d 2Sgen / dλ
2 ≤ 0 .			

Is	the	QFC	valid	in	the	context	of	an	evaporating	Schwarzschild	black	

hole?		As	the	initial	2-surface,	take	a	sphere	with	radius	r0 	such	

that	ε = 2M − r0( ) / 4M 	is	in	the	range	
 
mp /M( )2 ≪ ε ≪ mp /M ,	

inside	the	apparent	horizon	but	outside	the	event	horizon.		The	

radius	of	the	light	sheet	as	a	function	of	advanced	time	v 	is		

r ≅ r0 − εv − 4πMTv
rv2 ≅ r0 − εv + LH

v2

4M
. 		

	 The	emission	of	Hawking	radiation,	when	averaged	over	

 Δv≫ 2M ,	 dSout / dv ∼ 700M( )−1 .		Then		
dSgen / dv ≈ 4πM /mp

2( ) O mp /M( )2 − ε +O mp /M( )2 v / 2M⎡
⎣⎢

⎤
⎦⎥, 		

	 which	is	initially	less	than	zero	and	becomes	positive	while	the	

	 approximations	are	still	valid	at	
 
v / 2M =O M /mp( )2 ε ≫1.	

	

	


