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Classical Weyl invariance

Classically, Weyl invariance

S(g, φ) = S(g′, φ′)

under

g′µν(x) = Ω(x)2gµν(x) Φ′(x) = Ω(x)αΦ(x)

implies
gµνTµν = 0

To accommodate fermions e′µa(x) = Ω(x)eµa(x) where
gµν(x) = eµa(x)eνa(x)
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Examples

Conformally coupled scalar,φ′(x) = Ωφ(x), Penrose

S[φ] =

∫
d4x
√
−g
(
−1

2
gµν∂µφ∂νφ−

1
6

Rφ2
)

Massless fermion, ψ′(x) = Ω−3/2(x)ψ(x), Dirac

S[ψ] =

∫
d4xe

(
ψ̄γµ∇µψ

)
Electromagnetic field, A′µ(x) = Aµ(x), Maxwell

S[A] =

∫
d4x
√
−g
(
−1

4
gµρgνσFµνFρσ

)
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Quantum Weyl anomalies

But in the quantum theory

gµν < Tµν >6= 0

Over the period 1973-2012 this Weyl anomaly has found a
variety of applications in quantum gravity, black hole
physics, inflationary cosmology, string theory and statistical
mechanics.
Note that generic curved space

gµνTµν

not associated with a Noether current
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Recall flat space ancestry 1970

For example SO(D,2) in the case of flat Minkowski space.
Coleman and Jackiw Callan, Coleman and Jackiw
More generally, for D-dimensional spacetimes admitting
conformal Killing vectors ξi

µ(x)

∇µξi
ν +∇νξi

µ =
2
D

gµν∇ρξi
ρ

there is a classically conserved dilatation current

J iν = ξi
µTµν

Anomaly appears in the quantum theory

∇ν < J iν >=
1
D
∇ρξi

ρg
µν < Tµν >6= 0

but this is not an anomaly in local Weyl symmetry

g′µν(x) = Ω(x)2gµν(x)
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Timeline 1973

Corrections to graviton propagator from closed loops of
spin s = 0,1/2/,1 using dimensional regularization.
Capper Duff and Halpern s = 1
Capper and Duff s = 1/2
Geist et al s = 0
Discovery of the Weyl anomaly using dimensional
regularization
Capper and Duff
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Timeline 1974

I first announced the existence of gravitational Weyl
anomalies at The First Oxford Quantum Gravity
Conference, organised by Isham, Penrose,Sciama, and
held at the Rutherford Laboratory in February 1974
Unfortunately, the announcement was somewhat
overshadowed because Hawking chose the same
conference to reveal to an unsuspecting world his result
that black holes evaporate!
Ironically, Christensen,Fulling were subsequently to link
the Hawking effect and the trace anomaly.
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Timeline 1976

Non-local effective lagrangian for trace anomaly Deser,
Duff and Isham By general covariance and dimensional
analysis, it must take the following form:
For D=2,

gαβ < Tαβ >= aR

For D=4,

gαβ < Tαβ >= αR2+βRµνRµν+γRµνρσRµνρσ+δ R+cFµνaFµνa

where a, α, β, γ, δ and c are constants.
For D = 6,

gαβ < Tαβ >= (curvature)3

and so on.
At one-loop, and ignoring boundary terms, there is no
anomaly for D odd.
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King’s College London 1976

Figure: King’s College London 1976
9 / 64



The heat kernel

Zeta functions, heat kernels and anomalies
Christensen
Dowker
Hawking
Barvinsky et al
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The heat kernel

Classical action

S0 =

∫
ddx

1
2

(Φ,∆Φ)

where ∆ is a conformally invariant d-dimensional operator.
The one-loop effective action is given by

S1 = ln[det∆]−1/2

Its kernel F (x , y , ρ) obeys the heat equation

∂

∂ρ
F (x , y , ρ) + ∆F (x , y , ρ) = 0

with the initial conditions

F (x , y ,0) = δ(x , y)
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The heat kernel

One can express F as

F (x , y , ρ) =
∑

n

e−ρ∆φn(x)φn(y)

=
∑

n

e−ρλnφn(x)φn(y)

where φn are the eigenfunctions of ∆ with eigenvalues λn:

∆φn = λnφn

normalized according to∫
ddx
√

g(x)φn(x)φm(x) = δmn
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b4 coefficients

The one-loop action may thus be written as

S1 =

∫
dρddxρ−1√g(x)A(x , ρ)

where A(x , ρ) = F (x , x , ρ). A(x , ρ) obeys an asymptotic
expansion, valid for small ρ,

A(x , ρ) ∼
∑

n

Bn(x)ρn− d
2

where
Bn =

∫
ddx
√

gbn(x) (1)
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Zeta functions

The Schwinger-DeWitt coefficients bn are scalar
polynomials, which are of order n in derivatives of the
metric. In d = 4, for example, when ∆ is the conformally
invariant Laplacian acting on scalars:

∆ = −� +
1
6

R Penrose

gµνTµν = b4 =
1

2880π2 [RµνρσRµνρσ − RµνRµν + 30�R]

Furthermore,
B4 = n0 + ζ(0)

where n0 is the number of zero modes and

ζ(s) = Σn λ−s
n

is defined only over the non-zero eigenvalues of ∆.
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Timeline 1976

Asymptotic safety
Weinberg
Point splitting regularization
Christensen Duncan
More anomaly coefficients
Dowker and Critchley Duncan
Vacuum energy in two dimensions
Davies and Fulling
Particle creation
Wald
Robertson-Walker and applications to cosmology
Birrell, Bunch, Christensen,Davies, Fulling
Hartle et al
Black holes
Davies, Fulling,Unruh
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Timeline 1977

CFTs and the a and c coefficients
Duff
Trace anomalies and the Hawking effect
Christensen and Fulling
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Conformal Field Theories (CFT)

Weyl anomalies appear in their most pristine form when
CFTs are coupled to an external gravitational field. In this
case

A = gµν〈Tµν〉 =
1

(4π)2 (cF − aG)

where F is the square of the Weyl tensor:

F = CµνρσCµνρσ = RµνρσRµνρσ − 2RµνRµν +
1
3

R2,

G is proportional to the Euler density:

G = RµνρσRµνρσ − 4RµνRµν + R2,

Note no R2 term.
We ignore �R terms whose coefficient can be adjusted to
any value by adding the finite counterterm∫

d4x
√

gR2.
17 / 64



Central charges c and a

In the CFT a and c are the central charges given in terms
of the field content by

ā ≡ 720a = 2N0 + 11N1/2 + 124N1

c̄ ≡ 720c = 6N0 + 18N1/2 + 72N1

where Ns are the number of fields of spin s.
In the notation of Duff 1977

(4π)2b = c (4π)2b′ = −a
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Central charges c and a

The story of the Weyl anomaly for CFTs is thus the story of
the central charges c and a. The ratio is given by

a
c

=

(
2N0 + 11N1/2 + 124N1

)(
6N0 + 18N1/2 + 72N1

)
and by inspection we can read off see the inequalities

31
18
≥ a

c
≥ 1

3

where the upper and lower bounds are saturated by a
single vector and a single scalar respectively.
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Euler number

When F −G vanishes, anomaly reduces to

A = A
1

32π2 R∗µνρσR∗µνρσ

where
360A = c̄ − ā = 4N0 + 7N1/2 − 52N1

so that in Euclidean signature∫
d4x
√

ggµνTµν = Aχ(M4)

where χ(M4) is the Euler number of spacetime.
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Timeline 1978

Conformal (and axial) anomalies for arbitrary spin
Christensen,Duff
Conformal anomalies for interacting theories: QED, φ4 etc
Drummond
Shore
Hathrell
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Arbitrary spin

Calculate b4 for arbitrary (n,m) reps of Lorentz group, then
physical anomaly given by

A = A(n,m) + A(n − 1,m − 1)− 2A(n − 1/2,m − 1/2)

so in total

Atotal = 4N0 + 7N1/2 − 52N1 − 233N3/2 + 848N2

where Ns are the number of fields of spin s.
The b4 coefficient for chiral reps (1/2,0) (1,0) etc also
involve R*R unless we add (0,1/2) (0,1) etc
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Timeline 1980

Anomaly-driven inflation
Starobinsky
Grishchuk,Zeldovich
Vilenkin
p-forms and inequivalent anomalies
Duff, van Nieuwenhuizen
Grisaru et al
Siegel
The path-integral approach to anomalies
Fujikawa
Bastianelli, van Nieuwenhuizin
Nicolai,Townsend
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WARNING

WARNING

THE FOLLOWING CONTENT CONTAINS REFERENCES
TO SUPERSYMMETRY WHICH MAY OFFEND SOME
MEMBERS OF THE AUDIENCE
VIEWER DISCRETION IS ADVISED
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Central charges c and a

In the supersymmetric case we have the values and
bounds given below. Remarkably, these bounds continue
to hold true when the CFT is interacting Maldacena

Fields a c Bounds
N = 0 spin 0 1/360 1/120 31/18 ≥ a/c ≥ 1/3
N = 0 spin 1/2 11/720 1/40
N = 0 spin 1 31/180 1/10
N = 1 chiral multiplet 1/48 1/24 3/2 ≥ a/c ≥ 1/2
N = 1 vector multiplet 3/16 1/8
N = 2 hyper multiplet 1/24 1/12 5/4 ≥ a/c ≥ 1/2
N = 2 vector multiplet 5/24 1/6
N = 4 vector multiplet 1/4 1/4 a/c = 1

Table: The central charges a and c for supersymmetric CFTs
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Timeline 1977

Trace of stress tensor Tµ
µ

Divergence of axial current ∂µJ5
µ

Gamma trace of spinor current γµSµ
form a supermultiplet
and so, therefore, do the anomalies!
Ferrara,Zumino
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Timeline 1981

When we allow for a cosmological constant Λ the anomaly
is

Aχ+ BV

where V is the volume. We find

B = 6N0 + 18N1/2 + 72N1 − 822N3/2 + 3132N2 (2)

Moreover in gauged supergravity

e2 = GΛ

and B also determines the Yang-Mills beta-function.
This yields vanishing β-function in gauged N > 4
supergravity Christensen,Duff,Gibbons,Rocek
Spin sum rules ∑

λ

(−1)2λλk = 0

for N > k Curtwright Christensen,Duff
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Timeline 1981

Critical dimensions for bosonic and super strings
Polyakov
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Bosonic string

In the first quantized theory of the bosonic string, one
starts with a Euclidean functional integral

e−Γ =

∫
Dγ DX

Vol(Diff )
e−S[γ,X ]

where

S[γ,X ] =
1

4πα′

∫
d2ξ
√
γγ ij∂iXµ∂jX νηµν

As shown by Polyakov, the Weyl anomaly in the worldsheet
stress tensor is given by

γ ij < Tij >=
1

24π
(D − 26)R(γ)

D is the contribution of the scalars while the −26 arises
from the diffeomorphism ghosts that must be introduced
into the functional integral.
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Fermionic string

In the case of the fermionic string, the result is

γ ij < Tij >=
1

16π
(D − 10)R(γ)

Thus the critical dimensions D = 26 and D = 10
correspond to the preservation of the two dimensional
Weyl invariance γij → Ω2(ξ)γij .
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Spacetime Einstein equations from worldsheet
anomaly

S[γ,X ] =
1

4πα′

∫
d2ξ
√
γγ ij∂iXµ∂jX νgµν

β(g)µν = Rµν + ..

vanishing anomaly implies Einstein equations! Callan,
Friedan,Perry
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Timeline 1983

Conformal anomaly and W-Z consistency (no R2)
Bonora et al
Anomaly in conformal supergravity N = 1,2,3,4

S =

∫
d4x
√
−gCµνρσCµνρσ + ...

Vanishes for N = 4 Fradkin and Tseytlin
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Timeline 1984

Local version of effective action
Riegert
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Local action

Conformal operators
√

g∆d =
√

g′∆′d

∆2 = �

∆4 ≡ �2 + 2Rµν∇µ∇ν +
1
3

(∇µR)∇µ −
2
3

R�

Riegert
Subsequent work by
Osborn et al Antoniadis, Mazur and Mottola Barvinsky et
al
Local action

Sanom =
b
2

∫
d4x
√

gFφ−b′

2

∫
d4x
√

g[φ∆4φ−(G−2
3
�R)φ]
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Timeline 1985

Conformal invariants
Fefferman,Graham
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Timeline 1986

The c-theorem
Zamolodchikov
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Timeline 1988

c-theorem and/or a-theorem in four dimensions?
Cardy
Osborn
Capelli et al
Shore
Shapere
Antoniadis et al
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Timeline 1993

Geometric classification of conformal anomalies in
arbitrary dimensions
Deser,Schwimmer
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Timeline 1998

The holographic Weyl anomaly
Henningson,Skenderis
Imbimbo
Graham
Bastianelli
Manvelyan
Fukuma
Einstein manifolds and the a and c coefficients
Gubser,Martelli
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Holography

A distinguished coordinate system, boundary at ρ = 0

GMNdxMdxN =
Ld+1

2

4
ρ−2dρdρ+ ρ−1gµνdxµdxν

The effective action may be written

SB =

∫
dρddxρ−1√g(x)B(x , ρ)

where the specific form of B(x , ρ) depends on initial action.

B(x , ρ) ∼
∑

n

bn(x)ρn− d
2

Formal similarity with Schwinger-DeWitt coefficients,
indeed A ∼ b4 same for N=4 Yang-Mills but not in general.
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Timeline 2000

Anomaly-driven inflation revived
Hawking et al
Hamada
Nojiri
Shapiro
de Paula Netto, Pelinson, Shapiro, Starobinsky
a and c and corrections to Newton’s law
Duff and Liu
Anomalies and entropy bounds
Nojiri et al
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Corrections to Newton’s law

In my 1972 PhD thesis, at the suggestion of Abdus Salam,
I calculated one-loop CFT corrections to Newton’s law
(Schwarzschild solution)

V (r) =
G4M

r

(
1 +

8cG4

3πr2

)
,

where G4 is the four-dimensional Newton’s constant and c
is a purely numerical coefficient. In fact it turned out to be
the c coefficient in the Weyl anomaly
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N=4 Yang-Mills

A particularly important example of a CFT is provided by
N = 4 super Yang-Mills with gauge group U(N), for which

(N1,N1/2,N0) = (N2,4N2,6N2)

Then

a = c =
N2

4
and hence

A =
c

(4π)2

(
2RµνRµν − 2

3
R2
)

=
N2

32π2

(
RµνRµν − 1

3
R2
)

The contribution of a single N = 4 U(N) Yang-Mills CFT is

V (r) =
G4M

r

(
1 +

2N2G4

3πr2

)
.
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Randall-Sundrum

Now fast-forward to 1999 when Randall and Sundrum
proposed that our four-dimensional world is a 3-brane
embedded in an infinite five-dimensional universe. They
showed that there is an r−3 correction coming from the
massive Kaluza-Klein modes

V (r) =
G4M

r

(
1 +

2L5
2

3r2

)
.

where L5 is the radius of AdS5.
Superficially, our 4D quantum correction seems unrelated
to their 5D classical one.
But through the miracle of AdS/CFT

N2 =
πL3

5
2G5

G4 =
2G5

L5

the two are in fact equivalent. Duff and Liu
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Timeline 2001

a and c and the graviton mass
Dilkes et al
Aharony
Weyl cohomology revisited
Mazur and Mottola
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Timeline 2005

Anomalies as an infra-red diagnostic; IR free or
interacting?
Intriligator
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Timeline 2006

Macroscopic effects of the quantum trace anomaly
Mottola et al
Gianotti et al
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Timeline 2007

Anomalies and the hierarchy problem
Meissner
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Timeline 2008

Viscosity bounds
Buchel et al
Conformal collider physics
Hofman and Maldacena
Weyl invariance and mass
Waldron et al
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Timeline 2009

Entanglement Entropy
Nishioka
Log corrections to black hole entropy
Cai
Solodukin
Sen et al
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Timeline 2010

Holographic c-theorems in arbitrary dimensions
Myers et al
Generalized mirror symmetry and trace anomalies
Duff et al
Vanish without a trace
Duff et al
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M-theory on X 7

We consider compactification of (N = 1,D = 11)
supergravity on a 7-manifold X 7 with betti numbers
(b0,b1,b2,b3,b3,b2,b1,b0) and define a generalized mirror
symmetry

(b0,b1,b2,b3)→ (b0,b1,b2 − ρ/2,b3 + ρ/2)

under which

ρ(X 7) ≡ 7b0 − 5b1 + 3b2 − b3

changes sign
ρ→ −ρ

The massless sectors of these compactifications have

f = 4(b0 + b1 + b2 + b3)

degrees of freedom.
Generalized self-mirror theories are defined to be those for
which ρ = 0 52 / 64



M-theory on X 7

In backgrounds for which F −G vanishes, the Weyl
anomaly reduces to

T = A
1

32π2 R∗µνρσR∗µνρσ (3)

where
A = 2(c − a) (4)

so that in Euclidean signature∫
d4x
√

gT = Aχ(M4) (5)

where χ(M4) is the Euler number of spacetime.
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Anomalies

Field f ∆A 360A 360A′ X 7

gMN gµν 2 −3 848 −232 b0
Aµ 2 0 −52 −52 b1
A 1 0 4 4 −b1 + b3

ψM ψµ 2 1 −233 127 b0 + b1
χ 2 0 7 7 b2 + b3

AMNP Aµνρ 0 2 −720 0 b0
Aµν 1 −1 364 4 b1
Aµ 2 0 −52 −52 b2
A 1 0 4 4 b3

total ∆A 0
total A −ρ/24
total A′ −ρ/24

Table: X 7 compactification of D=11 supergravity
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Vanish without a trace!

Remarkably, we find that the anomalous trace depends on
ρ

A = − 1
24
ρ(X 7)

So the anomaly flips sign under generalized mirror
symmetry and vanishes for generalized self-mirror
theories. For X (8−N ) × T (N−1) with N ≥ 3 the anomaly
vanishes identically.
Duff and Ferrara
Equally remarkable is that we get the same answer for the
total trace using the numbers of Grisaru et al.

55 / 64



Four curious supergravities

Of particular interest are the four cases

(b0,b1,b2,b3) = (1,N − 1,3N − 3,4N + 3)

with N = 1,2,4,8, namely the four “curious”
supergravities, discussed in Duff and Ferrara which enjoy
some remarkable properties.
N = 1, 7 WZ multiplets, f = 32,
N = 2, 3 vector multiplets, 4 hypermultiplets, f = 64,
N = 4, 6 vector mutiplets, f = 128,
N = 8, f = 256.
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O, H, C, R theories

Field 360A O H C R

gµν 848 1 1 1 1
Bµ −52 7 6 0 0
S 4 28 16 10 7
ψµ −233 8 4 2 1
χ 7 56 28 14 7
Aµνρ −720 1 1 1 1
Aµν 364 7 3 1 0
Aµ −52 21 6 4 0
A 4 35 19 11 7

A = 0 A = 0 A = 0 A = 0

Table: Vanishing anomaly in O, H, C, R theories.
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Fano plane

A

B C

D E

F

G

Figure: The Fano plane has seven points and seven lines (the circle
counts as a line) with three points on every line and three lines
through every point. The truncation from 7 lines to 3 to 1 to 0
corresponds to the truncation from N=8 to N=4 to N=2 to N=1.
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Type IIA

In the case of (N = 1,D = 11) on X 6 × S1, or equivalently
(Type IIA, D=10) on X 6,

A = − 1
24
χ(X 6)

and so in Euclidean signature∫
d4x
√

ggµν < Tµν >= − 1
24
χ(M4)χ(X 6) = − 1

24
χ(M10)

where χ(M4) is the Euler number of spacetime.
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Timeline 2011

Models for particle physics
’t Hooft
Renormalization group and Weyl anomalies
Percacci
A four-dimensional a-theorem
Komargodski et al
Luty et al
Elvang et al
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Timeline 2012

Gravitational anomalies and thermal Hall effect in
topological insulators
Stone
A one-loop test of quantum gravity
Bhattacharyya et al
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Timeline 2015

Holographic c-theorems in arbitrary dimensions
Stone
A one-loop test of quantum supergravity
Bhattacharyya et al
Anomalies and conformal manifolds
Gomis
More on boundary terms in the anomaly
Fursaev
Solodukhin
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Timeline 2017

The semi-classical stress-energy tensor in a
Schwarzschild background
Bardeen
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