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Classical Weyl invariance

@ Classically, Weyl invariance
S(g,¢) = S(9'. ¢)
under
Gw(X) = QX)?gun (x)  ®'(x) = Qx)"®(x)
implies
9T, =0

@ To accommodate fermions e, %(x) = Q(x)e,?(x) where

9 (Xx) = e,é(x)eval(x)



@ Conformally coupled scalar,¢’(x) = Q¢(x),
il = [ o*xv=g (- 39" 0000 - RS )
@ Massless fermion, /(x) = Q~3/2(x)y(x),
St = [ dxe (#9V,0)
o Electromagnetic field, A/, (x) = A,(x),

1
SIAl= [ a*v=g (3979 FuuFin )



Quantum Weyl anomalies

@ But in the quantum theory
g < Tu >#0

Over the period 1973-2012 this Weyl anomaly has found a
variety of applications in quantum gravity, black hole
physics, inflationary cosmology, string theory and statistical
mechanics.

@ Note that generic curved space
9" T

not associated with a Noether current
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Recall flat space ancestry 1970

@ For example SO(D, 2) in the case of flat Minkowski space.

@ More generally, for D-dimensional spacetimes admitting
conformal Killing vectors ¢/, (x)

, .2 ,
Vil + Vi = 59wV,
there is a classically conserved dilatation current
Jiu — é—L THY
@ Anomaly appears in the quantum theory
. 1 .
V, <J” >= Evpgggﬂ” < Tuw>#0
but this is not an anomaly in local Weyl symmetry
9 (%) = Q(x)?guu (%)



Timeline 1973

@ Corrections to graviton propagator from closed loops of
spin s = 0,1/2/,1 using dimensional regularization.
s=1
s=1/2
s=0
@ Discovery of the Weyl anomaly using dimensional
regularization



Timeline 1974

@ | first announced the existence of gravitational Weyl
anomalies at The First Oxford Quantum Gravity
Conference, organised by , and
held at the Rutherford Laboratory in February 1974

@ Unfortunately, the announcement was somewhat
overshadowed because chose the same
conference to reveal to an unsuspecting world his result
that black holes evaporate!

@ Ironically, were subsequently to link
the Hawking effect and the trace anomaly.



Timeline 1976

@ Non-local effective lagrangian for trace anomaly
By general covariance and dimensional
analysis, it must take the following form:
@ For D=2,
g% < T,s >=aR
@ For D=4,
g° < Top >= aRP+BRu, R+ Ryype R*P7 +60R+CF,, 2 FH

where a, a, 3,~, 6 and ¢ are constants.
@ For D =6,
9*? < T,p >= (curvature)®
and so on.

@ At one-loop, and ignoring boundary terms, there is no
anomaly for D odd.



King’s College London 1976




The heat kernel

@ Zeta functions, heat kernels and anomalies
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The heat kernel

@ Classical action
1
So = /ddx2(¢, AD)
where A is a conformally invariant d-dimensional operator.
@ The one-loop effective action is given by
Sy = In[detA]~1/?

@ lIts kernel F(x, y, p) obeys the heat equation

0
%F(X,y,p)ﬂLAF(X,y,p):O

with the initial conditions

F(va’o) :5(X7y)
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The heat kernel

@ One can express F as

F(x,y.p) = Z e "2 n(X)dn(¥)

=> e " Gn(X)¢n(y)
n
where ¢, are the eigenfunctions of A with eigenvalues Ap:

A¢n = )\n(ﬁn

normalized according to
[ @800 (306m(X) = 5
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b, coefficients

@ The one-loop action may thus be written as

S = / dpd?xp~1 Va(x)A(x, p)

where A(x, p) = F(x, x, p). A(x, p) obeys an asymptotic
expansion, valid for small p,

A(X,p) ~ 3 Ba(x)p" 2

where

B, = / d?x./gbn(x) (1)
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Zeta functions

@ The coefficients b, are scalar
polynomials, which are of order n in derivatives of the
metric. In d = 4, for example, when A is the conformally
invariant Laplacian acting on scalars:

1
A=-0+ =R
T8
4 1 Vpo v
g,u Tuu = b4 = W[RMVPURH P — RMVR'M + SODR]
@ Furthermore,
By = ng + ¢(0)
where ng is the number of zero modes and
¢(s)=%n Ap°

is defined only over the non-zero eigenvalues of A.
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Timeline 1976

@ Asymptotic safety

Point splitting regularization

More anomaly coefficients

@ Vacuum energy in two dimensions

Particle creation

@ Robertson-Walker and applications to cosmology

Black holes
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Timeline 1977

@ CFTs and the a and c coefficients

@ Trace anomalies and the Hawking effect
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Conformal Field Theories (CFT)

@ Weyl anomalies appear in their most pristine form when
CFTs are coupled to an external gravitational field. In this
case

A= g"(T,u) = s (oF — a€)

where F is the square of the Weyl tensor:

F = Cvpo C""7 = Ry po B**7 — 2Ry, A" + %R27

G is proportional to the Euler density:
G = Ruvpo B**7 — 4R, R* + R?,
@ Note no R? term.
@ We ignore [JR terms whose coefficient can be adjusted to
any value by adding the finite counterterm
/d4x gR?.
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Central charges c and a

@ Inthe CFT a and c are the central charges given in terms
of the field content by

a=720a= 2Ny + 11Ny ;5 + 124N

¢ =720c = 6Ny + 18Ny o + 72N,

where Ng are the number of fields of spin s.
@ In the notation of

(4r)?b=c (4n)°b = -a
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Central charges c and a

@ The story of the Weyl anomaly for CFTs is thus the story of

the central charges ¢ and a. The ratio is given by

a (2N0+11N1/2+124N1)

¢ (6No+ 18Ny + 72Ny)

and by inspection we can read off see the inequalities

31 a_ 1
> = >
c 3

where the upper and lower bounds are saturated by a
single vector and a single scalar respectively.
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Euler number

@ When F — G vanishes, anomaly reduces to

1

A= A327T2

* WV PO [*
RAHVPTRY oy

where
360A=c—-—a=4N, + 7N1/2 — 52N,

so that in Euclidean signature
[ d*xvgg" T = Ax(M)

where y(M*) is the Euler number of spacetime.
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Timeline 1978

@ Conformal (and axial) anomalies for arbitrary spin

@ Conformal anomalies for interacting theories: QED, ¢* etc
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Arbitrary spin

@ Calculate by for arbitrary (n, m) reps of Lorentz group, then
physical anomaly given by

A=Anm+An—-1,m—-1)—-2A(n—-1/2,m—1/2)
so in total
Atotal = 4No + 7Ny jo — 52Ny — 233 N5 + 848N,

where Ns are the number of fields of spin s.

@ The by coefficient for chiral reps (1/2,0) (1,0) etc also
involve R*R unless we add (0,1/2) (0,1) etc
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Timeline 1980

@ Anomaly-driven inflation

@ p-forms and inequivalent anomalies

@ The path-integral approach to anomalies
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WARNING

WARNING

@ THE FOLLOWING CONTENT CONTAINS REFERENCES
TO SUPERSYMMETRY WHICH MAY OFFEND SOME
MEMBERS OF THE AUDIENCE

@ VIEWER DISCRETION IS ADVISED
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Central charges c and a

@ In the supersymmetric case we have the values and
bounds given below. Remarkably, these bounds continue
to hold true when the CFT is interacting

Fields a c Bounds

N =0spin 0 1/360 | 1/120 || 31/18 > a/c>1/3
N =0 spin1/2 11/720 | 1/40

N = 0 spin 1 31/180 | 1/10

N =1 chiral multiplet || 1/48 1/24 3/2>a/c>1/2
N = 1 vector multiplet || 3/16 1/8

N = 2 hyper multiplet || 1/24 1/12 5/4>a/c>1/2
N = 2 vector multiplet || 5/24 1/6

N = 4 vector multiplet || 1/4 1/4 a/c=1

Table: The central charges a and c¢ for supersymmetric CFTs
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Timeline 1977

@ Trace of stress tensor T+,
Divergence of axial current 9,J°,
Gamma trace of spinor current 4#S,,
form a supermultiplet

@ and so, therefore, do the anomalies!
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Timeline 1981

@ When we allow for a cosmological constant A the anomaly
is
Ax + BV
where V is the volume. We find
B =6Ny + 18Ny 5 + 72Ny — 822N3,5 + 3132N,  (2)
Moreover in gauged supergravity
e? = GA
and B also determines the Yang-Mills beta-function.
@ This yields vanishing s-function in gauged N > 4
supergravity
@ Spin sum rules
> (1PN =0
A
for N > k
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Timeline 1981

@ Critical dimensions for bosonic and super strings
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Bosonic string

@ In the first quantized theory of the bosonic string, one
starts with a Euclidean functional integral

r_ [ DyDX spx
Vol( Diff)
where
1 N
S0 X = 4o [ PEAIOX 9",
@ As shown by , the Weyl anomaly in the worldsheet

stress tensor is given by
i 1
ij S _

D is the contribution of the scalars while the —26 arises
from the diffeomorphism ghosts that must be introduced
into the functional integral.
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Fermionic string

@ In the case of the fermionic string, the result is
" 1
"< Ti>=—(D-10)R
@ Thus the critical dimensions D =26 and D = 10

correspond to the preservation of the two dimensional
Weyl invariance v — Q2(€);.
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Spacetime Einstein equations from worldsheet

anomaly

1 y
p / d?&\ /Y19 X1 9 X" Gy
B(Duw = R + ..

vanishing anomaly implies Einstein equations! Callan,
Friedan,Perry

Shy, X] =
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Timeline 1983

@ Conformal anomaly and W-Z consistency (no R?)
@ Anomaly in conformal supergravity N =1,2,3,4
S— / A*x\/=GC" Cop + ...

Vanishes for N = 4
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Timeline 1984

@ Local version of effective action
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Local action

@ Conformal operators

VIhg = /g0y
A, =0

]
Ay =2 +2R™V,V, + 3(V'R)V, — ngD

@ Subsequent work by

@ Local action
b 4 b 4 2
Sanom = 5 [ d*xvGFo-5 [ d*xGionss—(G- ;ORI
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Timeline 1985

@ Conformal invariants
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Timeline 1986

@ The c-theorem
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Timeline 1988

@ c-theorem and/or a-theorem in four dimensions?
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Timeline 1993

@ Geometric classification of conformal anomalies in
arbitrary dimensions

38/64



Timeline 1998

@ The holographic Weyl anomaly

@ Einstein manifolds and the a and ¢ coefficients
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Holography

@ A distinguished coordinate system, boundary at p = 0
GunvaxMaxN = Ld4+12p2dpdp + p g dxtax”
@ The effective action may be written
Se = [ dpaxp™'Vax)B(x. )
where the specific form of B(x, p) depends on initial action.

B(x,p) ~ > bn(x)p"¢

@ Formal similarity with coefficients,
indeed A ~ b, same for N=4 Yang-Mills but not in general.
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Timeline 2000

@ Anomaly-driven inflation revived

@ g and c and corrections to Newton’s law

@ Anomalies and entropy bounds
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Corrections to Newton’s law

@ In my 1972 PhD thesis, at the suggestion of Abdus Salam,
| calculated one-loop CFT corrections to Newton’s law
(Schwarzschild solution)

GuM 8cGy
V(r) = r(1 +37Tr2>,

where G, is the four-dimensional Newton’s constant and ¢

is a purely numerical coefficient. In fact it turned out to be
the c coefficient in the Weyl anomaly
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N=4 Yang-Mills

@ A particularly important example of a CFT is provided by
N = 4 super Yang-Mills with gauge group U(N), for which

(N1 ) N1/27 NO) = (Nza 4N2a 6N2)

Then
N2
a:C—T
and hence
2 N2 1
wy =2 wy o 2
A= Gy (PR = 5) = 5 5 (RuR" — 5F°)

@ The contribution of a single A" = 4 U(N) Yang-Mills CFT is
2
G4M<1 N 2N G4>'

V(r) =

r 3rr?
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Randall-Sundrum

@ Now fast-forward to 1999 when
proposed that our four-dimensional world is a 3-brane
embedded in an infinite five-dimensional universe. They
showed that there is an r—2 correction coming from the
massive Kaluza-Klein modes
GyM 215
V(r) = —— == ).
(" r (1 + 3r2
where L5 is the radius of AdSs.
@ Superficially, our 4D quantum correction seems unrelated
to their 5D classical one.
@ But through the miracle of AdS/CFT
LS
N2 = s —
2Gs Ga
the two are in fact equivalent.

Ls
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Timeline 2001

@ aand c and the graviton mass

@ Weyl cohomology revisited
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Timeline 2005

@ Anomalies as an infra-red diagnostic; IR free or
interacting?
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Timeline 2006

@ Macroscopic effects of the quantum trace anomaly
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Timeline 2007

@ Anomalies and the hierarchy problem
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Timeline 2008

@ Viscosity bounds
@ Conformal collider physics

@ Weyl invariance and mass
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Timeline 2009

@ Entanglement Entropy

@ Log corrections to black hole entropy
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Timeline 2010

@ Holographic c-theorems in arbitrary dimensions
@ Generalized mirror symmetry and trace anomalies

@ Vanish without a trace
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M-theory on X”

@ We consider compactification of (V' =1,D = 11)
supergravity on a 7-manifold X’ with betti numbers
(bo, by, bo, bz, bz, bo, by, bo) and define a generalized mirror
symmetry

(bo, b1, b2, b3) — (bo, b1, b2 — p/2, b3 + p/2)
under which
p(X7) = 7bo — 5b1 + 3b2 - b3
changes sign
p——=p

@ The massless sectors of these compactifications have

f=4(by + by + bz + bs)

degrees of freedom.
@ Generalized self-mirror theories are defined to be those for
which 0= 0 52/64



M-theory on X”

@ In backgrounds for which F — G vanishes, the Weyl
anomaly reduces to

1

T=A%r

R*Hvpo R*uupa (3)

where
A=2(c—a) (4)

so that in Euclidean signature
[ dxvaT = ax(m) (5)
where y(M*) is the Euler number of spacetime.
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Anomalies

Field f AA 360A
ImN 9w 2 -3 848
A, 2 0 -52
A 1 0 4
Uvm Yy 2 1 —-233
X 2 0 7
Aunp Awp O 2 -720
A, 1 -1 364
AL 2 0 -52
A 1 0 4
total AA 0
total A —p/24
total A

360A'

—232
-52

127

—p/24
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Vanish without a trace!

@ Remarkably, we find that the anomalous trace depends on
P

1 7
A= —ﬂp(X )

So the anomaly flips sign under generalized mirror
symmetry and vanishes for generalized self-mirror
theories. For X(8=V) x TWW=1) with A’ > 3 the anomaly
vanishes identically.

@ Equally remarkable is that we get the same answer for the
total trace using the numbers of
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Four curious supergravities

@ Of particular interest are the four cases
(bo, b1, b2, b3) = (1, —1,3N —3,4N + 3)

with /' = 1,2, 4,8, namely the four “curious”
supergravities, discussed in which enjoy
some remarkable properties.

N = 1,7 WZ multiplets, f = 32,

N = 2, 3 vector multiplets, 4 hypermultiplets, f = 64,

N = 4, 6 vector mutiplets, f = 128,

N =8, f=256.
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O, H, C, R theories

Field 360A o H Cc R

g. 848 1 1 1 1
B,  -52 6 0 0
S 4 28 16 10 7
b,  —233 8 4 2 1
X 7 56 28 14 7
A, —T720 1 1 1 1
A, 364 3 1 0
A, 52 21 6 4 0
A 4 35 19 11 7

A=0 A=0 A=0 A=0

Table: Vanishing anomaly in O, H, C, R theories.
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Fano plane

Figure: The Fano plane has seven points and seven lines (the circle
counts as a line) with three points on every line and three lines
through every point. The truncation from 7 linesto 3to 1 to 0
corresponds to the truncation from N=8 to N=4 to N=2 to N=1.

58/64



Type IIA

@ Inthe case of (M =1,D=11) on X8 x S, or equivalently
(Type IIA, D=10) on X8,

and so in Euclidean signature

1 1
[ dxV8gu < T >~ (MONX®) = — 5 ox (™)

where y(M*) is the Euler number of spacetime.
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Timeline 2011

@ Models for particle physics
@ Renormalization group and Weyl anomalies

@ A four-dimensional a-theorem
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Timeline 2012

@ Gravitational anomalies and thermal Hall effect in
topological insulators

@ A one-loop test of quantum gravity
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Timeline 2015

@ Holographic c-theorems in arbitrary dimensions
@ A one-loop test of quantum supergravity
@ Anomalies and conformal manifolds

@ More on boundary terms in the anomaly
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Timeline 2017

@ The semi-classical stress-energy tensor in a
Schwarzschild background
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