Five Decades of the Gravitational Weyl anomaly

M. J. Duff

Blackett Laboratory, Imperial College London \& Mathematical Institute, Oxford
Gravity: past, present and future UBC \& PITP September 2017

Classical Weyl invariance

- Classically, Weyl invariance

$$
S(g, \phi)=S\left(g^{\prime}, \phi^{\prime}\right)
$$

under

$$
g_{\mu \nu}^{\prime}(x)=\Omega(x)^{2} g_{\mu \nu}(x) \quad \Phi^{\prime}(x)=\Omega(x)^{\alpha} \Phi(x)
$$

implies

$$
g^{\mu \nu} T_{\mu \nu}=0
$$

- To accommodate fermions $e_{\mu}^{\prime}{ }^{a}(x)=\Omega(x) e_{\mu}{ }^{a}(x)$ where $g_{\mu \nu}(x)=e_{\mu}{ }^{a}(x) e_{\nu a}(x)$

Examples

- Conformally coupled scalar, $\phi^{\prime}(x)=\Omega \phi(x)$, Penrose

$$
S[\phi]=\int d^{4} x \sqrt{-g}\left(-\frac{1}{2} g^{\mu \nu} \partial_{\mu} \phi \partial_{\nu} \phi-\frac{1}{6} R \phi^{2}\right)
$$

- Massless fermion, $\psi^{\prime}(x)=\Omega^{-3 / 2}(x) \psi(x)$, Dirac

$$
S[\psi]=\int d^{4} x e\left(\bar{\psi} \gamma^{\mu} \nabla_{\mu} \psi\right)
$$

- Electromagnetic field, $A_{\mu}^{\prime}(x)=A_{\mu}(x)$, Maxwell

$$
S[A]=\int d^{4} x \sqrt{-g}\left(-\frac{1}{4} g^{\mu \rho} g^{\nu \sigma} F_{\mu \nu} F_{\rho \sigma}\right)
$$

Quantum Weyl anomalies

- But in the quantum theory

$$
g^{\mu \nu}<T_{\mu \nu}>\neq 0
$$

Over the period 1973-2012 this Weyl anomaly has found a variety of applications in quantum gravity, black hole physics, inflationary cosmology, string theory and statistical mechanics.

- Note that generic curved space

$$
g^{\mu \nu} T_{\mu \nu}
$$

not associated with a Noether current

Recall flat space ancestry 1970

- For example $S O(D, 2)$ in the case of flat Minkowski space. Coleman and Jackiw Callan, Coleman and Jackiw
- More generally, for D-dimensional spacetimes admitting conformal Killing vectors $\xi_{\mu}^{i}(x)$

$$
\nabla_{\mu} \xi_{\nu}^{i}+\nabla_{\nu} \xi_{\mu}^{i}=\frac{2}{D} g_{\mu \nu} \nabla^{\rho} \xi_{\rho}^{i}
$$

there is a classically conserved dilatation current

$$
J^{i \nu}=\xi_{\mu}^{i} T^{\mu \nu}
$$

- Anomaly appears in the quantum theory

$$
\nabla_{\nu}<J^{i \nu}>=\frac{1}{D} \nabla^{\rho} \xi_{\rho}^{i} g^{\mu \nu}<T_{\mu \nu}>\neq 0
$$

but this is not an anomaly in local Weyl symmetry

$$
g_{\mu \nu}^{\prime}(x)=\Omega(x)^{2} g_{\mu \nu}(x)
$$

Timeline 1973

- Corrections to graviton propagator from closed loops of spin $s=0,1 / 2 /, 1$ using dimensional regularization.
Capper Duff and Halpern $s=1$
Capper and Duff $s=1 / 2$
Geist et al $\boldsymbol{s}=0$
- Discovery of the Weyl anomaly using dimensional regularization
Capper and Duff

Timeline 1974

- I first announced the existence of gravitational Weyl anomalies at The First Oxford Quantum Gravity Conference, organised by Isham, Penrose,Sciama, and held at the Rutherford Laboratory in February 1974
- Unfortunately, the announcement was somewhat overshadowed because Hawking chose the same conference to reveal to an unsuspecting world his result that black holes evaporate!
- Ironically, Christensen,Fulling were subsequently to link the Hawking effect and the trace anomaly.

Timeline 1976

- Non-local effective lagrangian for trace anomaly Deser, Duff and Isham By general covariance and dimensional analysis, it must take the following form:
- For $\mathrm{D}=2$,

$$
g^{\alpha \beta}<T_{\alpha \beta}>=a R
$$

- For $D=4$, $g^{\alpha \beta}<T_{\alpha \beta}>=\alpha R^{2}+\beta R_{\mu \nu} R^{\mu \nu}+\gamma R_{\mu \nu \rho \sigma} R^{\mu \nu \rho \sigma}+\delta \square R+c F_{\mu \nu}^{a} F^{\mu \nu a}$ where $\boldsymbol{a}, \alpha, \beta, \gamma, \delta$ and \boldsymbol{c} are constants.
- For $D=6$,

$$
g^{\alpha \beta}<T_{\alpha \beta}>=(\text { curvature })^{3}
$$

and so on.

- At one-loop, and ignoring boundary terms, there is no anomaly for D odd.

King's College London 1976

The heat kernel

- Zeta functions, heat kernels and anomalies Christensen
Dowker
Hawking
Barvinsky et al

The heat kernel

- Classical action

$$
S_{0}=\int d^{d} x \frac{1}{2}(\Phi, \Delta \Phi)
$$

where Δ is a conformally invariant d-dimensional operator.

- The one-loop effective action is given by

$$
S_{1}=\ln [\operatorname{det} \Delta]^{-1 / 2}
$$

- Its kernel $F(x, y, \rho)$ obeys the heat equation

$$
\frac{\partial}{\partial \rho} F(x, y, \rho)+\Delta F(x, y, \rho)=0
$$

with the initial conditions

$$
F(x, y, 0)=\delta(x, y)
$$

The heat kernel

- One can express F as

$$
\begin{gathered}
F(x, y, \rho)=\sum_{n} e^{-\rho \Delta} \phi_{n}(x) \phi_{n}(y) \\
=\sum_{n} e^{-\rho \lambda_{n}} \phi_{n}(x) \phi_{n}(y)
\end{gathered}
$$

where ϕ_{n} are the eigenfunctions of Δ with eigenvalues λ_{n} :

$$
\Delta \phi_{n}=\lambda_{n} \phi_{n}
$$

normalized according to

$$
\int d^{d} x \sqrt{g}(x) \phi_{n}(x) \phi_{m}(x)=\delta_{m n}
$$

b_{4} coefficients

- The one-loop action may thus be written as

$$
S_{1}=\int d \rho d^{d} x \rho^{-1} \sqrt{g}(x) A(x, \rho)
$$

where $A(x, \rho)=F(x, x, \rho) . A(x, \rho)$ obeys an asymptotic expansion, valid for small ρ,

$$
A(x, \rho) \sim \sum_{n} B_{n}(x) \rho^{n-\frac{d}{2}}
$$

where

$$
\begin{equation*}
B_{n}=\int d^{d} x \sqrt{g} b_{n}(x) \tag{1}
\end{equation*}
$$

Zeta functions

- The Schwinger-DeWitt coefficients b_{n} are scalar polynomials, which are of order n in derivatives of the metric. In $d=4$, for example, when Δ is the conformally invariant Laplacian acting on scalars:

$$
\begin{gathered}
\Delta=-\square+\frac{1}{6} R \quad \text { Penrose } \\
g^{\mu \nu} T_{\mu \nu}=b_{4}=\frac{1}{2880 \pi^{2}}\left[R_{\mu \nu \rho \sigma} R^{\mu \nu \rho \sigma}-R_{\mu \nu} R^{\mu \nu}+30 \square R\right]
\end{gathered}
$$

- Furthermore,

$$
B_{4}=n_{0}+\zeta(0)
$$

where n_{0} is the number of zero modes and

$$
\zeta(s)=\Sigma_{n} \lambda_{n}^{-s}
$$

is defined only over the non-zero eigenvalues of Δ.

Timeline 1976

- Asymptotic safety Weinberg
- Point splitting regularization Christensen Duncan
- More anomaly coefficients Dowker and Critchley Duncan
- Vacuum energy in two dimensions Davies and Fulling
- Particle creation Wald
- Robertson-Walker and applications to cosmology Birrell, Bunch, Christensen,Davies, Fulling Hartle et al
- Black holes

Davies, Fulling,Unruh

Timeline 1977

- CFTs and the a and c coefficients Duff
- Trace anomalies and the Hawking effect Christensen and Fulling

Conformal Field Theories (CFT)

- Weyl anomalies appear in their most pristine form when CFTs are coupled to an external gravitational field. In this case

$$
\mathcal{A}=g^{\mu \nu}\left\langle T_{\mu \nu}\right\rangle=\frac{1}{(4 \pi)^{2}}(c F-a G)
$$

where F is the square of the Weyl tensor:

$$
F=C_{\mu \nu \rho \sigma} C^{\mu \nu \rho \sigma}=R_{\mu \nu \rho \sigma} R^{\mu \nu \rho \sigma}-2 R_{\mu \nu} R^{\mu \nu}+\frac{1}{3} R^{2}
$$

G is proportional to the Euler density:

$$
G=R_{\mu \nu \rho \sigma} R^{\mu \nu \rho \sigma}-4 R_{\mu \nu} R^{\mu \nu}+R^{2}
$$

- Note no R^{2} term.
- We ignore $\square R$ terms whose coefficient can be adjusted to any value by adding the finite counterterm

$$
\int d^{4} x \sqrt{g} R^{2}
$$

Central charges c and a

- In the CFT a and c are the central charges given in terms of the field content by

$$
\begin{gathered}
\bar{a} \equiv 720 a=2 N_{0}+11 N_{1 / 2}+124 N_{1} \\
\bar{c} \equiv 720 c=6 N_{0}+18 N_{1 / 2}+72 N_{1}
\end{gathered}
$$

where N_{s} are the number of fields of spin s.

- In the notation of Duff 1977

$$
(4 \pi)^{2} b=c \quad(4 \pi)^{2} b^{\prime}=-a
$$

Central charges c and a

- The story of the Weyl anomaly for CFTs is thus the story of the central charges c and a. The ratio is given by

$$
\frac{a}{c}=\frac{\left(2 N_{0}+11 N_{1 / 2}+124 N_{1}\right)}{\left(6 N_{0}+18 N_{1 / 2}+72 N_{1}\right)}
$$

and by inspection we can read off see the inequalities

$$
\frac{31}{18} \geq \frac{a}{c} \geq \frac{1}{3}
$$

where the upper and lower bounds are saturated by a single vector and a single scalar respectively.

Euler number

- When F - G vanishes, anomaly reduces to

$$
\mathcal{A}=A \frac{1}{32 \pi^{2}} R^{* \mu \nu \rho \sigma} R^{*}{ }_{\mu \nu \rho \sigma}
$$

where

$$
360 A=\bar{c}-\bar{a}=4 N_{0}+7 N_{1 / 2}-52 N_{1}
$$

so that in Euclidean signature

$$
\int d^{4} x \sqrt{g} g^{\mu \nu} T_{\mu \nu}=A \chi\left(M^{4}\right)
$$

where $\chi\left(M^{4}\right)$ is the Euler number of spacetime.

Timeline 1978

- Conformal (and axial) anomalies for arbitrary spin Christensen, Duff
- Conformal anomalies for interacting theories: QED, ϕ^{4} etc Drummond
Shore Hathrell

Arbitrary spin

- Calculate b_{4} for arbitrary (n, m) reps of Lorentz group, then physical anomaly given by

$$
A=A(n, m)+A(n-1, m-1)-2 A(n-1 / 2, m-1 / 2)
$$

so in total

$$
A_{\text {total }}=4 N_{0}+7 N_{1 / 2}-52 N_{1}-233 N_{3 / 2}+848 N_{2}
$$

where N_{s} are the number of fields of spin s.

- The b_{4} coefficient for chiral reps $(1 / 2,0)(1,0)$ etc also involve $R^{*} R$ unless we add $(0,1 / 2)(0,1)$ etc

Timeline 1980

- Anomaly-driven inflation

Starobinsky

Grishchuk,Zeldovich
Vilenkin

- p-forms and inequivalent anomalies

Duff, van Nieuwenhuizen
Grisaru et al
Siegel

- The path-integral approach to anomalies

Fujikawa
Bastianelli, van Nieuwenhuizin
Nicolai, Townsend

WARNING

WARNING

- THE FOLLOWING CONTENT CONTAINS REFERENCES TO SUPERSYMMETRY WHICH MAY OFFEND SOME MEMBERS OF THE AUDIENCE
- VIEWER DISCRETION IS ADVISED

Central charges c and a

- In the supersymmetric case we have the values and bounds given below. Remarkably, these bounds continue to hold true when the CFT is interacting Maldacena

Fields	a	c	Bounds
$\mathcal{N}=0$ spin 0	$1 / 360$	$1 / 120$	$31 / 18 \geq a / c \geq 1 / 3$
$\mathcal{N}=0$ spin $1 / 2$	$11 / 720$	$1 / 40$	
$\mathcal{N}=0$ spin 1	$31 / 180$	$1 / 10$	
$\mathcal{N}=1$ chiral multiplet	$1 / 48$	$1 / 24$	$3 / 2 \geq a / c \geq 1 / 2$
$\mathcal{N}=1$ vector multiplet	$3 / 16$	$1 / 8$	
$\mathcal{N}=2$ hyper multiplet	$1 / 24$	$1 / 12$	$5 / 4 \geq a / c \geq 1 / 2$
$\mathcal{N}=2$ vector multiplet	$5 / 24$	$1 / 6$	
$\mathcal{N}=4$ vector multiplet	$1 / 4$	$1 / 4$	$a / c=1$

Table: The central charges a and c for supersymmetric CFTs

Timeline 1977

- Trace of stress tensor $T^{\mu}{ }_{\mu}$ Divergence of axial current $\partial_{\mu} J^{5}{ }_{\mu}$ Gamma trace of spinor current $\gamma^{\mu} S_{\mu}$ form a supermultiplet
- and so, therefore, do the anomalies! Ferrara,Zumino

Timeline 1981

- When we allow for a cosmological constant Λ the anomaly is

$$
A \chi+B V
$$

where V is the volume. We find

$$
\begin{equation*}
B=6 N_{0}+18 N_{1 / 2}+72 N_{1}-822 N_{3 / 2}+3132 N_{2} \tag{2}
\end{equation*}
$$

Moreover in gauged supergravity

$$
e^{2}=G \wedge
$$

and B also determines the Yang-Mills beta-function.

- This yields vanishing β-function in gauged $N>4$ supergravity Christensen,Duff,Gibbons,Rocek
- Spin sum rules

$$
\sum_{\lambda}(-1)^{2 \lambda} \lambda^{k}=0
$$

for $N>k$ Curtwright Christensen, Duff

Timeline 1981

- Critical dimensions for bosonic and super strings Polyakov

Bosonic string

- In the first quantized theory of the bosonic string, one starts with a Euclidean functional integral

$$
e^{-\Gamma}=\int \frac{D \gamma D X}{\operatorname{Vol}(D i f f)} e^{-S[\gamma, X]}
$$

where

$$
S[\gamma, X]=\frac{1}{4 \pi \alpha^{\prime}} \int d^{2} \xi \sqrt{\gamma} \gamma^{i j} \partial_{i} X^{\mu} \partial_{j} X^{\nu} \eta_{\mu \nu}
$$

- As shown by Polyakov, the Weyl anomaly in the worldsheet stress tensor is given by

$$
\gamma^{i j}<T_{i j}>=\frac{1}{24 \pi}(D-26) R(\gamma)
$$

D is the contribution of the scalars while the -26 arises from the diffeomorphism ghosts that must be introduced into the functional integral.

Fermionic string

- In the case of the fermionic string, the result is

$$
\gamma^{i j}<T_{i j}>=\frac{1}{16 \pi}(D-10) R(\gamma)
$$

- Thus the critical dimensions $D=26$ and $D=10$ correspond to the preservation of the two dimensional Weyl invariance $\gamma_{i j} \rightarrow \Omega^{2}(\xi) \gamma_{i j}$.

Spacetime Einstein equations from worldsheet anomaly

$$
\begin{gathered}
S[\gamma, X]=\frac{1}{4 \pi \alpha^{\prime}} \int d^{2} \xi \sqrt{\gamma} \gamma^{i j} \partial_{i} X^{\mu} \partial_{j} X^{\nu} g_{\mu \nu} \\
\beta(g)_{\mu \nu}=R_{\mu \nu}+. .
\end{gathered}
$$

vanishing anomaly implies Einstein equations! Callan, Friedan,Perry

Timeline 1983

- Conformal anomaly and W-Z consistency (no R^{2}) Bonora et al
- Anomaly in conformal supergravity $N=1,2,3,4$

$$
S=\int d^{4} x \sqrt{-g} C^{\mu \nu \rho \sigma} C_{\mu \nu \rho \sigma}+\ldots
$$

Vanishes for $N=4$ Fradkin and Tseytlin

Timeline 1984

- Local version of effective action Riegert

Local action

- Conformal operators

$$
\begin{gathered}
\sqrt{g} \Delta_{d}=\sqrt{g^{\prime}} \Delta_{d}^{\prime} \\
\Delta_{2}=\square \\
\Delta_{4} \equiv \square^{2}+2 R^{\mu \nu} \nabla_{\mu} \nabla_{\nu}+\frac{1}{3}\left(\nabla^{\mu} R\right) \nabla_{\mu}-\frac{2}{3} R \square
\end{gathered}
$$

Riegert

- Subsequent work by

Osborn et al Antoniadis, Mazur and Mottola Barvinsky et al

- Local action

$$
S_{a n o m}=\frac{b}{2} \int d^{4} x \sqrt{g} F \phi-\frac{b^{\prime}}{2} \int d^{4} x \sqrt{g}\left[\phi \Delta_{4} \phi-\left(G-\frac{2}{3} \square R\right) \phi\right]
$$

Timeline 1985

- Conformal invariants

Fefferman,Graham

Timeline 1986

- The c-theorem

Zamolodchikov

Timeline 1988

- c-theorem and/or a-theorem in four dimensions?

Cardy
Osborn
Capelli et al
Shore
Shapere
Antoniadis et al

Timeline 1993

- Geometric classification of conformal anomalies in arbitrary dimensions
Deser,Schwimmer

Timeline 1998

- The holographic Weyl anomaly

Henningson,Skenderis
Imbimbo
Graham
Bastianelli
Manvelyan
Fukuma

- Einstein manifolds and the a and c coefficients Gubser,Martelli

Holography

- A distinguished coordinate system, boundary at $\rho=0$

$$
G_{M N} d x^{M} d x^{N}=\frac{L_{d+1}^{2}}{4} \rho^{-2} d \rho d \rho+\rho^{-1} g_{\mu \nu} d x^{\mu} d x^{\nu}
$$

- The effective action may be written

$$
S_{B}=\int d \rho d^{d} x \rho^{-1} \sqrt{g}(x) B(x, \rho)
$$

where the specific form of $B(x, \rho)$ depends on initial action.

$$
B(x, \rho) \sim \sum_{n} b_{n}(x) \rho^{n-\frac{d}{2}}
$$

- Formal similarity with Schwinger-DeWitt coefficients, indeed $\mathcal{A} \sim b_{4}$ same for $\mathrm{N}=4$ Yang-Mills but not in general.

Timeline 2000

- Anomaly-driven inflation revived

Hawking et al
Hamada
Nojiri
Shapiro
de Paula Netto, Pelinson, Shapiro, Starobinsky

- a and c and corrections to Newton's law Duff and Liu
- Anomalies and entropy bounds Nojiri et al

Corrections to Newton's law

- In my 1972 PhD thesis, at the suggestion of Abdus Salam, I calculated one-loop CFT corrections to Newton's law (Schwarzschild solution)

$$
V(r)=\frac{G_{4} M}{r}\left(1+\frac{8 c G_{4}}{3 \pi r^{2}}\right)
$$

where G_{4} is the four-dimensional Newton's constant and c is a purely numerical coefficient. In fact it turned out to be the c coefficient in the Weyl anomaly

$\mathrm{N}=4$ Yang-Mills

- A particularly important example of a CFT is provided by $\mathcal{N}=4$ super Yang-Mills with gauge group $U(N)$, for which

$$
\left(N_{1}, N_{1 / 2}, N_{0}\right)=\left(N^{2}, 4 N^{2}, 6 N^{2}\right)
$$

Then

$$
a=c=\frac{N^{2}}{4}
$$

and hence

$$
\mathcal{A}=\frac{c}{(4 \pi)^{2}}\left(2 R_{\mu \nu} R^{\mu \nu}-\frac{2}{3} R^{2}\right)=\frac{N^{2}}{32 \pi^{2}}\left(R_{\mu \nu} R^{\mu \nu}-\frac{1}{3} R^{2}\right)
$$

- The contribution of a single $\mathcal{N}=4 U(N)$ Yang-Mills CFT is

$$
V(r)=\frac{G_{4} M}{r}\left(1+\frac{2 N^{2} G_{4}}{3 \pi r^{2}}\right)
$$

Randall-Sundrum

- Now fast-forward to 1999 when Randall and Sundrum proposed that our four-dimensional world is a 3-brane embedded in an infinite five-dimensional universe. They showed that there is an r^{-3} correction coming from the massive Kaluza-Klein modes

$$
V(r)=\frac{G_{4} M}{r}\left(1+\frac{2 L_{5}^{2}}{3 r^{2}}\right)
$$

where L_{5} is the radius of AdS_{5}.

- Superficially, our 4D quantum correction seems unrelated to their 5D classical one.
- But through the miracle of AdS/CFT

$$
N^{2}=\frac{\pi L_{5}^{3}}{2 G_{5}} \quad G_{4}=\frac{2 G_{5}}{L_{5}}
$$

the two are in fact equivalent. Duff and Liu

Timeline 2001

- a and c and the graviton mass Dilkes et al Aharony
- Weyl cohomology revisited Mazur and Mottola

Timeline 2005

- Anomalies as an infra-red diagnostic; IR free or interacting?
Intriligator

Timeline 2006

- Macroscopic effects of the quantum trace anomaly Mottola et al
Gianotti et al

Timeline 2007

- Anomalies and the hierarchy problem Meissner

Timeline 2008

- Viscosity bounds Buchel et al
- Conformal collider physics Hofman and Maldacena
- Weyl invariance and mass Waldron et al

Timeline 2009

- Entanglement Entropy Nishioka
- Log corrections to black hole entropy Cai
Solodukin
Sen et al

Timeline 2010

- Holographic c-theorems in arbitrary dimensions Myers et al
- Generalized mirror symmetry and trace anomalies Duff et al
- Vanish without a trace

Duff et al

M-theory on X^{7}

- We consider compactification of $(\mathcal{N}=1, D=11)$ supergravity on a 7-manifold X^{7} with betti numbers $\left(b_{0}, b_{1}, b_{2}, b_{3}, b_{3}, b_{2}, b_{1}, b_{0}\right)$ and define a generalized mirror symmetry

$$
\left(b_{0}, b_{1}, b_{2}, b_{3}\right) \rightarrow\left(b_{0}, b_{1}, b_{2}-\rho / 2, b_{3}+\rho / 2\right)
$$

under which

$$
\rho\left(X^{7}\right) \equiv 7 b_{0}-5 b_{1}+3 b_{2}-b_{3}
$$

changes sign

$$
\rho \rightarrow-\rho
$$

- The massless sectors of these compactifications have

$$
f=4\left(b_{0}+b_{1}+b_{2}+b_{3}\right)
$$

degrees of freedom.

- Generalized self-mirror theories are defined to be those for which $\rho=0$

M-theory on X^{7}

- In backgrounds for which $F-G$ vanishes, the Weyl anomaly reduces to

$$
\begin{equation*}
T=A \frac{1}{32 \pi^{2}} R^{* \mu \nu \rho \sigma} R_{\mu \nu \rho \sigma}^{*} \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
A=2(c-a) \tag{4}
\end{equation*}
$$

so that in Euclidean signature

$$
\begin{equation*}
\int d^{4} x \sqrt{g} T=A \chi\left(M^{4}\right) \tag{5}
\end{equation*}
$$

where $\chi\left(M^{4}\right)$ is the Euler number of spacetime.

Anomalies

Field $\begin{array}{lllll} & A & \Delta A & 360 A & 360 A^{\prime}\end{array} \quad X^{7}$

$g_{M N}$	$g_{\mu \nu}$	2	-3	848	-232	b_{0}
	\mathcal{A}_{μ}	2	0	-52	-52	b_{1}
	\mathcal{A}	1	0	4	4	$-b_{1}+b_{3}$
ψ_{M}	ψ_{μ}	2	1	-233	127	$b_{0}+b_{1}$
	χ	2	0	7	7	$b_{2}+b_{3}$
$A_{M N P}$	$A_{\mu \nu \rho}$	0	2	-720	0	b_{0}
	$A_{\mu \nu}$	1	-1	364	4	b_{1}
	A_{μ}	2	0	-52	-52	b_{2}
	A	1	0	4	4	b_{3}

total ΔA
total A
total A^{\prime}

0
$-\rho / 24$
$-\rho / 24$

Vanish without a trace!

- Remarkably, we find that the anomalous trace depends on ρ

$$
A=-\frac{1}{24} \rho\left(X^{7}\right)
$$

So the anomaly flips sign under generalized mirror symmetry and vanishes for generalized self-mirror theories. For $X^{(8-\mathcal{N})} \times T^{(\mathcal{N}-1)}$ with $\mathcal{N} \geq 3$ the anomaly vanishes identically.
Duff and Ferrara

- Equally remarkable is that we get the same answer for the total trace using the numbers of Grisaru et al.

Four curious supergravities

- Of particular interest are the four cases

$$
\left(b_{0}, b_{1}, b_{2}, b_{3}\right)=(1, \mathcal{N}-1,3 \mathcal{N}-3,4 \mathcal{N}+3)
$$

with $\mathcal{N}=1,2,4,8$, namely the four "curious" supergravities, discussed in Duff and Ferrara which enjoy some remarkable properties.
$\mathcal{N}=1,7 \mathrm{WZ}$ multiplets, $f=32$,
$\mathcal{N}=2$, 3 vector multiplets, 4 hypermultiplets, $f=64$,
$\mathcal{N}=4,6$ vector mutiplets, $f=128$,
$\mathcal{N}=8, f=256$.

O, H, C, R theories

Field 360A
0
H
C
R

$g_{\mu \nu}$	848	1	1	1	1
B_{μ}	-52	7	6	0	0
S	4	28	16	10	7
ψ_{μ}	-233	8	4	2	1
χ	7	56	28	14	7
$A_{\mu \nu \rho}$	-720	1	1	1	1
$A_{\mu \nu}$	364	7	3	1	0
A_{μ}	-52	21	6	4	0
A	4	35	19	11	7
		$A=0$	$A=0$	$A=0$	$A=0$

Table: Vanishing anomaly in O, H, C, R theories.

Fano plane

Figure: The Fano plane has seven points and seven lines (the circle counts as a line) with three points on every line and three lines through every point. The truncation from 7 lines to 3 to 1 to 0 corresponds to the truncation from $\mathrm{N}=8$ to $\mathrm{N}=4$ to $\mathrm{N}=2$ to $\mathrm{N}=1$.

Type IIA

- In the case of $(\mathcal{N}=1, D=11)$ on $X^{6} \times S^{1}$, or equivalently (Type IIA, $\mathrm{D}=10$) on X^{6},

$$
A=-\frac{1}{24} \chi\left(X^{6}\right)
$$

and so in Euclidean signature

$$
\int d^{4} x \sqrt{g} g_{\mu \nu}<T^{\mu \nu}>=-\frac{1}{24} \chi\left(M^{4}\right) \chi\left(X^{6}\right)=-\frac{1}{24} \chi\left(M^{10}\right)
$$

where $\chi\left(M^{4}\right)$ is the Euler number of spacetime.

Timeline 2011

- Models for particle physics 't Hooft
- Renormalization group and Weyl anomalies

Percacci

- A four-dimensional a-theorem

Komargodski et al
Luty et al
Elvang et al

Timeline 2012

- Gravitational anomalies and thermal Hall effect in topological insulators Stone
- A one-loop test of quantum gravity Bhattacharyya et al

Timeline 2015

- Holographic c-theorems in arbitrary dimensions Stone
- A one-loop test of quantum supergravity Bhattacharyya et al
- Anomalies and conformal manifolds Gomis
- More on boundary terms in the anomaly

Fursaev
Solodukhin

Timeline 2017

- The semi-classical stress-energy tensor in a Schwarzschild background Bardeen

Acknowledgements

- Grateful to Leron Borston, Steve Christensen, Stanley Deser, Marc Grisaru, Emil Mottola, Ashoke Sen for discussions.
- Thanks to the organizers for the invitation.

