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The Casimir effect

Neutral conducting plates attract each other. Why?

1. This is the long-range limit of the van der Waals
force. Polarization fluctuations of the electrons
in one plate induce such fluctuations in the other
plate, causing a net attraction. Relativistic retar-
dation (finite speed of light) must be taken into
account in a quantitative treatment.

But this is the hard way to do the calculation.
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2. Because the modes of the EM field between the
plates are discrete (ωn = nπ/L for separation L),
the energy density in the EM field differs from
that in free space:

∞−∞ = −
π2

720

1

L3
.

So P = −
∂E

∂L
= −

π2

200

1

L4
.
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These are not alternative explanations. They are two
ways of saying the same thing!

The vacuum fluctuations of the EM field mediate the
retarded interaction of the vacuum fluctuations of the
electrons in the plates.

I argue that if the force exists, then the vacuum energy
must exist, else energy would not be conserved. It is
the macroscopic potential energy of the configuration.
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The method of images

As an alternative to eigenmodes, the energy density
and pressure can be calculated from a Green function.

Free space: G0(r, t; r
′, t′) =

−1/2π2

(t− t′)2 + ‖r− r′‖2
.

Plane boundary: (Suppress y, z.)

G(x, t;x′, t′) = G0(x, t;x
′, t′)−G0(x, t;−x

′, t′).

+
r

−
r
′
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Slab: (Suppress t.) G(x, x′) = G0(x, x
′) − G0(x,−x

′) −
G0(x, 2L0−x

′)+G0(x, 2L0+x′)+G0(x,−2L0+x′)+· · · .

+− − ++
←− L0 −→

The image set is periodic with period L1 = 2L0 .

Periodic universe: G(x, x′) = G0(x, x
′)

+G0(x, 2L0 + x′) +G0(x,−2L0 + x′) + · · · .

Conclusion: G 6= G0 ⇒ A periodic space contains ho-
mogeneous but nonzero Casimir energy, which should
affect the cosmological expansion.
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Casimir effect in cosmology?

Similar mathematics applies to every quantized field in
a finite universe. There is a net vacuum energy
density that depends on the size of the space (and the
other geometry, and the field content of the model).
This energy (and pressure) must appear in the
Einstein equation — and cause a small contractive ef-
fect in a small Friedmann universe.

But the polarizable atoms and electrons have
completely disappeared from this picture!
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So, is this cosmological Casimir effect real, or a
mathematical delusion? (Clearly it is not a van der
Waals effect.)

It is sometimes argued that the Casimir energy is
merely a bookkeeping device for calculating the van
der Waals force between the conductors; in cosmology
there are no conductors, hence there can’t be a force.

Or, at least, there is no evidence for such a force, or for
“real” vacuum energy.
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“[T]he experimental confirmation of the Casimir
effect does not establish the reality of zero-point
fluctuations. . . . [T]he concept of zero-point
fluctuations is a heuristic and calculational aid in the
description of the Casimir effect, but not a necessity.
. . . [T]here is no experimental evidence for the reality
of zero-point energies in quantum field theory (without
gravity).”

R. L. Jaffe, Phys. Rev. D 72, 021301 (2005)
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I do not completely disagree, especially with the last
sentence. Ultimately physics is an experimental
science. Only empirical evidence can settle definitively
whether a cosmological Casimir effect exists.

But if it does not, then there is something wrong with
our understanding of quantum field theory in general.
In other words, I argue that Cosmological Casimir
Energy Denial requires an illogical, inconsistent atti-
tude toward the formalism of quantum field theory.
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Disclaimer

I am not talking (today) about the cosmological
constant.
• It is sometimes argued (sometimes by me) that the

ubiquitous zero-point energy of all quantum fields
amounts to a renormalization of the cosmological
constant.

• It has been proposed (Milton, Kantowski, and Kao;
Levin and Greene; Elizalde) that the cosmological
constant term is induced from (renormalized) Casimir
energy in extra dimensions.
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The cosmological term in Tµν is proportional to gµν =
diag (−1, 1, 1, 1) in a local orthonormal frame. I am
talking about an ordinary Casimir term in the macro-
scopic dimensions (after renormalization); it must be
traceless (for a massless field); typically proportional to
diag

(

1, 1
3 ,

1
3 ,

1
3

)

or diag (−1, 1, 1,−3).

The example

Consider a massless scalar field with Dirichlet
boundary conditions. The simplest case for calculations

has curvature coupling constant ξ = 1
4 .
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The publication

J. Phys. A: Math. Theor. 45 (2012) 374018 (24pp)

doi:10.1088/1751-8113/45/37/374018

Wedges, cones, cosmic strings and their vacuum energy

S A Fulling, C S Trendafilova, P N Truong, and
J Wagner

My junior colleagues are not responsible for
any polemical or philosophical remarks by me
that anyone may find objectionable.

13



Director’s cut:

arXiv:1205.1818 [pdf, other]

Wedges, Cones, Cosmic Strings, and the Reality of
Vacuum Energy

S. A. Fulling, C. S. Trendafilova, P. N. Truong,
J. Wagner

Comments: 28 pages, 16 figures.
Special volume in honor of J. S. Dowker

Journal-ref: J. Phys. A: Math. Theor. 45 (2012) 374018
(minor revisions including title)
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Wedges and cones

Wedges with nice angles

+ −

+−
N = 2

If α = 2π
2N , the cylinder kernel (or other Green func-

tion) can be found by the classic method of images.
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Wedges with bad (i.e., generic) angles
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2N copies of the wedge do not fit into the plane, but
do fit into a cone of defect angle 2π − 2Nα (which may
be negative: 0 < α <∞).
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Cones (infinitely thin cosmic strings)

So, what is the Green function on a cone? It must be
periodic with period θ1 = 2π − defect angle = 2Nα.
There is no reason not to choose N = 1, so θ1 = 2α in
the polar problems just as L1 = 2L0 in the Cartesian
problems.

The analog of the free Green function G0 is the one
for the cone with angle θ1 = ∞, an infinite-sheeted
Riemann surface. (z, t suppressed.)

Gθ1
(θ, θ′) = G∞(θ, θ′) +G∞(θ, θ′ + θ1) + · · · .
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Note that G2π is now the original free-space Green
function in polar coordinates.

This infinite-sheeted cone is the Dowker manifold:

J. S. Dowker, J. Phys. A 10 (1977) 115, and later pa-
pers (channeling Sommerfeld and Carslaw on diffrac-
tion theory)

Historically, cone manifolds (Riemann surfaces) were
introduced to study wedges by the method of images.
More recently cosmic strings were studied by analogy
with wedges, though the former are more elementary.
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If we can calculate vacuum energy around
cosmic strings, we can do it around wedges
(though the understanding of divergences is
more problematical in the latter case).
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Vacuum energy around a cosmic string renormalizes
the mass/length of the string. But there is no string at
the vertex of a conducting wedge.
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Polar–Cartesian comparison

In the polar plane,

G2π(θ, θ
′) =

∞
∑

n=−∞

G∞(θ, θ′ + 2πn).

In the periodic universe,

GL1
(x, x′) =

∞
∑

n=−∞

G0(x, x
′ + nL1).

G2π and G0 are the free-space Green function.
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In terms of normal modes, G2π is a sum over angular
momentum quantum number, G∞ an integral over it.
GL1

is a Fourier sum, G0 a Fourier integral.

G2π and G0 are the free-space Green function that
gives the zero-point energy density that must be
subtracted from that of any other configuration.

If you believe in the stress tensor of quantum field
theory, all this is totally consistent and unsurprising.

But if you don’t, you are forced into an untenable
position:
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• To calculate vacuum energy in the periodic universe,
you must ignore the (mathematically appropriate)
Fourier sum in favor of the integral (since you don’t
believe vacuum energy can exist in the absence of
van der Waals sources).
• In polar coordinates, you must use the sum to get
the right answer for empty Euclidean space. The
integral gives something else, the energy density of
the Dowker manifold.

I see no possibility of a theoretical justification for this
ad hoc switch of point of view.
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Green function and vacuum energy on cones

Partial bibliography (besides Dowker)

• W. Lukosz, Z. Phys. 262 (1973) 327.

• A. G. Smith, in The Formation and Evolution of
Cosmic Strings, ed. G. Gibbons et al. (C.U.P., 1990)
263.

• M. E. X. Guimarães and B. Linet, Commun. Math.
Phys. 165 (1994) 297.
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u, the key ingredient

Recall that Green functions in their full glory depend on
variables (r, θ, z, t; r′, θ′, z′, t′) (where t could also be x0,
ω, or s).

We can set t′, z′, θ′ = 0. Define u by

2rr′ coshu = r2 + r′2 + z2 + t2

or

u = − ln
r2 − r1
r2 + r1

where

r1 =
√

(r − r′)2 + z2 + t2 , r2 =
√

(r + r′)2 + z2 + t2 .
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The cylinder kernel

G∞ = −
1

2π2rr′ sinhu

u

u2 + θ2
.

Gθ1
= −

1

2πθ1rr′ sinhu

sinh
(

2πu
θ1

)

cosh
(

2πu
θ1

)

− cos
(

2πθ
θ1

) .

G2π = −
1

4π2rr′
1

coshu− cos θ
=

−1/2π2

t2 + ‖r− r′‖2
.
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Note that G∞(θ, . . .) looks suspiciously like
G2π(x− x′, . . .).

Correspondingly, Gθ1
has a structure similar to the

GL1
for the periodic universe.

In summary, G∞ is found by separation of variables
(sum over modes). Gθ1

can be found likewise, but also
can be found from G∞ by images (sum over paths).
(G∞ tells how to diffract a path off the isolated con-
ical singularity.) These remarks extend to the energy
density, and to wedges.
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The energy density

With curvature coupling ξ = 1
4 , we need only t deriva-

tives of G, with r = r′, z = 0, and θ − θ′ = 0
(“on diagonal”). (Cutoff t taken small but nonzero.)

T00(r, t) = −
1

2

∂2G

∂t2
=

1

t4
F
(r

t

)

.

We have formulas, but for most cases they are compli-
cated and uninformative. Mathematica plotting proves
indispensable. (Dashed lines will be for no cutoff.)

27



Exception: conformal coupling (ξ = 1
6 ). In the limit

of no cutoff, the energy density is independent of the
angle coordinate:

T00 =
1

1440r4α2

(

π2

α2
−

α2

π2

)

for a wedge of angle α. (D. Deutsch and P. Candelas,
Phys. Rev. D 20 (1979) 3063) There is a divergence at
the tip only, not the wedge boundary.

There is a torque anomaly (energy and pressure for-
mulas don’t agree), but that is for another talk.
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Energy density (ξ = 1
4) for cone angles π
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Energy density (ξ = 1
4) for cone angles 5π

2 , 8π, ∞
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Wedge energy density (ξ = 1
4) for r = 2, 4, 8
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Wedge energy density (conformal) for r = 4, 8, 16
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Summary

1. Wedge ⇐ cone + image(s).

2. Cone ⇐ Dowker + periodic.

3. Flat space = cone of angle 2π. Discreteness of
angular modes cancels vacuum energy of Dowker
space.

4. We calculate local energy density for all values
of the curvature coupling constant ξ.
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5. Conformal coupling (ξ = 1
6 ) removes plane and

wedge-side divergences
(⇒ flat function of angle in limit of no cutoff)
but not cone and wedge-vertex divergences.

6. Total energy (per length) is independent of ξ only

when cutoff is retained. That is, although the ξ-
dependent term in the density is a total diver-
gence, there is nonuniform convergence near the
boundary as the cutoff is removed. (DeWitt; Ford
& Svaiter)
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Curvature coupling term for cone angles π
4 ,

3π
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Energy density for cone angle 4π
5 and ξ = 1
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Wedge angles π
3 ,

2π
5 , 2π

3 ; r = 8, ξ = 1
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Wedge angles π
3 ,

2π
5 , 2π

3 ; r = 8, ξ = 1
6
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