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The Problem of Motion

Question
How do small bodies move in general relativity?

Geodesic Principle
Free massive point particles traverse timelike geodesics. Light rays
traverse null geodesics.
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Distributions

As first observed by Mathisson, and developed by Souriau, Sternberg,
Guillemin, and others, there is a very short argument for geodesic
motion using distributions.
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Distributions

Represent (the energy-momentum of) a small body by a symmetric
distribution Tab supported on a timelike curve γ in a spacetime
(M,gab).

Suppose this distribution is order zero and divergence-free.

It follows that Tab = mδγuaub, where m is a number, δγ is the delta
distribution supported on γ, and ua is the unit tangent to γ; and γ is a
geodesic.
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Advantages of Distributions

This argument is mathematically very simple.

And easy to generalize
to forces.

For instance, a body with timelike worldline γ, subject to an arbitrary
force fa = ∇bTab compatible with Tab order zero, can be described by
an energy-momentum Tab = µuaub satisfying

µun∇nua = qa
bfb

∇b(µub) = −fbub

where µ is an order zero distribution supported on γ.
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Advantages of Distributions

Likewise, fix a background electromagnetic field Fab. Represent a
charged body by an energy-momentum distribution Tab supported on
timelike γ and an (order zero) charge current density Ja supported on
γ. Assume ∇aJa = 0 and fa = F a

bJb.

Then Ja = eδγua, Tab = mδγuaub, and γ is a e/m Lorentz force curve.

One can solve for the general case, where Ja is order one (the highest
order compatible with Tab order zero); one finds contributions to the
motion arising from electric and magnetic dipoles.
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Disadvantages of Distributions

But the situation concerning distributions is not entirely satisfactory.
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Why order zero?

Concern 1: The assumption that Tab is order zero is physically
obscure.

In fact, it can be justified by the following argument.
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Why order zero?

We will say that a smooth test field Tab satisfies the dual energy
condition at a point p if Tab can be written as a sum of symmetrized
outer products of pairs of co-oriented causal covectors. A symmetric
distribution Tab satisfies the dominant energy condition if, for every
test field Tab satisfying the dual energy condition, T{T} ≥ 0.

Proposition

Let Tab be a symmetric distribution satisfying the dominant energy
condition. Then Tab is order zero.
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Relation to “realistic” matter?

Concern 2: Realistic matter in relativity is represented by fields
solving hyperbolic systems; it is not clear how such solutions are
represented by energy-momentum distributions.

More precisely: for standard examples (Maxwell, Klein-Gordon, etc.),
energy-momentum tensors are quadratic in field values and/or their
derivatives.

Thus one cannot generally have a distributional energy-momentum
associated (even) with distributional fields supported on a curve. This
is because multiplication of distributions is ambiguous.
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Relation to Einstein’s equation

Concern 3: There are well-known difficulties associated with
distributional sources for Einstein’s equation.

Geroch & Traschen showed that there are no metrics satisfying certain
weak conditions compatible with distributional sources supported on a
curve.

Thus it is difficult to evaluate, for instance, backreaction arising from a
distributional Tab.
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TL;DR

Question
In what sense do distributional Tab represent realistic matter?
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Curve-First

A second approach, developed by Geroch, Jang, Ehlers, and others,
begins with a curve γ and considers smooth fields T ab supported in
small neighborhoods of the curve.

Theorem (Geroch-Jang)
Let γ be a smooth, timelike curve in a spacetime (M,gab). Suppose
that, in any neighborhood O of γ, there exists a smooth, symmetric,
divergence-free, and non-vanishing tensor field T ab satisfying the
dominant energy condition whose support lies in O. Then γ is a
geodesic.
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Advantages of Curve-First

This approach is also simple.

And since it considers smooth T ab fields, its physical interpretation is
more transparent.

Moreover, smooth T ab fields may be sources in Einstein’s equation,
and so this method may be adapted to consider backreaction.
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Advantages of Curve-First

Theorem (Ehlers-Geroch)
Let γ be a smooth, timelike curve in a spacetime (M,gab). Suppose
that, for any (closed) neighborhood O of γ, and any C1[O]
neighborhood Ô of gab, there exists a Lorentzian metric ĝ ∈ Ô whose
Einstein tensor is non-vanishing, which satisfies the (g) dominant
energy condition, and whose support lies in O. Then γ is a geodesic.
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Disadvantages of Curve-First

But again, the situation is not totally satisfactory.
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How to Generalize?

Concern 1: How can we generalize curve-first results to include
forces?

In the distributional case, the energy condition placed a strong
constraint on possible forces, and also on (for instance) charge-current
densities, permitting very general results.

The energy condition does not seem to place analogous constraints on
smooth T ab fields.

What further constraints are needed?
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Relation to “realistic” matter

Concern 2: Although curve-first results consider smooth fields, there
is still a problem concerning “realistic” matter, in the form of solutions
to some hyperbolic system.

The curve-first results assume matter fields can vanish outside of
arbitrary neighborhood of a timelike curve.

But for hyperbolic systems, this is not generally possible.

Embarrassment: The geodesic principle theorems do not establish
that Maxwell fields follow null geodesics, even in the optical limit!
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Talk Overview

1 Two Approaches, and Their Discontents

2 The Miracle of Tracking

J. O. Weatherall (UCI) Motion and Geometry 2 September 2017 23 / 43



Goal

Question
Can we combine the distributional and curve-first approaches in a way
that allows us to extend both?
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Tracking

Let us suppose that we are given, in a spacetime (M,gab), a collection
C of smooth, symmetric fields T ab, each satisfying the dominant
energy condition.

Each of these fields defines a distribution, whose action on test fields
Xab is T{X} =

∫
M T abXab.

We will say that this collection tracks a timelike curve γ if, for every
smooth test field Xab satisfying the dual energy condition in a
neighborhood of γ and “generic” at some point of γ, there is a field T ab

in C such that T{X} > 0.
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Zab

Yab

Xab = Zab - Yab satisfies it in a 
neighborhood of the curve.

Zab, Yab satisfy the dual 
energy condition.

Xab measures the degree to which matter is 
concentrated near the curve.



Tracking

Theorem
Let (M,gab) be a spacetime, γ a timelike curve therein, and C a
collection of symmetric fields T ab, each satisfying the dominant energy
condition, that tracks γ. Suppose each of these fields is conserved.
Then there exists a sequence of fields T ab

1 ,T ab
2 , . . ., each a positive

multiple of some element of C, that converges, in the sense of
distributions, to δγuaub.

Corollary
The curve γ is a geodesic.
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Tracking

With a small modification, this holds for null curves as well.

Conversely, if a collection of conserved T ab fields satisfying the
dominant energy condition tracks a curve γ, then γ is timelike or null.
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Tracking

This result asserts that any family of bodies that “collapses down” in
size in an appropriate way contains a sequence converging, up to
rescaling, to the energy-momentum representing a point particle.

In other words, every sequence of smooth, symmetric, divergence-free
fields, satisfying the dominant energy condition, whose support
approaches a timelike curve γ, converges, up to rescaling, to a multiple
of the δ distribution on γ.

This captures the sense in which the distribution δγuaub represents the
energy-momentum of realistic (extended) matter: it is the essentially
unique accumulation point for energy-momentum tensors of small
bodies.
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Tracking

It also captures, and generalizes, the Geroch-Jang result.

Proposition
If C contains, for every neighborhood O of a curve γ, a smooth,
symmetric, non-vanishing, divergence-free field T ab that satisfies the
dominant energy condition and vanishes outside of O, then C tracks γ.

One can recover the Ehlers-Geroch theorem in a similar manner.
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Tracking

This new approach allows us to extend the curve-first approach in two
important ways.
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Electromagnetism

Connecting curve-first and distributional results provides an important
hint on how to extend the curve-first approach to forced motion.

In particular, we need to exert enough control on the collection C to
specify a limit up to overall scaling.

For instance, in the case of a charged body, we must control the
electric and magnetic dipole moments.
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Electromagnetism

Let C be a collection of pairs (T ab, Ja) of smooth fields, where each
T ab satisfies the dominant energy condition.

A number κ > 0 bounds the charge-to-mass ratio of the elements of C
if, for any unit timelike vector ta at a point, and any pair (T ab, Ja) ∈ C,

|Jata| ≤ κT abtatb.
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Electromagnetism

Theorem
Let (M,gab) be a space-time, Fab an antisymmetric tensor field on M,
and γ a timelike curve. Let C be a collection of pairs, (T ab, Ja), of
tensor fields on M, where each T ab satisfies the dominant energy
condition, each Ja satisfies ∇aJa = 0, and each pair satisfies
∇bT ab = F a

bJb. Suppose the collection has charge-mass ratio
bounded by κ ≥ 0 and that it tracks γ. Then there exists a sequence of

pairs, (
n
T ab,

n
Ja), each a multiple of some element of C, that converges

to (uaubδγ , κ
′uaδγ), for some number κ′ satisfying |κ′| ≤ κ.

Corollary
γ is a Lorentz force curve with charge-to-mass ratio κ′.
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Hyperbolic Systems

As noted, the theorems described substantially strengthen the
consequent of curve-first results.

They also weaken the premises.

In particular, they permit matter to be non-vanishing far from γ, as long
the quantity of such matter can be made arbitrarily small.

Hence, these results apply to solutions of hyperbolic systems, such as
Maxwell and Klein-Gordon.
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Electromagnetism

Let C be the collection of energy-momentum tensors associated with
solutions of the source-free Maxwell equations on a globally hyperbolic
spacetime (M,gab).

Then each element of C is divergence-free and satisfies the dominant
energy condition.

It follows that C can track only timelike and null geodesics.
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Electromagnetism

Claim: C tracks all null geodesics; it tracks no timelike geodesics.

It follows that there exist sequences of electromagnetic fields whose
energy-momentum tensors converge to multiples of a δ distribution
supported on null geodesics.

This captures the sense in which light rays follow null geodesics.

Note that we do not require the electromagnetic fields themselves to
converge to any distribution.
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Klein-Gordon

Now let C be the collection of energy-momentum tensors associated
with solutions of the mass m Klein-Gordon equation on a globally
hyperbolic spacetime.

Again each element of C is divergence-free and satisfies the dominant
energy condition.

Claim: C tracks all null geodesics; it tracks no timelike geodesics.
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Klein-Gordon

Instead, suppose C is the collection of energy-momentum tensors
associated with solutions of the mass m Klein-Gordon equation for all
m ≥ 0 on a globally hyperbolic spacetime.

Claim: C tracks all timelike and null geodesics.

Similar results hold for charged Klein-Gordon fields, for all m ≥ 0 and
fixed charge-to-mass ratio κ.
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Inertia and Geometry

Inertial structure, encapsulated by the geodesic principle, provides a
powerful link between motion and physical geometry.

It identifies a geometrically privileged class of curves with a privileged
class of motions—hence giving physical significance to the notion of
“geodesy”.

Conversely, all metric geometry is encoded in the class of inertial
trajectories: if two Lorentzian metrics agree on all null and timelike
geodesics, up to reparameterization, then they are constant multiples
of one another.
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Inertia and Geometry

But the geodesic principle concerns point particles, whose status is
unclear in general relativity.

Tracking allows us to state a different link between motion and physical
geometry—one referring to matter field equations (i.e., hyperbolic
systems).

New Geodesic Principle
Energy-momentum tensors associated with solutions to source-free
matter field equations track (only) timelike or null geodesics.

J. O. Weatherall (UCI) Motion and Geometry 2 September 2017 41 / 43



Inertia and Geometry

But the geodesic principle concerns point particles, whose status is
unclear in general relativity.

Tracking allows us to state a different link between motion and physical
geometry—one referring to matter field equations (i.e., hyperbolic
systems).

New Geodesic Principle
Energy-momentum tensors associated with solutions to source-free
matter field equations track (only) timelike or null geodesics.

J. O. Weatherall (UCI) Motion and Geometry 2 September 2017 41 / 43



Inertia and Geometry

But the geodesic principle concerns point particles, whose status is
unclear in general relativity.

Tracking allows us to state a different link between motion and physical
geometry—one referring to matter field equations (i.e., hyperbolic
systems).

New Geodesic Principle
Energy-momentum tensors associated with solutions to source-free
matter field equations track (only) timelike or null geodesics.

J. O. Weatherall (UCI) Motion and Geometry 2 September 2017 41 / 43



Conservation and Inertia

In this new form, the geodesic principle is (almost) a theorem as
stated.

It holds for a system of field equations whenever the
energy-momentum tensors associated with source-free solutions:

1 are divergence-free w.r.t. the spacetime derviative operator; and
2 satisfy the dominant energy condition.
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The end

Thank you!1

arXiv:1707.04222 [gr-qc]

1Based on work supported by the National Science Foundation.
J. O. Weatherall (UCI) Motion and Geometry 2 September 2017 43 / 43


	Two Approaches, and Their Discontents
	The Miracle of Tracking

