Introduction: Understanding 00000

The Explanatory Question

Traditional vs. Modern Theorists 0000000 An Example 000000

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)
 (日)

 (日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

Conclusion 000000

Singularities and Divergences Philosophical Lessons from Condensed Matter Physics

Robert W. Batterman

University of Western Ontario Department of Philosophy

7 Pines (May 9, 2009)

Introduction: Understanding	The Explanatory Question	Traditional vs. Modern Theorists 0000000	An Example 000000	Conclusion 000000
Outline				

Introduction: Understanding	The Explanatory Question	Traditional vs. Modern Theorists 0000000	An Example 000000	Conclusion 000000
Outline				

2 The Explanatory Question

Introduction: Understanding	The Explanatory Question	Traditional vs. Modern Theorists 0000000	An Example 000000	Conclusion 000000
Outline				

◆□> <□> <=> <=> <=> <=> <=> <=> <=>

- 2 The Explanatory Question
- 3 Traditional vs. Modern Theorists

Introduction: Understanding	The Explanatory Question	Traditional vs. Modern Theorists 0000000	An Example 000000	Conclusion 000000
Outline				

- 2 The Explanatory Question
- Traditional vs. Modern Theorists

4 An Example

Introduction: Understanding	The Explanatory Question	Traditional vs. Modern Theorists 0000000	An Example 000000	Conclusion 000000
Outline				

- 2 The Explanatory Question
- Traditional vs. Modern Theorists

4 An Example

Introduction: Understanding	The Explanatory Question	Traditional vs. Modern Theorists	An Example	Conclusion
●0000				
Michael Fisher				

Let me begin with a quote from Michael Fisher's review article entitled *Scaling, Universality, and Renormalization Group Theory.* In a section entitled "The need for models" Fisher expresses what, from a contemporary philosophical perspective, is a rather heretical point of view.

Introduction: Understanding	The Explanatory Question	Traditional vs. Modern Theorists	An Example	Conclusion
00000		0000000	000000	000000
Michael Fisher				

"The traditional approach of theoreticians, going back to the foundation of quantum mechanics, is to run to Schrödinger's equation when confronted by a problem in atomic, molecular or solid state physics! One establishes the Hamiltonian, makes some (hopefully) sensible approximations and then proceeds to attempt to solve for the energy levels, eigenstates and so on. However, for truly complicated systems in what, these days, is much better called "condensed matter physics," this is a hopeless task; furthermore, in many ways it is not even a very sensible one!"

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Introduction: Understanding	The Explanatory Question	Traditional vs. Modern Theorists 0000000	An Example 000000	Conclusion 000000
Michael Fisher				

"The modern attitude is, rather, that the task of the theorist is to *understand* what is going on and to elucidate which are the crucial features of the problem. For instance, if it is asserted that the exponent α depends on the dimensionality, *d*, and on the symmetry number, *n*, but on no other factors, then the theorist's job is to explain *why* this is so and subject to what provisos. If one had a large enough computer to solve Schrödinger's equation and the answer came out that way, one would still have *no understanding* of why this was the case!" [5, pp. 46–47]

ション・1日・1日・1日・1日・2000

Introduction: Understanding	The Explanatory Question	Traditional vs. Modern Theorists 0000000	An Example 000000	Conclusion
Michael Fisher				

Introduction: Understanding	The Explanatory Question	Traditional vs. Modern Theorists 0000000	An Example 000000	Conclusion 000000
Michael Fisher				

• Fisher's primarily pragmatic reflections and insights have consequences well beyond solid state physics.

Introduction: Understanding	The Explanatory Question	Traditional vs. Modern Theorists 0000000	An Example 000000	Conclusion
Michael Fisher				

- Fisher's primarily pragmatic reflections and insights have consequences well beyond solid state physics.
- Their development has consequences for understanding various relations between physical theories.

Introduction: Understanding	The Explanatory Question	Traditional vs. Modern Theorists 0000000	An Example 000000	Conclusion 000000
Michael Fisher				

- Fisher's primarily pragmatic reflections and insights have consequences well beyond solid state physics.
- Their development has consequences for understanding various relations between physical theories.
- They are crucial for developing a proper philosophical methodology—one that pays attention to the actual explanatory practice of physicists.

Introduction: Understanding	The Explanatory Question	Traditional vs. Modern Theorists 0000000	An Example 000000	Conclusion 000000
Michael Fisher				

• Aim: to draw some conclusions about the nature of these insights for both CMT and beyond.

◆□▶ ◆□▶ ◆目▶ ◆目■ のへで

Introduction: Understanding	The Explanatory Question	Traditional vs. Modern Theorists 0000000	An Example 000000	Conclusion 000000
Michael Fisher				

- Aim: to draw some conclusions about the nature of these insights for both CMT and beyond.
- Need to get a handle on what Fisher means by the "crucial features" of a problem.

◆□> <□> <=> <=> <=> <=> <=> <=> <=>

Introduction: Understanding	The Explanatory Question	Traditional vs. Modern Theorists 0000000	An Example 000000	Conclusion
Michael Fisher				

- Aim: to draw some conclusions about the nature of these insights for both CMT and beyond.
- Need to get a handle on what Fisher means by the "crucial features" of a problem.
- Need to see what is involved in "elucidating" or understanding these crucial features.

Introduction: Understanding	The Explanatory Question	Traditional vs. Modern Theorists 0000000	An Example 000000	Conclusion 000000
Michael Fisher				

- Aim: to draw some conclusions about the nature of these insights for both CMT and beyond.
- Need to get a handle on what Fisher means by the "crucial features" of a problem.
- Need to see what is involved in "elucidating" or understanding these crucial features.
- One conclusion: Appeal to mathematical singularities and the divergence of various quantities plays a fundamental role in addressing these two issues/questions.

Introduction: Understanding	The Explanatory Question	Traditional vs. Modern Theorists 0000000	An Example 000000	Conclusion 000000
Michael Fisher				

- Aim: to draw some conclusions about the nature of these insights for both CMT and beyond.
- Need to get a handle on what Fisher means by the "crucial features" of a problem.
- Need to see what is involved in "elucidating" or understanding these crucial features.
- One conclusion: Appeal to mathematical singularities and the divergence of various quantities plays a fundamental role in addressing these two issues/questions.
- As singularities and divergences reflect places where laws apparently breakdown, this poses a serious challenge to philosophical views of explanation and understanding that hold laws to play the primary explanatory role.

Introduction: Understanding	The Explanatory Question	Traditional vs. Modern Theorists 0000000	An Example 000000	Conclusion
Universality				

 The "modern" attitude is motivated by the need to explain the universality that one sees in behaviours of systems. If only one (or just a few) systems had their order parameters at criticality scale as |t|^β, perhaps the best one could do is try to explain that similarity on the "traditional approach"—running to the Schrödinger equation and providing a from-first-principles account.

Introduction: Understanding	The Explanatory Question ●00000	Traditional vs. Modern Theorists 0000000	An Example 000000	Conclusion
Universality				

- The "modern" attitude is motivated by the need to explain the universality that one sees in behaviours of systems. If only one (or just a few) systems had their order parameters at criticality scale as |t|^β, perhaps the best one could do is try to explain that similarity on the "traditional approach"—running to the Schrödinger equation and providing a from-first-principles account.
- But the world displays a multitude of patterns—repeatable, reproducible phenomena—that appear despite wide variations in details.

Introduction: Understanding	The Explanatory Question ⊙●○○○○	Traditional vs. Modern Theorists 0000000	An Example 000000	Conclusion
Universality				

• Insensitivity to details is characteristic of universal behaviour.

◆□ > < 個 > < E > < E > E = 9000

Introduction: Understanding	The Explanatory Question	Traditional vs. Modern Theorists	An Example	Conclusion
	o●○○○○	0000000	000000	000000
Universality				

- Insensitivity to details is characteristic of universal behaviour.
- The explanation and understanding of universal behaviour is provided by the RG analysis—the end result being the discovery of an appropriate fixed point of the transformation and an analysis of what the RG flow looks like in the neighbourhood of that fixed point.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Introduction: Understanding	The Explanatory Question	Traditional vs. Modern Theorists	An Example	Conclusion
	o●○○○○	0000000	000000	000000
Universality				

- Insensitivity to details is characteristic of universal behaviour.
- The explanation and understanding of universal behaviour is provided by the RG analysis—the end result being the discovery of an appropriate fixed point of the transformation and an analysis of what the RG flow looks like in the neighbourhood of that fixed point.
- One crucial feature: the explanation proceeds by a *mathematical* analysis of features of an abstract space—the space of hamiltonians or coupling constants.

Introduction: Understanding	The Explanatory Question	Traditional vs. Modern Theorists	An Example	Conclusion
	o●○○○○	0000000	000000	000000
Universality				

- Insensitivity to details is characteristic of universal behaviour.
- The explanation and understanding of universal behaviour is provided by the RG analysis—the end result being the discovery of an appropriate fixed point of the transformation and an analysis of what the RG flow looks like in the neighbourhood of that fixed point.
- One crucial feature: the explanation proceeds by a *mathematical* analysis of features of an abstract space—the space of hamiltonians or coupling constants.
- From a philosophical perspective, I think this is extremely important.

Introduction: Understanding	The Explanatory Question	Traditional vs. Modern Theorists 0000000	An Example 000000	Conclusion 000000
Generalizing				

• Universal behaviour (broadly construed) is not only displayed by systems at criticality.

Introduction: Understanding	The Explanatory Question ○○●○○○	Traditional vs. Modern Theorists 0000000	An Example 000000	Conclusion
Generalizing				

• Universal behaviour (broadly construed) is not only displayed by systems at criticality.

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)
 (日)

 (日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 Most, if not all, of our theories are "effective" or "phenomenological" and, almost by definition, describe universal features of the world.

Introduction: Understanding	The Explanatory Question	Traditional vs. Modern Theorists	An Example	Conclusion
00000	○○●○○○	0000000	000000	000000
Generalizing				

- Universal behaviour (broadly construed) is not only displayed by systems at criticality.
- Most, if not all, of our theories are "effective" or "phenomenological" and, almost by definition, describe universal features of the world.
- Classical examples include hydrodynamics/Navier-Stokes theory, and thermodynamics.

Introduction: Understanding	The Explanatory Question	Traditional vs. Modern Theorists	An Example	Conclusion
00000		0000000	000000	000000
Generalizing				

David Nelson— a "generalized notion of a fixed point."

"It turns out that not just critical points but entire phases of matter are described by a 'universal,' coarse-grained, long-wavelength theory. ... One can make similar statements about the hydrodynamic laws derived for fluids in the nineteenth century. Upon systematically integrating out the high-frequency, short-wavelength modes associated with atoms and molecules, one should be able to arrive at, say, the Navier-Stokes equations.

... Ignorance about microscopic details is typically packaged into a few phenomenological parameters characterizing the 'fixed point,' such as the density and viscosity of an incompressible fluid like water in the case of the Navier-Stokes equations." [7, p. 3.]

Introduction: Understanding	The Explanatory Question	Traditional vs. Modern Theorists	An Example	Conclusion
	○○○○●○	0000000	000000	000000
Generalizing				

• Nelson claims that by systematically integrating out the high-frequency modes, we should be able to arrive at the Navier-Stokes equations.

Introduction: Understanding	The Explanatory Question	Traditional vs. Modern Theorists	An Example	Conclusion
	○○○○●○	0000000	000000	000000
Generalizing				

- Nelson claims that by systematically integrating out the high-frequency modes, we should be able to arrive at the Navier-Stokes equations.
- But this is not, by any means, how the equations of hydrodynamics were actually developed in the Victorian era.

Introduction: Understanding	The Explanatory Question	Traditional vs. Modern Theorists 0000000	An Example 000000	Conclusion
Generalizing				

- Nelson claims that by systematically integrating out the high-frequency modes, we should be able to arrive at the Navier-Stokes equations.
- But this is not, by any means, how the equations of hydrodynamics were actually developed in the Victorian era.
- Instead, one begins with phenomenological patterns and tries to mathematically capture the regularities displayed by these patterns.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

Introduction: Understanding	The Explanatory Question	Traditional vs. Modern Theorists	An Example	Conclusion
	○○○○○●	0000000	000000	000000
Crucial Features				

• As we saw, Fisher says that the first task of the "modern" theorist is to identify the "crucial features" of the situation.

◆□▶ ◆□▶ ◆目▶ ◆目■ のへで

Introduction: Understanding	The Explanatory Question	Traditional vs. Modern Theorists 0000000	An Example 000000	Conclusion
Crucial Features				

- As we saw, Fisher says that the first task of the "modern" theorist is to identify the "crucial features" of the situation.
- Obviously, the crucial features are whatever is essential to the existence of *robust* universal features—robust phenomenological patterns.

Introduction: Understanding	The Explanatory Question	Traditional vs. Modern Theorists	An Example	Conclusion
00000		0000000	000000	000000
Crucial Features				

- As we saw, Fisher says that the first task of the "modern" theorist is to identify the "crucial features" of the situation.
- Obviously, the crucial features are whatever is essential to the existence of *robust* universal features—robust phenomenological patterns.
- In fact, I want to argue that in many cases what is crucial is not any special *physical* feature but rather, it is an essential bit of mathematics—an appeal to limits with sometimes striking singularities.

Introduction: Understanding	The Explanatory Question	Traditional vs. Modern Theorists	An Example 000000	Conclusion 000000
Explanations in CMT				

In condensed matter theory (broadly construed so as to include the physics of everyday stuff such as rainbows and dripping faucets) explanations of patterns or of "crucial features," or, to use G. I. Barenblatt's phrase ([1]), of the "principal laws or basic features" are provided by *asymptotic investigations*.

Introduction: Understanding	The Explanatory Question	Traditional vs. Modern Theorists ●○○○○○○	An Example 000000	Conclusion
Explanations in CMT				

In condensed matter theory (broadly construed so as to include the physics of everyday stuff such as rainbows and dripping faucets) explanations of patterns or of "crucial features," or, to use G. I. Barenblatt's phrase ([1]), of the "principal laws or basic features" are provided by *asymptotic investigations*.

• The modern theorist's explanation or *elucidation* of such crucial features employs asymptotic analysis.
Introduction: Understanding	The Explanatory Question	Traditional vs. Modern Theorists ●○○○○○○	An Example 000000	Conclusion
Explanations in CMT				

In condensed matter theory (broadly construed so as to include the physics of everyday stuff such as rainbows and dripping faucets) explanations of patterns or of "crucial features," or, to use G. I. Barenblatt's phrase ([1]), of the "principal laws or basic features" are provided by *asymptotic investigations*.

• The modern theorist's explanation or *elucidation* of such crucial features employs asymptotic analysis.

• How does this actually work?

Introduction: Understanding	The Explanatory Question	Traditional vs. Modern Theorists ○●○○○○○	An Example 000000	Conclusion 000000
Failure of the Traditional Theorie	t			

・ロト < 団ト < 三ト < 三ト < 三日 < つへの

Introduction: Understanding	The Explanatory Question	Traditional vs. Modern Theorists ○●○○○○○	An Example 000000	Conclusion 000000
Failure of the Traditional Theoris	t			

• For each fluid whose order parameter scales as $|t|^{\beta}$, there will be a different traditional "derivation" from the Schrödinger equation.

Introduction: Understanding	The Explanatory Question	Traditional vs. Modern Theorists ○●○○○○○	An Example 000000	Conclusion 000000
Failure of the Traditional Theorie	t			

- For each fluid whose order parameter scales as $|t|^{\beta}$, there will be a different traditional "derivation" from the Schrödinger equation.
- So, every "explanation" in the traditional from-first-principles derivation will be distinct—different molecular structure, etc.

Introduction: Understanding	The Explanatory Question	Traditional vs. Modern Theorists ●●○○○○○	An Example 000000	Conclusion
Failure of the Traditional Theorie	st			

- For each fluid whose order parameter scales as $|t|^{\beta}$, there will be a different traditional "derivation" from the Schrödinger equation.
- So, every "explanation" in the traditional from-first-principles derivation will be distinct—different molecular structure, etc.

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

• What can possibly unify these distinct from-first-principle stories? What do they all have in common?

Introduction: Understanding 00000	The Explanatory Question	Traditional vs. Modern Theorists ००●००००	An Example 000000	Conclusion 000000
Failure of the Traditional Theori	st			

◆□ > < 個 > < 目 > < 目 > 三目 < つ < ○</p>

Traditional (philosophical) strategy: (one finds this suggestion in the literature.)

Introduction: Understanding	The Explanatory Question	Traditional vs. Modern Theorists	An Example 000000	Conclusion 000000
Failure of the Traditional Theoris	t			

Find what all the systems have in common by taking some kind of disjunction (or intersection) of the "fundamental" physical properties for each fluid.

Introduction: Understanding	The Explanatory Question	Traditional vs. Modern Theorists	An Example	Conclusion
		000000		
Epilure of the Traditional Theori	ct.			

- Find what all the systems have in common by taking some kind of disjunction (or intersection) of the "fundamental" physical properties for each fluid.
- Then assert that these common "fundamental" features are causally responsible for the universal behaviour of interest.

▲ロト ▲冊ト ▲ヨト ▲ヨト 三回 のへの

Introduction: Understanding 00000	The Explanatory Question	Traditional vs. Modern Theorists	An Example 000000	Conclusion 000000

- Find what all the systems have in common by taking some kind of disjunction (or intersection) of the "fundamental" physical properties for each fluid.
- Then assert that these common "fundamental" features are causally responsible for the universal behaviour of interest.
 - What *do* they have in common? Simply the fact that when these systems are at criticality they share a spatial dimension and certain symmetry properties.

Introduction: Understanding 00000	The Explanatory Question	Traditional vs. Modern Theorists	An Example 000000	Conclusion 000000

- Find what all the systems have in common by taking some kind of disjunction (or intersection) of the "fundamental" physical properties for each fluid.
- Then assert that these common "fundamental" features are causally responsible for the universal behaviour of interest.
 - What *do* they have in common? Simply the fact that when these systems are at criticality they share a spatial dimension and certain symmetry properties.

However

Introduction: Understanding 00000	The Explanatory Question	Traditional vs. Modern Theorists	An Example 000000	Conclusion 000000

- Find what all the systems have in common by taking some kind of disjunction (or intersection) of the "fundamental" physical properties for each fluid.
- Then assert that these common "fundamental" features are causally responsible for the universal behaviour of interest.
 - What *do* they have in common? Simply the fact that when these systems are at criticality they share a spatial dimension and certain symmetry properties.

However

• These properties are not fundamental microstructural properties of the systems.

Introduction: Understanding 00000	The Explanatory Question	Traditional vs. Modern Theorists	An Example 000000	Conclusion 000000

- Find what all the systems have in common by taking some kind of disjunction (or intersection) of the "fundamental" physical properties for each fluid.
- Then assert that these common "fundamental" features are causally responsible for the universal behaviour of interest.
 - What *do* they have in common? Simply the fact that when these systems are at criticality they share a spatial dimension and certain symmetry properties.

However

• These properties are not fundamental microstructural properties of the systems.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ④ ◎ ◎

• These properties are not causally responsible for the universal behaviour.

Introduction: Understanding	The Explanatory Question	Traditional vs. Modern Theorists ○○●●○○○	An Example 000000	Conclusion 000000
Modern Theorist				

• Need to demonstrate why (virtually) all of the physical details that genuinely distinguish the different systems are irrelevant.

Introduction: Understanding	The Explanatory Question	Traditional vs. Modern Theorists ○○●●○○○	An Example 000000	Conclusion 000000
Modern Theorist				

• Need to demonstrate why (virtually) all of the physical details that genuinely distinguish the different systems are irrelevant.

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

• This is what the RG does (explicitly) in the case of critical phenomena.

Introduction: Understanding	The Explanatory Question	Traditional vs. Modern Theorists ○○●●○○○	An Example 000000	Conclusion 000000
Modern Theorist				

- Need to demonstrate why (virtually) all of the physical details that genuinely distinguish the different systems are irrelevant.
- This is what the RG does (explicitly) in the case of critical phenomena.
- It is the antithesis of the traditional philosophical explanatory strategy where providing causal, microscopic details is essential.

Introduction: Understanding	The Explanatory Question	Traditional vs. Modern Theorists ○○○○●○○	An Example 000000	Conclusion 000000
Modern Theorist				

What is the key question addressed by the RG?

• Q: How is it possible, according to physical theory, that such diverse systems can display the same behaviour at criticality?

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Introduction: Understanding	The Explanatory Question	Traditional vs. Modern Theorists ○○○○●○○	An Example 000000	Conclusion 000000
Modern Theorist				

What is the key question addressed by the RG?

- Q: How is it possible, according to physical theory, that such diverse systems can display the same behaviour at criticality?
- A: A priori, (it seems) the answer must be that the microscopic degrees of freedom that distinguish the different systems are (virtually) irrelevant for the behaviour of interest.

Introduction: Understanding	The Explanatory Question	Traditional vs. Modern Theorists	An Example	Conclusion
00000		○○○○●○○	000000	000000
Modern Theorist				

What is the key question addressed by the RG?

- Q: How is it possible, according to physical theory, that such diverse systems can display the same behaviour at criticality?
- A: A priori, (it seems) the answer must be that the microscopic degrees of freedom that distinguish the different systems are (virtually) irrelevant for the behaviour of interest.
- This is possible when there is a loss of characteristic scale as when, at criticality, the correlation length among lattice spins diverges in the thermodynamic limit.

Introduction: Understanding	The Explanatory Question	Traditional vs. Modern Theorists	An Example 000000	Conclusion
Asymptotic Explanations				

• More generally, one looks for divergences that lead to a *separation of scales*: macro vs. micro, slow variables vs. fast variables, long-time vs. short-time behaviour.

Introduction: Understanding	The Explanatory Question	Traditional vs. Modern Theorists ○○○○○●○	An Example 000000	Conclusion
Asymptotic Explanations				

- More generally, one looks for divergences that lead to a *separation of scales*: macro vs. micro, slow variables vs. fast variables, long-time vs. short-time behaviour.
- Most often this is accomplished through variable reduction—a key implement in the applied mathematician's tool box—that allows for the freezing out of various degrees of freedom.

Introduction: Understanding	The Explanatory Question	Traditional vs. Modern Theorists ○○○○○●○	An Example 000000	Conclusion
Asymptotic Explanations				

- More generally, one looks for divergences that lead to a *separation of scales*: macro vs. micro, slow variables vs. fast variables, long-time vs. short-time behaviour.
- Most often this is accomplished through variable reduction—a key implement in the applied mathematician's tool box—that allows for the freezing out of various degrees of freedom.

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

• The RG is, in effect, one method among many that relies upon this mathematical tool.

Introduction: Understanding	The Explanatory Question	Traditional vs. Modern Theorists ○○○○○○●	An Example 000000	Conclusion 000000
Asymptotic Explanations				

Prandtl (1948)

"When the complete mathematical problem looks hopeless, it is recommended to enquire what happens when one essential parameter of the problem reaches the limit zero." [8, p. 1606]

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

Introduction: Understanding	The Explanatory Question	Traditional vs. Modern Theorists ○○○○○○●	An Example 000000	Conclusion 000000
Asymptotic Explanations				

Prandtl (1948)

"When the complete mathematical problem looks hopeless, it is recommended to enquire what happens when one essential parameter of the problem reaches the limit zero." [8, p. 1606]

 In many/most instances one finds singularities in such reduced variable limits.

Introduction: Understanding	The Explanatory Question	Traditional vs. Modern Theorists ○○○○○○●	An Example 000000	Conclusion 000000
Asymptotic Explanations				

Prandtl (1948)

"When the complete mathematical problem looks hopeless, it is recommended to enquire what happens when one essential parameter of the problem reaches the limit zero." [8, p. 1606]

- In many/most instances one finds singularities in such reduced variable limits.
- Rather than something to be avoided, these singularities and divergences provide the loss of scale necessary to derive similarity or scaling laws that express the universal behaviour one is trying to understand.

Introduction: Understanding	The Explanatory Question	Traditional vs. Modern Theorists 0000000	An Example ●00000	Conclusion 000000
Rainbows				

Figure: Rays Forming a Caustic Upon Refraction and Reflection in a Raindrop

Introduction: Understanding 00000	The Explanatory Question	Traditional vs. Modern Theorists 0000000	An Example 0●0000	Conclusion
Rainbows				

Figure: Fold Caustic

Introduction: Understanding	The Explanatory Question	Traditional vs. Modern Theorists	An Example	Cond
00000		0000000	00●000	000
Rainbows				

$$Ai(x) \equiv \frac{1}{\pi} \int_0^\infty \cos\left(\frac{t^3}{3} + xt\right) dt.$$
 (1)

Figure: Airy Function and Supernumerary Bows

Introduction: Understanding	The Explanatory Question	Traditional vs. Modern Theorists	An Example	Conclusion
00000		0000000	000●00	000000
Rainbows				

Introduction: Understanding	The Explanatory Question	Traditional vs. Modern Theorists	An Example	Conclusion
00000		0000000	000●00	000000
Rainbows				

 Berry and Upstill [3] derived a wavelength scaling law ψ(R_i) = k^βΨ(k^{σ_i}R_i), in the shortwave limit (k → ∞) (R_i are control parameters).

Introduction: Understanding	The Explanatory Question	Traditional vs. Modern Theorists	An Example	Conclusion
00000		0000000	000●00	000000
Rainbows				

- Berry and Upstill [3] derived a wavelength scaling law
 ψ(R_i) = k^βΨ(k^{σ_i}R_i), in the shortwave limit (k → ∞) (R_i are
 control parameters).
- For the fold or rainbow the "diffraction catastrophe integral" is the following:

$$\Psi_{\text{fold}}(R) = \frac{k^{1/6}}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{[i\frac{s^3}{3} + k^{\frac{2}{3}}Rs]} ds$$
(2)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

[compare (1)]

Introduction: Understanding	The Explanatory Question	Traditional vs. Modern Theorists	An Example	Conclusion
00000		0000000	000●00	000000
Rainbows				

- Berry and Upstill [3] derived a wavelength scaling law
 ψ(R_i) = k^βΨ(k^{σ_i}R_i), in the shortwave limit (k → ∞) (R_i are
 control parameters).
- For the fold or rainbow the "diffraction catastrophe integral" is the following:

$$\Psi_{\text{fold}}(R) = \frac{k^{1/6}}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{[i\frac{s^3}{3} + k^{\frac{2}{3}}Rs]} ds$$
(2)

[compare (1)]

So, for the fold, the exponents β = 1/6 and σ₁ = 2/3 and hence as k→∞ the intensity, |Ψ|², near the caustic rises to O(k^{1/3}) and the fringe spacings on the bright side of the caustic are of O(k^{-2/3}).

Introduction: Understanding	The Explanatory Question	Traditional vs. Modern Theorists 0000000	An Example ○○○○●○	Conclusion 000000
Explanation				

• The dominant caustic emerges from the wave theory in the asymptotic shortwave length limit and represents a singularity of the wave theory.

Introduction: Understanding	The Explanatory Question	Traditional vs. Modern Theorists 0000000	An Example ○○○○●○	Conclusion
Explanation				

- The dominant caustic emerges from the wave theory in the asymptotic shortwave length limit and represents a singularity of the wave theory.
- Of major importance is the fact that the fold caustic is structurally stable under diffeomorphism—it doesn't matter very much at all what the shapes of the raindrops are.

Introduction: Understanding	The Explanatory Question	Traditional vs. Modern Theorists 0000000	An Example ○○○○●○	Conclusion
Explanation				

- The dominant caustic emerges from the wave theory in the asymptotic shortwave length limit and represents a singularity of the wave theory.
- Of major importance is the fact that the fold caustic is structurally stable under diffeomorphism—it doesn't matter very much at all what the shapes of the raindrops are.
- The individual functions that characterize their shapes can all be shown to be in transformable into the normal form of the fold catastrophe:

$$\Phi_{\mathsf{fold}}(s, \mathbf{R}) = \frac{s^3}{3} + \mathbf{R}s.$$

Introduction: Understanding	The Explanatory Question	Traditional vs. Modern Theorists 0000000	An Example ○○○○○●	Conclusion 000000
Explanation				

• In the RG explanation of the universality of critical phenomena, the divergence of the correlation length is an *essential* mathematical feature.

Introduction: Understanding	The Explanatory Question	Traditional vs. Modern Theorists 0000000	An Example ○○○○○●	Conclusion 000000
Explanation				

- In the RG explanation of the universality of critical phenomena, the divergence of the correlation length is an *essential* mathematical feature.
- Here too, it is the mathematical divergence in intensity and other nonanalytic behaviour in the k → ∞ limit that allows for a stability analysis (Thom's catastrophe theory) that explains the universality of the scaling law.
| Introduction: Understanding | The Explanatory Question | Traditional vs. Modern Theorists | An Example | Conclusion |
|-----------------------------|--------------------------|----------------------------------|------------|------------|
| 00000 | | 0000000 | 000000 | ●00000 |
| Lessons | | | | |

• Why is Fisher's modern attitude philosophically heretical?

・ロト・<回ト・<三ト・<三ト・<ロト

Introduction: Understanding	The Explanatory Question	Traditional vs. Modern Theorists 0000000	An Example 000000	Conclusion ●00000
Lessons				

- Why is Fisher's modern attitude philosophically heretical?
 - These explanations do not proceed from first principles derivations.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Introduction: Understanding	The Explanatory Question	Traditional vs. Modern Theorists 0000000	An Example 000000	Conclusion ●○○○○○
Lessons				

- Why is Fisher's modern attitude philosophically heretical?
 - These explanations do not proceed from first principles derivations.
 - These explanations involve *essential* appeals to singularities and divergences—places where laws break down.

Introduction: Understanding	The Explanatory Question	Traditional vs. Modern Theorists	An Example	Conclusion
00000		0000000	000000	•00000
Lessons				

- Why is Fisher's modern attitude philosophically heretical?
 - These explanations do not proceed from first principles derivations.
 - These explanations involve *essential* appeals to singularities and divergences—places where laws break down.
 - These explanations involve idealizations essentially: No divergence in correlation length without the thermodynamic limit.

Introduction: Understanding	The Explanatory Question	Traditional vs. Modern Theorists 0000000	An Example 000000	Conclusion ●00000
Lessons				

- Why is Fisher's modern attitude philosophically heretical?
 - These explanations do not proceed from first principles derivations.
 - These explanations involve *essential* appeals to singularities and divergences—places where laws break down.
 - These explanations involve idealizations essentially: No divergence in correlation length without the thermodynamic limit.
 - Idealizations are false, and orthodoxy has it that explanations must proceed from truths.

Introduction: Understanding	The Explanatory Question	Traditional vs. Modern Theorists 0000000	An Example 000000	Conclusion ○●○○○○
Lessons				

• Qualitative changes in states of matter are represented mathematically by nonanalytic behaviour in our phenomenological theories. (Phase transitions, dripping faucets, etc.)

ション・1日・1日・1日・1日・2000

Introduction: Understanding	The Explanatory Question	Traditional vs. Modern Theorists 0000000	An Example 000000	Conclusion ○●○○○○
Lessons				

- Qualitative changes in states of matter are represented mathematically by nonanalytic behaviour in our phenomenological theories. (Phase transitions, dripping faucets, etc.)
- One will see no thermodynamic phase transitions without the thermodynamic limit.

Introduction: Understanding	The Explanatory Question	Traditional vs. Modern Theorists 0000000	An Example 000000	Conclusion
Lessons				

- Qualitative changes in states of matter are represented mathematically by nonanalytic behaviour in our phenomenological theories. (Phase transitions, dripping faucets, etc.)
- One will see no thermodynamic phase transitions without the thermodynamic limit.
- Most important is the fact that the singularities play ineliminable roles in these asymptotic understanding of these qualitative changes.

Introduction: Understanding	The Explanatory Question	Traditional vs. Modern Theorists 0000000	An Example 000000	Conclusion 00●000
Lessons				

• The *foundational* "true theory" doesn't allow for such behaviours. (Statistical mechanics for finite *N*, molecular dynamics for finite *N*.)

Introduction: Understanding	The Explanatory Question	Traditional vs. Modern Theorists 0000000	An Example 000000	Conclusion
Lessons				

- The *foundational* "true theory" doesn't allow for such behaviours. (Statistical mechanics for finite *N*, molecular dynamics for finite *N*.)
- This has implications, in general, for intertheoretic relations.

◆□> <□> <=> <=> <=> <=> <=> <=> <=>

Introduction: Understanding	The Explanatory Question	Traditional vs. Modern Theorists 0000000	An Example 000000	Conclusion
Lessons				

- The *foundational* "true theory" doesn't allow for such behaviours. (Statistical mechanics for finite *N*, molecular dynamics for finite *N*.)
- This has implications, in general, for intertheoretic relations.
- Foundational theories can be (and often are) explanatorily inadequate. They must appeal to idealized limits and singular (non-law-governed) behaviour. *This is strange.* It reminds me of a bit of dialog I once read.

Introduction: Understanding	The Explanatory Question	Traditional vs. Modern Theorists 0000000	An Example 000000	Conclusion
Lessons				

The Boscombe Valley Mystery

Watson: "That sounds a little paradoxical." Holmes: "But it is profoundly true. Singularity is almost invariably a clue." [4, p. 160]

▲ロト ▲冊 ▶ ▲ヨト ▲ヨト 三回 のへの

Introduction: Understanding	The Explanatory Question	Traditional vs. Modern Theorists 0000000	An Example 000000	Conclusion ○○○○●○
Questions and Further Research				

What *is* the relationship between mathematical features such as singularities that allows us to provide explanations of physical phenomena?

◆□> <□> <=> <=> <=> <=> <=> <=> <=>

Introduction: Understanding	The Explanatory Question	Traditional vs. Modern Theorists 0000000	An Example 000000	Conclusion ○○○○●○
Questions and Further Research				

- What *is* the relationship between mathematical features such as singularities that allows us to provide explanations of physical phenomena?
 - Related to Wigner's famous problem concerning the "unreasonable effectiveness of mathematics in the natural sciences."

Introduction: Understanding	The Explanatory Question	Traditional vs. Modern Theorists 0000000	An Example 000000	Conclusion ○○○○●○
Questions and Further Research				

- What *is* the relationship between mathematical features such as singularities that allows us to provide explanations of physical phenomena?
 - Related to Wigner's famous problem concerning the "unreasonable effectiveness of mathematics in the natural sciences."
- Much recent work in CMT has focused on robust patterns and collective behaviour in *granular* media.

▲ロト ▲冊 ▶ ▲ヨト ▲ヨト 三回 のへの

Introduction: Understanding	The Explanatory Question	Traditional vs. Modern Theorists 0000000	An Example 000000	Conclusion ○○○○●○
Questions and Further Research				

- What *is* the relationship between mathematical features such as singularities that allows us to provide explanations of physical phenomena?
 - Related to Wigner's famous problem concerning the "unreasonable effectiveness of mathematics in the natural sciences."
- Q Much recent work in CMT has focused on robust patterns and collective behaviour in *granular* media.

• These phenomena do not admit of straightforward RG/asymptotic explanations.

Introduction: Understanding	The Explanatory Question	Traditional vs. Modern Theorists 0000000	An Example 000000	Conclusion ○○○○●○
Questions and Further Research				

- What *is* the relationship between mathematical features such as singularities that allows us to provide explanations of physical phenomena?
 - Related to Wigner's famous problem concerning the "unreasonable effectiveness of mathematics in the natural sciences."
- Q Much recent work in CMT has focused on robust patterns and collective behaviour in *granular* media.
 - These phenomena do not admit of straightforward RG/asymptotic explanations.
 - They resist explanation by demonstrating the irrelevance of various details: Eg., they exhibit memory effects.

Introduction: Understanding	The Explanatory Question	Traditional vs. Modern Theorists 0000000	An Example 000000	Conclusion ○○○○●○
Questions and Further Research				

- What *is* the relationship between mathematical features such as singularities that allows us to provide explanations of physical phenomena?
 - Related to Wigner's famous problem concerning the "unreasonable effectiveness of mathematics in the natural sciences."
- Q Much recent work in CMT has focused on robust patterns and collective behaviour in *granular* media.
 - These phenomena do not admit of straightforward RG/asymptotic explanations.
 - They resist explanation by demonstrating the irrelevance of various details: Eg., they exhibit memory effects.
 - They fail to exhibit a clear separation of scales between the microlevel, the level of the single grain, and the level of bulk behaviour.

Introduction: Understanding	The Explanatory Question	Traditional vs. Modern Theorists 0000000	An Example 000000	Conclusion ○○○○○●
Questions and Further Research				

Granular media seem to require various, often incompatible, modeling and explanatory strategies. Can we find some way of unifying these different theoretical and explanatory approaches? What more can we learn about interlevel/intertheory relations?

References

G. I. Barenblatt.

Scaling, Self-similarity, and Intermediate Asymptotics. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge, 1996.

Robert W. Batterman.

The Devil in the Details: Asymptotic Reasoning in Explanation, Reduction, and Emergence. Oxford Studies in Philosophy of Science. Oxford University Press. 2002.

Michael V. Berry and C. Upstill. Catastrophe optics: Morphologies of caustics and their diffraction patterns.

Progress in Optics, 18:257-346, 1980.

- Arthur Conan Doyle.

Orignal Illustrated 'Strand' Sherlock Holmes. Wordsworth Editions, 1989. ・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

References

Michael E. Fisher.

Scaling, universality and renormalization group theory.

In F.J.W. Hahne, editor, *Critical Phenomena*, volume 186 of *Lecture Notes in Physics*, Berlin, 1983. Summer School held at the University of Stellenbosch, South Africa; January 18–29, 1982, Springer-Verlag.

📔 Leo P. Kadanoff.

Statistical Physics: Statics, Dynamics, and Renormalization. World Scientific, Singapore, 2000.

David R. Nelson.

Defects and Geometry in Condensed Matter Physics. Cambridge University Press, Cambridge, 2002.

Ludwig Prandtl.

Mein weg zu hydrodynamischen theorien.

In Gesammelte Abhandlungen zur Mechanik, Hydro- und Aerodynamik. Göttingen, 1961.