Dirac Equations (First-order matrix equations)

$$[\alpha \cdot \mathbf{p} + \beta m]\psi = E\psi$$

Usual (mass term position-independent, homogenous)

Dirac equation: continuum solutions E>0 and E<0

vacuum: E < 0 states filled E > 0 states empty

charge = 0

Dirac equation in the presence of a defect (mass term position-dependent, soliton)

$$[\alpha \cdot \mathbf{p} + \beta \, m \, (\mathbf{r})] \psi = E \psi$$

isolated, normalizable E=0 solution

1-d kink

2-d vortex

3-d magnetic monopole

continuum solutions E>0, E<0 AND isolated, normalizable E=0 solution "mid-gap" state is found by explicit calculation is guaranteed by index theorems

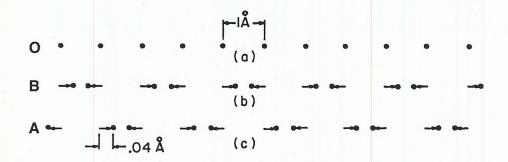
Question: for vacuum is mid gap state filled or empty; what is charge?

Answer: double degeneracy of vacuum state empty, charge -1/2 state filled, charge +1/2

observed experimentally in 1-d (polyacetylene) proposed phenomenon in 2-d (graphene)

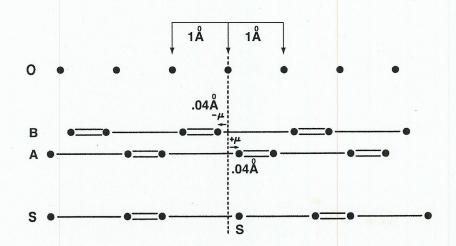
2

Polyacetylene Story



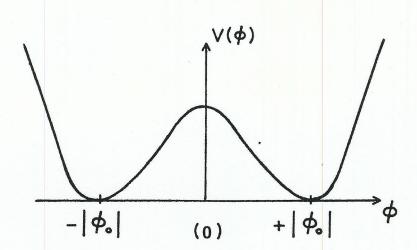
(a) The rigid lattice of polyacetylene; (O) the atoms are equally spaced 1 Å apart. (b), (c) The effect of Peierls' instability is to shift the atoms .04 Å to the left (B) or to the right (A), thus giving rise to a double degeneracy.

Polyacetylene States with Defect

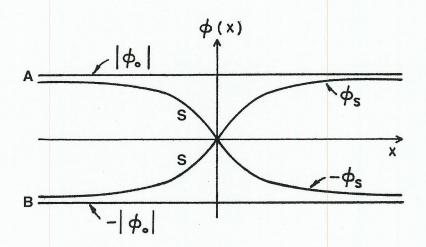


The equally spaced configuration (O) possesses a left-right symmetry, which however is energetically unstable. Rather in the ground states the carbon atoms shift a distance μ to the left or right, breaking the symmetry and producing two degenerate vacua (A, B). A soliton (S) is a defect in the alteration pattern; it provides a domain wall between configurations (A) and (B).

Energetics of Polyacetylene Phonon Field

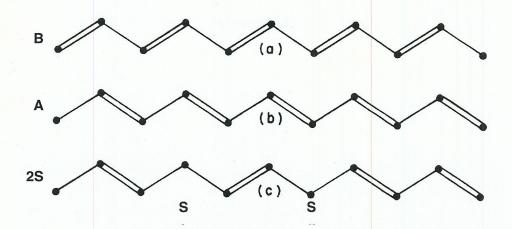


Energy density $V(\phi)$, as a function of a constant phonon field ϕ . The symmetric stationary point, $\phi=0$, is unstable. Stable vacua are at $\phi=+|\phi_0|$, (A) and $\phi=-|\phi_0|$, (B).



The two constant fields, $\pm |\phi_0|$, correspond to the two vacua (A and B). The kink-soliton fields, $\pm \phi_s$, interpolate between the vacua and represent domain walls.

Polyacetylene Bonding Patterns



Two soliton state carries one fewer link relative to no-soliton vacuum A.

Separate solitons to $\infty \Rightarrow$ split quantum numbers of link \Rightarrow fermion number fractionalization!

Fractional Charge (Analytic Description)

Dirac Hamiltonian matrix $h(\varphi)$ \Rightarrow Dirac equation for fermion dynamics, depending on background field φ .

vacuum sector: $h(\varphi_0)\psi_E^v = E \psi_E^v$ soliton sector: $h(\varphi_s)\psi_E^s = E \psi_E^s$

negative and positive E continuum solutions: normalized $E=\mathbf{0}$ mode in soliton sector

negative solutions ⇔ valence band (positrons)
positive solutions ⇔ conduction band (electrons)
vacuum charge density:

$$\rho(\mathbf{r}) = \int_{-\infty}^{0} dE \, \rho_E(\mathbf{r}) \qquad \rho_E = \psi_E^{\dagger} \psi_E$$

renormalized soliton charge:

$$Q = \int d\mathbf{r} \int_{-\infty}^{0-} dE \left(\rho_E^s(\mathbf{r}) - \rho_E^v(\mathbf{r}) \right)$$

Evaluation simple in the presence of an energy reflection symmetry:

a unitary matrix M that anticommutes with h and maps E>0 on E<0 solutions and vice-versa

$$Mh + hM = 0$$

$$\Rightarrow M\psi_E = \psi_{-E} \Rightarrow \rho_E = \rho_{-E}$$

$$\Rightarrow M\psi_0 = \pm \psi_0$$

Fractional Charge Calculation

completeness:
$$\int_{-\infty}^{\infty} dE \, \psi_E^{\dagger}(\mathbf{r}) \psi_E(\mathbf{r}') = \delta(\mathbf{r} - \mathbf{r}')$$

$$\Rightarrow \int_{-\infty}^{\infty} dE[\rho_E^s(\mathbf{r}) - \rho_E^v(\mathbf{r})] = 0$$

Conjugation ($\rho_E = \rho_{-E}$) and zero mode \Rightarrow

$$\int_{-\infty}^{0-} dE \left(2\rho_E^s(\mathbf{r}) - 2\rho_E^v(\mathbf{r}) \right) + \psi_0^{\dagger}(\mathbf{r})\psi_0(\mathbf{r}) = 0$$

$$\int_{-\infty}^{0-} dE \left(\rho_E^s(\mathbf{r}) - \rho_E^v(\mathbf{r}) \right) = -\frac{1}{2} \psi_0^{\dagger}(\mathbf{r})\psi_0(\mathbf{r})$$

$$Q = -\frac{1}{2}$$

Any dimension! Eigenvalue, not expectation value!

Empty mid-gap state: $Q = -\frac{1}{2}$ Filled mid-gap state: $Q = +\frac{1}{2}$

Rebbi & R.J., *PRD* **13**, 3398 (76); Su, Schrieffer & Heeger, *PRL* **42**, 1698 (79).

Absent Energy Reflection Symmetry $O(\varepsilon)$

- \Rightarrow mid gap state migrates to a non-central position in gap: $\psi_0 \to \psi_x$, $E = O(\varepsilon)$
- \Rightarrow charge = irrational number tends to -1/2 as arepsilon o 0

can be obtained from:

(i) " η " invariant" or "spectral asymmetry"

$$\rho(\mathbf{r}) = -\frac{1}{2} \int_{-\infty}^{\infty} dE \operatorname{sign}(E) \psi_E^{s\dagger}(\mathbf{r}) \psi_E^s(\mathbf{r}) - \frac{1}{2} \psi_x^{\dagger} \psi_x$$

shifted gap state

Niemi & Semenoff, Phys. Rep. 135, 100 (86)

(ii) induced current

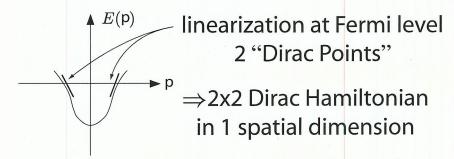
$$<\rho(\mathbf{r})> = <\psi^{\dagger}(\mathbf{r})\,\psi(\mathbf{r})> = -tr\,\gamma^{0}\,G(\mathbf{r},\mathbf{r})$$

Goldstone & Wilczek, Phys. Rev. Lett. 47, 987 (81)

for (i) and (ii)

 $\rho(\mathbf{r}) = \partial_i k^i(\mathbf{r}) \Rightarrow \int d\mathbf{r} \, \rho = \text{surface term (topological!)}$

Polyacetylene Realization



Dirac Hamiltonian

$$H = \underbrace{\psi^{\dagger} \alpha \cdot \mathbf{p} \psi} + \underbrace{\phi \psi^{\dagger} \beta \psi} \tag{2 \times 2}$$

linearization at Fermi level Peierls' instability ϕ constant $\phi_0 \Rightarrow$ mass $|g| \phi_0 |$ ϕ soliton $\phi_s \Rightarrow$ zero mode ϕ_0

$$\alpha = \sigma^3, \beta = \sigma^2, p = \frac{1}{i} \frac{d}{dx}$$

 $\psi \to e^{i\chi}\psi, \Rightarrow$ Fermi number global symmetry: $J^{\mu} = \bar{\psi}\,\gamma^{\mu}\,\psi$ Dirac equation : $h(\phi)\,\psi_E = (\alpha p + \beta\,\phi)\,\psi_E = E\,\psi_E$ $h(\phi_s)\,\psi_0 = 0$ $\phi_s = \mathrm{kink}$

NB: σ^1 anticommutes with h $\sigma^1 \psi_E = \psi_{-E}$ (energy reflection symmetry) Conclusion: $Q = \pm \frac{1}{2}$.

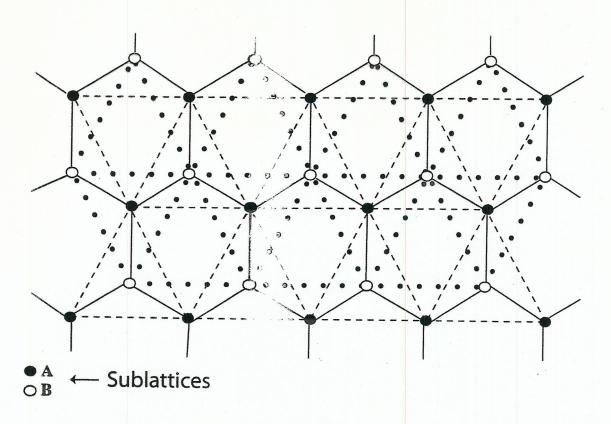
Absent energy reflection symmetry: $h \to h + \varepsilon \sigma^1$

(different adjacent atoms on chain)

$$Q = -\frac{1}{\pi} \tan^{-1} \frac{\mu}{\varepsilon} \text{ irrational charge } \frac{1}{\varepsilon \to 0} - \frac{1}{2} \left(\mu \equiv \varphi(\infty) \right)$$

Graphene Story

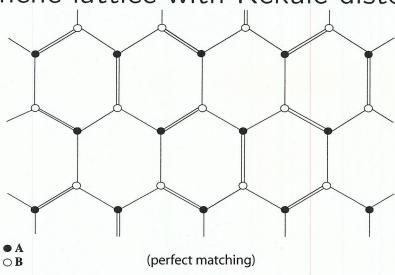
Graphene hexagonal lattice



Linearization at Fermi level

- 2 "Dirac points"
- \Rightarrow 4 × 4 Dirac Hamiltonian in 2 spatial dimensions (2 × 2 for each of the two lattices)

Graphene lattice with Kekulé distortion



Dirac Hamiltonian

$$H = \underbrace{\psi^{\dagger} \alpha \cdot \mathbf{p} \psi}_{\varphi} + \underbrace{\psi^{\dagger} \beta \left[\varphi_{re} - i \varphi_{im} \gamma_{5}\right]}_{\varphi} \psi \qquad (4 \times 4)$$

$$\varphi \equiv \varphi_{re} + i \varphi_{im}$$

linearization at Fermi level

Kekulé distortion φ constant $\varphi_0 \Rightarrow$ mass $\mid g\varphi_0 \mid$

$$\alpha = \begin{pmatrix} \sigma & 0 \\ 0 & -\sigma \end{pmatrix}, \ \beta = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \ \gamma_5 = \begin{pmatrix} I & 0 \\ 0 & -I \end{pmatrix}, \ \mathbf{p} = \frac{1}{i} \nabla$$

(All vectors are 2-dimensional)

 $\psi
ightarrow e^{i\chi} \psi \Rightarrow$ Fermi number global symmetry: $J^{\mu} = \bar{\psi} \gamma^{\mu} \psi$

Dirac equation :
$$h(\varphi) \psi_E = (\alpha \cdot \mathbf{p} + \beta [\varphi_{re} - i \varphi_{im} \gamma_5]) \psi_E = E \psi_E$$

$$h(\varphi_s) \psi_0 = 0 \qquad \varphi_s = \text{vortex}$$

NB:
$$\alpha^3 = \begin{pmatrix} \sigma^3 & 0 \\ 0 & -\sigma^3 \end{pmatrix}$$
 anticommutes with with h

 $\alpha^3 \psi_E = \psi_{-E}$ (energy reflection symmetry)

Conclusion : $Q = \pm \frac{1}{2}$

Hou, Chamon & Mudry,

PRL 98, 186809 (07) [cond-mat/0609740]