Dirac Equations i
(First-order matrix equations)

[a-p+ Bm]y = Ey
Usual (mass term position-independent, homogenous)
Dirac equation: continuum solutions E >0 and E < 0

vacuum: FE < O states filled
FE > 0 states empty
charge =0

Dirac equation in the presence of a defect
(mass term position-dependent, soliton)

la-p+ Bm(r)]y = Ey
isolated, normalizable E = 0 solution

¢ (z)
1-d kink z

2-d vortex B

3-d magnetic monopole

T

continuum solutions £ > 0,E < 0
AND isolated, normalizable E = 0 solution

“mid-gap” state is found by explicit calculation
IS guaranteed by index theorems
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Question: for vacuum is mid gap state filled
or empty; what is charge?

Answer: double degeneracy of vacuum
state empty, charge —1/2
state filled, charge +1/2

observed experimentally in 1-d (polyacetylene)
proposed phenomenon in 2-d (graphene)



Polyacetylene Story
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(a) The rigid lattice of polyacetylene; (O) the atoms are
equally spaced 1 A apart. (b), (c) The effect of Peierls’
instability is to shift the atoms .04 A to the left (B) or to the
right (A), thus giving rise to a double degeneracy.

Polyacetylene States with Defect
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The equally spaced configuration (O) possesses a left-right
symmetry, which however is energetically unstable. Rather in
the ground states the carbon atoms shift a distance u to the
left or right, breaking the symmetry and producing two
degenerate vacua (A, B). A soliton (S) is a defect in the
alteration pattern; it provides a domain wall between
configurations (A) and (B).



Energetics of Polyacetylene Phonon Field
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Energy density V(¢), as a function of a constant phonon field
¢. The symmetric stationary point, ¢ = 0, is unstable. Stable

vacua are at ¢ = +|¢o|, (A) and ¢ = —[¢ol, (B).
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The two constant fields, 4+ | ¢o |, correspond to the two vacua
(A and B). The kink-soliton fields, +¢s, interpolate between

the vacua and represent domain walls.



Polyacetylene Bonding Patterns

(a)

(b)
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Two soliton state carries one fewer link relative to
no-soliton vacuum A.

Separate solitons to oo =
split quantum numbers of link =
fermion number fractionalization!



Fractional Charge (Analytic Description)

Dirac Hamiltonian matrix hA(y)
= Dirac equation for fermion dynamics,
depending on background field .

vacuum sector: h(pg)v% = Ev%
soliton sector: h(ps)vy = E v

negative and positive E continuum solutions:
normalized E = 0 mode in soliton sector

negative solutions < valence band (positrons)
positive solutions < conduction band (electrons)

vacuum charge density:

0
p(r) = / dE pg (1) PE = %@DE

renormalized soliton charge:

Q= far / dE (p(r) — pip(r))

Evaluation simple in the presence of an energy
reflection symmetry:

a unitary matrix M that anticommutes with A and
maps E > 0 on E < 0 solutions and vice-versa

Mh+ hM =0

=>Myp =v%_ g = pg = P—E
=M1 = Lo



Fractional Charge Calculation

completeness: 70 dE w};j(r)sz(r’) —Gilrer")

= [ dBlpy() - p (0] =0

Conjugation (pgr = p_g) and zero mode =

O_
| dB(205() - 205 () + ¥ @Iwo() = 0
—00
G
s v 1 4
| aB(pp@) - p5(®) = =5 v w0
—
1
e
Any dimension! Eigenvalue, not expectation value!
Empty mid-gap state: Q@ = —5

Filled mid-gap state: Q = +3

Rebbi & R.J., PRD 13, 3398 (76);
Su, Schrieffer & Heeger, PRL 42, 1698 (79).



Absent Energy Reflection Symmetry O(g)

= mid gap state migrates to a non-central position
in gap: g — Yz, B = O(¢)
= charge = irrational number
tends to —1/2 ase —0

can be obtained from:

(i) “n" invariant” or ‘“spectral asymmetry”

p) =~ [ amsian (DU (i) - 5 vhes

e
shifted gap state

Niemi & Semenoff, Phys. Rep. 135, 100 (86)

(ii) induced current

< p(r) >=< @) Y() >= ~tr1°G(x,1)
Goldstone & Wilczek, Phys. Rev. Lett. 47, 987 (81)

for (i) and (ii)
o(r) = 9,k (r) = [dr p = surface term (topological!)



Polyacetylene Realization

A E(p) linearization at Fermi level

2 “Dirac Points”
/ -

e D
\/ = 2x2 Dirac Hamiltonian
in 1 spatial dimension

Dirac Hamiltonian
H=yla py+¢yvisy,  (2x2)

i b

linearization at Peierls’ instability
Fermi level ¢ constant ¢g = mass |g| ¢o|
¢ soliton ¢s = zero mode ¢g

o e L
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W — eXap, = Fermi number global symmetry: J¥ = 1) yH )
Dirac equation: h(¢) vy = (ap+ 8¢)vrp = EYg
hilos)vg =0  ¢s= Kink
NB: o1 anticommutes with A
olyp =1 g (energy reflection symmetry)

Conclusion: | € = i%.
Absent energy reflection symmetry: h — h 4+ eol
(different adjacent atoms on chain)

Q = —% tan; % itrational charge ——— |— =

e — 0 2
(u = 90(00))



Graphene Story

Graphene hexagonal lattice

®A
OB

«— Sublattices

Linearization at Fermi level

2 "Dirac points”

= 4 X 4 Dirac Hamiltonian in 2 spatial dimensions
(2 x 2 for each of the two lattices)
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Graphene lattice with Kekulé distortion

Y

OB (perfect matching)

Dirac Hamiltonian

Hf:#ﬁa-p%+ﬂﬂﬁh%e:@mmvﬂ#’ (4x4)

"~

,// Y = Yre T 1Oim \\

linearization Kekulé distortion
at Fermi level @ constant g = mass | gyo |

™ 0 - oI |
o (og—a>7 4= (1 o)v o (o -1)7 p=av
(All vectors are 2-dimensional)
P — eXqp = Fermi number global symmetry: J# = 1pyHa)

Dirac equation : h(p) vg = (a - p + B ¢re-i eim7¥5]) v = E g
hw:lvg — 06 s = vortex
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NB: o3 = ( % _?73 ) anticommutes with with h

a3Yp = Y_g (energy reflection symmetry)
Conclusion : Q = +2
Hou, Chamon & Mudry,
PRL 98, 186809 (07) [cond-mat/0609740]
i



