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1. The Boltzmann Equation and condensed matter physics

! Boltzmann Equation describes evolution of (classical) dilute
gases, in particular their irreversible approach to equilibrium.

! Condensed matter physics (e.g. normal Fermi liquids) is
concerned with strongly interacting quantum particles.

! How could any version of the BE be applicable here?

! Rough answer: In a normal Fermi liquid at low temperatures,
nearly all degrees of freedom are ”frozen” in the Fermi sea.
Only very few excitations (”quasiparticles”) with energies near
the Fermi surface contribute to the thermal properties of the
system.

! Landau’s theory: a (normal) Fermi liquid at low temperature
can be seen as a dilute quasiparticle gas.



1. Boltzmann’s equation and H-theorem (1872)

Assumptions:

1. The gas consists of a large number N of hard elastic spheres.
It is so dilute that only binary collisions occur.

2. The state of the gas at time t may be represented by a
distribution function ft such that:

ft(!q, !p)δ!qδ!p = 1
N (number of particles with positions in δ!q

and momenta in δ!p.)

3. the Stosszahlansatz: At every time t, the number of pairs of
particles with variables (!q1, !p1) =: 1 and (!q2, !p2) =: 2 that are
about to collide in the interval [t, t + δt] is

N2

m
ft(1)ft(2)‖!p1 − !p2‖δtδΩ



! From these assumptions, he derived the Boltzmann Equation,

∂ft(1)

∂t
+

!p1

m
· ∂ft(1)

∂!q1
− !F · ∂ft(1)

∂!p1
=

N

m

∫ (
f (1′)f (2′)− f (1)f (2)

)
‖!p2 − !p1‖dΩd!p2

where !F denotes an external force and (1’), (2’) are the
variables immediately after collision, and !q1 = !q2 = !q′1 = !q′2

! Assuming this equation holds all t, one obtains the so-called
H-theorem: the expression

H[ft ] :=

∫
ft(!q, !p) ln ft(!q, !p)d!qd!p

is monotonically decreasing in time:

dH[ft ]

dt
≤ 0

! Boltzmann identified −kNH with entropy, and claimed he had
thus given a strict dynamical proof of the Second Law.



! Boltzmann did not draw attention to the Stoszahlansatz:
“The determination [of the number of collisions] can
only be obtained in a truly tedious manner, [...] But
since this determination has, apart from its
tediousness, not the slightest difficulty, nor any
special interest, and because the result is so simple
that one might almost say it is self-evident I will
only state the result. (1872, p. 323)

! Loschmidt’s reversibility objection: Take any motion in which
H decreases, and reverse the velocities of all particles in the
final state. We will obtain a motion for which H is increasing.

! By focusing on the number of particles that will collide in δt,
—and not demanding the same thing about particles that just
have collided,— a time-asymmetrical, and non-dynamical
ingredient is introduced.



! Boltzmann recognized the importance of the Stosszahlansatz
in the 1890s, and tried to motivate it by an asumption of
”Molecular Chaos”.

! Modern views in kinetic theory (following Jeans 1902) often
take an ensemble over phase space and define marginal
distributions:

f (1)
t (!q1, !p1) :=

∫
ρt(!q1, !p1; . . . ;!qN , !pN)d!q2d!p2 · · · d!qNd!pN

f (2)
t (!q1, !p1;!q2, !p2) :=

∫
ρt(!q1, !p1; . . . ;!qN , !pN)d!q3d!p3 · · · d!qNd!pN

They define ’Molecular Chaos’ as

f (2)
t (!q1, !p1;!q1, !p1) = f (1)

t (!q1, !p1)f
(1)
t (!q2, !p2)

Unfortunately, this assumption is by itself is invariant under
time-reversal.(cf. Huang (1963), Lanford (1975), Cercigianni,
Illner & Pulverenti (1994))



2. The Landau-Boltzmann Equation for normal Fermi
liquids

! Aim: find a quasi-particle density: nt(!q, !p) (ignoring spin
variable). Compatible with Uncertainty Principle?

! More systematically, consider system of N fermions in
non-relativistic second quantisation formalism, in Heisenberg
picture. Define a Green function

G (1, 2) = Trρ ψ(!r1, t1)
†ψ(!r2, t2) = 〈ψ(!r1, t1)

†ψ(!r2, t2)〉

! Perform Wigner transform to obtain:

nt(!q, !p) =
1

2π

∫
d!re−i!p·!r 〈ψ†(q − r

2
), t)ψ(q +

r

2
, t)〉

as the analogon of Boltzmann’s ft(!q, !p). However, Wigner
transform is not necessarily non-negative. . .



! Assume that quasiparticle potential is short-range and apply
Born collision approximation. The result is a Boltzmann-like
equation with left-hand-side (streaming terms)

∂nt

∂t
+∇!pε · ∂nt

∂!q
−∇!qε · ∂nt

∂!p
= ∗ (1)

and right-hand side (collision integral):

∗ =

∫
d!p2d!p′1d!p′2W (1′, 2′; 1, 2)

[
n(1′)n(2′)(1− n(1))(1− n(2)) −

n(1)n(2)(1− n(1′)(1− n(2′)
]

(where W is the scattering probability and all n’s evaluated at
the same value for position: !q1 = !q′1 = !q2 = !q′2)

! If we define

H[nt ] :=

∫
(nt ln nt + (1− nt) ln(1− nt)) d!qd!p

the LB equation implies (cf. Belic 1997):

dH/dt ≤ 0



3. Some old and new problems
New features:

! The Landau-Boltzmann equation contains spin as extra
variable.

! The velocity is replaced by ∇ε where the quasiparticle energy
ε itself depends on nt(!q, !p)

! Instead of Boltzmann’s Stosszahlansatz, the probability for a
collision (1, 2) −→ (1′, 2′) is now proportional to four terms,
i.e. the probabilties of state (1) ,(2) being occupied, while
(1’) and (2’) are non-occupied. This is due to the Pauli
exclusion principle.

Old problems

! Reversibilty objection: QM is just a time-reversal invariant a
classical Hamiltonian mechanics. Hence the LB equation
cannot hold universally.

! An alternative definition of entropy S = −Trρ ln ρ remains
constant in time for any ρ.



New problems:

! -Wigner transform is not guaranteed to be non-negative. But
if n is not always and everywhere positive, then definition of
entropy becomes complex-valued!
This problem may perhaps be alleviated by choosing a
different transform (e.g. Husimi distribution?).

! Belic explains the ”crucial assumption”, i.e. the analogy to
the Stosszahlansatz for collision (1, 2) −→ (1′, 2′) sas follows.
”The actual factor should be the simultaneous probability of
the states 1,2 being occupied and 1’,2’ being empty. To treat
these as independent is an approximation valid to leading
order at low quasi-particle density.”
But this assumption is equivalent to the claim that the
probability for 1,2 being empty and 1’,2’ occupied are also
independent!
This means one cannot argue for this assumption by saying
that states before a collision are independent but not after.
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