

Clifford Will University of Florida, Gainesville Institut d'Astrophysique de Paris

Einstein triumphant, or was he?

- Early struggles and uncertainties
- 1st century themes
- High precision technology (clocks, space)
- Frameworks for comparing and testing theories
- Theory-experiment synergy
- 2nd century themes
- Strong-field tests
- Gravitational-wave tests
- Extreme-range tests

- Early struggles
- Highlights from the first century
- Prospects for the second century

Gravity is geometry
Geometry bends light
Geometry warps time
Geometry moves mass
Geometry has waves
Geometry makes black holes

Gravity is geometry: the equivalence principle

- Early struggles
- Highlights from the first century
- Prospects for the second century

Gravity is geometry
Geometry bends light
Geometry warps time
Geometry moves mass
Geometry has waves
Geometry makes black holes

Geometry bends light: The 1919 Eclipse

E

A. S. Eddington

LIGHTS ALL ASKEW

Men of Science More or Less Agog Over Results of Eclipse Observations.

EINSTEIN THEORY TRIUMPHS

Stars Not Where They Seemed or Were Calculated to be, but Nobody Need Worry.

A BOOK FOR 12 WISE MEN

No More in All the World Could Comprehend It, Said Einstein When His Daring Publishers Accepted It.

from Principe

Sobral site

Geometry bends light: The PPN parameter γ

Geometry bends light: Gravitational lenses

Geometry bends light: Black hole shadows

 $\epsilon = \frac{Q_2 + Ma^2}{M^3}$

mm-wavelength VLBI using Event Horizon Telescope Broderick et al, Ap J. 784, 7 (2014)

Geometry bends light: Black hole shadows

Interstellar, Paramount Pictures Directed by Christopher Nolan Image based on calculations by Kip Thorne and Double Negative Co.

- Early struggles
- Highlights from the first century
- Prospects for the second century

Gravity is geometry
Geometry bends light
Geometry warps time
Geometry moves mass
Geometry has waves
Geometry makes black holes

Geometry warps time: The redshift

- 1907: Einstein's "happiest thought"
- 1917: C. E. St. John and others: no Solar redshift effect
- 1960: Pound-Rebka: gamma rays from ⁵⁷Fe over 23 m
- 1962, 1972, 1991: finally, the Solar redshift measured
- 1976: Gravity Probe A
- 1980s now: GPS
- 2010: ²⁷Aluminum ion clocks over 1/3 m
- 2016: ACES/PHARAO on the ISS

GPS Nominal Constellation 24 Satellites in 6 Orbital Planes 4 Satellites in each Plane 20,200 km Altitudes, 55 Degree Inclination

- Early struggles
- Highlights from the first century
- Prospects for the second century

Gravity is geometry
Geometry bends light
Geometry warps time
Geometry moves mass
Geometry has waves
Geometry makes black holes

Geometry moves mass: Mercury's perihelion

- 1687 Newtonian triumph
- 1859 Leverrier's conundrum
- · 1900 A turn-of-the century crisis
- 1915 "Palpitations of the heart"

 $J_2 = 2.2 \times 10^{-7}$

575 "

century

per

Bounds on the PPN Parameters

Parameter	Effect or Experiment	Bound	Remarks
γ - 1	Time delay	2.3 X 10 ⁻⁵	Cassini tracking
	Light deflection	2 X 10 ⁻⁴	VLBI
β - 1	Perihelion shift	3 X 10 ⁻⁵	J ₂ = 2.2 X 10 ⁻⁷
	Nordtvedt effect	2.3 X 10 ⁻⁴	Lunar laser ranging
ξ	Spin Precession	4 X 10 ⁻⁹	Millisecond pulsars
α_1	Orbit polarization	10-4	Lunar laser ranging
		4 X 10 ⁻⁵	Pulsar J 1738+0333
α2	Spin precession	2 X 10 ⁻⁹	Millisecond pulsars
α ₃	Self-acceleration	4 X 10 ⁻²⁰	Pulsar spindown
ζ ₁		2 X 10 ⁻²	Combined bounds
ζ ₂	Binary acceleration	4 X 10 ⁻⁵	PSR 1913+16
ζ ₃	Newton's 3rd law	10-8	Lunar acceleration
ζ_4			Not independent

Bound on scalar-tensor gravity: $\omega > 40,000$

Geometry moves mass: GR test-beds

- Early struggles
- Highlights from the first century
- Prospects for the second century

Gravity is geometry
Geometry bends light
Geometry warps time
Geometry moves mass
Geometry has waves
Geometry makes black holes

Geometry has waves

A Global Network of Interferometers

LIGO Hanford 4&2 km

GEO Hannover 600 m

LIGO Livingston 4 km

Pulsar Timing Arrays

eLISA: a European space interferometer

Gravitational-wave tests of GR: Polarizations

 Array of ground based detectors
 Modulation due to eLISA's orbit
 Correlation of pulsar timing residuals as a function of angular separation

CMW, Living Reviews in Relativity 17, 4 (2014)

Gravitational-wave tests of GR: Speed

$$1 - \frac{v_g}{c} = 2 \times 10^{-11} \left(\frac{50 \,\mathrm{Mpc}}{D}\right) \left(\frac{\Delta t}{1 \,\mathrm{day}}\right)$$

The first GR test following GW detection?

Source

WWWWWW

Gravitational-wave tests of GR: Graviton mass

Detector

G R 4 > H L C R H D 4

CMW, PRD 57, 2061 (1998)

Inspiralling Compact Binaries: Strong Gravity GR Tests?

Ground-Based (hectahertz) Last few minutes (10K cycles) for NS-NS 40 - 700 per year by 2018 BH inspirals could be more numerous Space-Based (millihertz) MBH pairs (10⁵ - 10⁷ M_s) in galaxies to large Z EMRIs Pulsar Timing Arrays (nanohertz) MBH pairs

- Early struggles
- Highlights from the first century
- Prospects for the second century

Gravity is geometry
Geometry bends light
Geometry warps time
Geometry moves mass
Geometry has waves
Geometry makes black holes

Geometry makes black holes

Karl Schwarzschild

J. R. Oppenheimer

Geometry makes black holes

J. Michell (1784):

 $1.6 \times 10^8 M_{sun}$

If there should really exist in nature any bodies whose density is not less than that of the sun, and whose diameters are more than 500 times the diameter of the sun, since their light could not arrive at us... we could have no information from sight; yet if any other luminous bodies should happen to revolve about them we might still [infer] the existence of the central ones....

P. S. Laplace (1796):

... the attractive force of a heavenly body could be so large that light could not flow out of it.

Are black holes really bald?

The 3 Stooges: Moe, Curly & Larry (1934 - 46)

Black holes have no hair

Exterior geometry of Kerr

$$g_{00}: \frac{M}{r} + \frac{Q_2 P_2(\cos\theta)}{r^3} + \frac{Q_4 P_4(\cos\theta)}{r^5} + \Box$$
No hair

$$g_{0\varphi}: \frac{J}{r^2} + \frac{J_3 \tilde{P}_3(\cos\theta)}{r^4} + \frac{J_5 \tilde{P}_5(\cos\theta)}{r^6} + \Box$$
No hair
theorem
$$Q_\ell + iJ_\ell = M(ia)^\ell$$

$$Q_0 = M$$

$$J_1 = J$$

$$a = J/M$$

$$Q_2 = -Ma^2 = -J^2/M$$

Hair counting using GW from EMRIs

Animation by Steve Drasco, JPL

Counting hair on the galactic center black hole SgrA*

- No hair theorems:
 - $M_L + iJ_L = M(ia)^L$
- J = Ma; $Q_2 = -Ma^2$
- relativistic effects: pericenter advance, redshift
 Doppler shifts, Shapiro delays
- Frame dragging (J) and quadrupole moment (Q₂) produce precessions of planes

SgrA* - a 4.3 X 10⁶ M_{sun} rotating black hole

Counting hair on the galactic center black hole SgrA*

J/M² > 0.5, e ~ 0.9 P ~ 0.1 yr, a < 10⁻³ pc, => Δθ ~ 10 μas/yr

CMW, Ap J Lett. 647, L25 (2008)

Einstein triumphant, or was he?

- Early struggles and uncertainties
- 1st century themes
- High precision technology (clocks, space)
- Frameworks for comparing and testing theories
- Theory-experiment synergy
- 2nd century themes
- Strong-field tests
- Gravitational-wave tests
- Extreme-range tests

Clifford Will University of Florida, Gainesville Institut d'Astrophysique de Paris