Gravitational microlensing and vacuum fluctuations

Steve Carlip U.C. Davis

> Probing the Mystery: Theory and Experiment in Quantum Gravity Galiano Island, BC, Canada August 2015

Setting up the question

Raychaudhuri equation:

$$rac{d heta}{d\lambda} = \ell^a
abla_a heta = -rac{1}{2} heta^2 - \sigma_{ab} \sigma^{ab} + \omega_{ab} \omega^{ab} - 8\pi G T_{ab} \ell^a \ell^b$$

Vacuum fluctuations of the stress-energy tensor induce fluctuations of expansion \Rightarrow (micro)lensing

Can we observe this effect?

First guess: obviously not

Gravitational fluctuations occur at the Planck scale – much too small

But: distribution of fluctuations is very non-Gaussian

with a strict lower bound and a long subexponential tail \Rightarrow naive intuition is unreliable

More precisely:

Smear stress-energy tensor over length scale L [more later...] Let $x = \frac{16\pi^2}{\hbar}L^4T_{00} = 16\pi^2\frac{L^4}{\ell_p^2}GT_{00}$ "typical" quantum fluctuation has $x \sim 1$

Fewster, Ford, Roman:

Compute $\langle T T T \dots \rangle$

Are these the moments of any probability distribution?

Two dimensions: yes, unique, exactly calculable Four dimensions: yes, not quite unique, approximately calculable

For electromagnetism:

Strict lower bound $x_0 pprox -.0472$

$$Prob(x) \sim c_0 (x-x_0)^{-2} e^{-a(x-x_0)^{1/3}}$$

with $c_0 pprox .955, \ a pprox .963$

Vacuum fluctuations and gambler's ruin

Raychaudhuri:
$$\frac{d heta}{d\lambda} = -\frac{1}{2} heta^2 - 8\pi G T_{ab}\ell^a\ell^b + \dots$$

Vacuum fluctuations of $T_{ab}\ell^a\ell^b$ are usually negative (defocusing) But lower bound, long positive tail (focusing)

"Gambler's ruin"

Whatever the odds, if you bet long enough against a house with unlimited resources, you always lose in the end.

Back-of-the-envelope estimate:

Let $ar{ heta} = \sqrt{rac{|x_0|}{\pi}} rac{\ell_p}{L^2}$

- If $\theta > \overline{\theta}$, RHS of Raychaudhuri eqn < 0 $\Rightarrow \theta$ is forced down to $\overline{\theta}$
- If $\theta < -\bar{\theta}$, RHS of Raychaudhuri eqn < 0
 - $\Rightarrow heta$ is forced down to $-\infty$
 - \Rightarrow focusing, microlensing

To force runaway focusing, need

$$egin{aligned} \Delta heta &= rac{d heta}{d \lambda} L < -2 ar{ heta} \ &\Rightarrow x > 4 \sqrt{\pi |x_0|} \, rac{L}{\ell_p} = x_1 \end{aligned}$$

$$Prob(x>x_1)\sim \left(L/\ell_p
ight)^{-4/3}e^{-lpha(L/\ell_p)^{1/3}} \qquad \left(lpha=\mathcal{O}(1)
ight)$$

Significant probability of observation for L as large as $5 imes 10^5\ell_p$

Time scale for focusing

Solve Raychaudhuri equation after $\theta < -\bar{\theta}$

Find time to focusing

$$\lambda_f \sim eta rac{L^2}{\ell_p} \qquad ig(eta = \mathcal{O}(1)ig)$$

Two scales:

- \bullet *L* sets scale of fluctuations
- λ_f sets scale at which these have potential observable effect

Some numbers

For significant magnification, need

$$rac{r}{D}\sim rac{L}{\lambda_f}\sim rac{\ell_p}{L} \ \Rightarrow \ L\sim rac{D}{r}\ell_p, \ \lambda_f\sim \left(rac{D}{r}
ight)^2\ell_p,$$

For large L to be relevant, need D/r large — small, distant sources

Unfortunately ...

For observability, need $L/\ell_p \lesssim 5 imes 10^5$

 $\Rightarrow~\lambda_f \lesssim 10^{-21}~{
m cm}$ $E \sim 10^{10}~{
m TeV}$

Conversely ...

Largest realistic *L*—white dwarfs in Large Magellanic Cloud $L \sim 10^{-21}$ m $\Rightarrow Prob(x) \sim 10^{-20000}$ $t_{fluc} \sim 10^{-29}$ s

What about multiple fluctuations?

Say N fluctuations of size $\delta(GT) \gtrsim \pm \ell_p^2/L^4$ along path of length Drandom walk $\Rightarrow \langle \theta \rangle \sim \sqrt{N} \ell_p^2/L^3$ \Rightarrow nonlinear regime when $L^3 \sim D \ell_p^2$

For cosmological source: significant for $L \sim 10^{-15}$ m: 1 GeV photon Maybe better: not really random walk (work in progress)

Is any further amplification possible? Maybe...

Dependence on smearing

Results so far based on Lorentzian smearing of T (Fewster, Ford, and Roman, 2012)

New results: probability distribution depends on smearing function; "fatter" tail for function with sharp cut-off (Fewster and Ford, 2015)

Now plausible probabilities for $L\sim 10^{-23}$ m

Need to better understand role of smearing