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Quantum Gravity:
Experiment and Tests?

It seems unlikely that we will have laboratory 
experiments that test strong field quantum gravity in 
the immediate future.  

But at the beginning of the the universe we have an 
experiment already done where Planck energies are 
reached, and there is 14 Gyr of data scattered over 14 
Gpc of space today.

Epl ⌘
p

~c5/G ⇠ 1019Gev

Quantum Cosmology



Cosmological Observations of 
the Universe’s Classical History

Most of our observations of the universe on 
cosmological scales are of properties of its  

quasiclassical history:

•The homogeneity and isotropy on scales above 
100Mpc. The vast age.

•The rate of expansion, the amounts of dark matter, 
dark energy, baryons, radiation.

•The evolution of fluctuations to make the CMB, 
galaxies, stars, planets, biota, us, etc. 



Classical behavior is a matter of quantum probabilities of 
coarse-grained alternative histories of the closed system

being correlated in time by deterministic laws. 



Ψ
If the universe is a 
quantum mechanical 
system it has a 
quantum state. 
 What is it?

A Quantum Universe

A theory of the 
quantum state is the 
objective of
Quantum Cosmology.



Contemporary Final Theories
Have Two Parts

Some regularities of the universe come 
mostly from H and others from ψ .

H  
An unfinished task of unification?



•classical dynamics

•laboratory experiment eg 
CERN. 

•classical spacetime

•early homo/iso +inflation

•fluctuations in ground state

•arrows of time

•CMB, large scale structure

•isolated systems

•topology of spacetime

•num. of large and small dims.

•num. of time dimensions

•coupling consts. eff. theories 

 H



Eternal Inflation 
-\

•Our observations are restricted to one Hubble volume.

•That is but one of an infinite number of Hubble volumes 
on a reheating surface in one bubble.

•That is but one of an infinite number of bubbles in a 
universe that is very large.

How do we predict the results of our observations
that test and utilize the theory?



Eternal Inflation is a 
Quantum Phenomena

•Classical physics is deterministic, eternal inflation  is not. 

•Probabilities in a stochastic treatment of eternal inflation 
are quantum probabilities for large fluctuations. 

Eternal inflation is 
therefore naturally treated 

in a fully quantum 
mechanical context (H, Ψ).



Five Pillars
• Quantum state Ψ:  Specifying probabilities of alternative 

coarse-grained histories of the universe.

• Quantum spacetime:  An ensemble of alternative classical 
histories of spacetime with probabilities from Ψ . 

• Quantum Observers: Observers as physical systems within 
the universe with a quantum probability to exist in any 
Hubble volume and a probability to be replicated in many.

• Our Observations:  Focus on probabilities for our 
observations in our Hubble volume which are conditioned on 
a description of the observational situation. 

• Adapted Coarse Grainings:  Use coarse grainings that follow 
observations and ignore unobservable features of the 
universe such as very large scale structure. 



Box Model Universe

Each box is Y,G,B with probabilities  pY, pG, pB

Observers exist (E) with a probability pE  in Y, G and 0 in B. 
We are equally likely to be any of the instances of E. 

Probabilities of fine grained histories:
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All boxes are statistically the same. 

Not well defined at infinite N



Box Model 
Universe 
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What is the probability that we observe Y (WOY)?

We could try to sum the fine grained probabilities.
But its easier to coarse grain over every box but ours

assuming at least one copy of us exists.

No problem with the limit of an infinite number of boxes.



Coarse Graining in Physics



Coarse Graining in  
Statistical Mechanics

•Fine grained: Atoms in a 
box have a complex 
arrangement that 
changes in time.

•We only observe coarse-grained quantities like total 
energy, momentum, and number in fairly big volumes. 

•Near equilibrium statistical mechanics provides 
probabilities for the values of these coarse-grained 
quantities directly without calculating fine-grained 
histories of the atoms. 



In classical physics coarse-graining 
could be considered a choice forced 
on us by our puny ability to collect, 
store, recall, and manipulate data. 

But in quantum physics 
coarse-graining is necessary 
to have probabilities at all  
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U

L

y

y

|ψU(y) + ψL(y)|2 != |ψU(y)|2 + |ψL(y)|2

1

It is inconsistent to assign probabilities to 
this set of histories -- need further coarse graining.

Coarse Graining in Two Slit Experiment

Consider the alternative histories where the 
electron went through U or L. 
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Decoherence of 
Coarse Grained 

Histories 
by interactions that 
carry  away phases. 

(pY )
nY (pG)

nG(1� pY � pG)
N�nY �nG(pE)

nE(1� pE)
N�nE .

p(WOY ) = pY .

p(WOA) = pCDL(A).

p(WOB) = pCDL(B).

p(WOA)

p(WOB)
=

pCDL(A)

pCDL(B)

p(y) 6= pU(y) + pL(y)

p(y) = pU(y) + pL(y) (1)

= || U(y)||2 + || L(y)||2 (2)

= || U(y) + L(y)||2 (3)

h ↵| �i / �↵�

1� (1� pE)
N ⇡ pEN

h U(y)| L(y)i = 0

p(↵n, · · · ,↵1) = ||C↵| i||2 = ||P↵n(tn) · · ·P↵1(t1)| i||2

h U(y)| L(y)i / [h�|S†
USL|�i]N = (< 1)N ! 0

| (y, U)i = 1p
2
|y, UiSU |�i · · ·SU |�i

| i = 1p
2
(|Li+ |Ui)|�i · · · |�i

1



Decoherence is Widespread
 in the Universe

•One dust grain in a superposition of two positions, 
deep in intergalactic space. 

•Relative phases dissipate in of order 10-9 s from 
the 1011 CMB photons that scatter every second. 

Joos and Zeh ’85



Coarse Graining 
by Summing 

Amplitudes in QM
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Sum amps

Sum probs

Essence of  sum-over-histories quantum mechanics. 

Since:   
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Local Prediction in 
False Vacuum Eternal Inflation



A Model of  False Vacuum EI
•(H) Einstein gravity coupled to a single scalar field.
•(Ψ) A quantum state. 

•One false vacuum F and two true vacua A and B. 
•Nucleation of true vacuum bubbles  A or B are the 
dominant exit channels from F. 

•Different slow roll regimes leading to different 
predictions for the CMB in A or B. 



Assumptions for 
Illustrative Calculation

• An initial quantum state that predicts a history of 
false vacuum inflation.  We focus on this for a while. 

• Zero probability (pE ) for us to exist in the false 
vacuum F. 

• Low rate of nucleation so that bubble collisions and 
the back reaction of other bubbles can be neglected. 

• Then  we are either in a bubble of type A or a 
bubble of type B. 



Classicality and 
Quasiclassical Histories

• Histories of geometry and field behave  classically 
when the quantum probability is high that they have 
correlations in time summarized by classical equation 
of motion.

• Quasiclassical histories behave classically for stretches 
interrupted by quantum events like bubble nucleation. 

-\



No One Spacetime but 
An Ensemble of Possible Ones

We assume that all sets of histories we consider decohere.



Coarse Graining for Local Obs.
• Coarse grain of everything outside our bubble. Not by 

summing fine-grained probabilities over everything 
outside, but by summing amplitudes. 

• Then there are only two histories. One in which our 
bubble nucleated somewhere, sometime, in true 
vacuum A and the other in true vacuum B.  

• From the symmetries of deSitter these are the same 
as the probabilities that A or B nucleated in a 
particular place in spacetime. 



Probs. for Our CMB Observations

The probabilities to nucleate bubbles of different 
kind in a false vacuum were calculated by 

Coleman and DeLuccia. 

The probabilities for which CMB we observe are:
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 There is least one copy of us in any bubble as long as pE 
is not zero since the reheating surfaces are infinite. 



Box Model 
Universe 
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What is the probability that we observe Y (WOY)?

We could try to sum the fine grained probabilities.
But its easier to coarse grain over every box but ours.



Bubble Collisions

A

Effectively a new kind of bubble.
CDL probabilities are predicted from the NBWF

through the Gratton-Hertog-Turok (GHT) instanton.

Similarly we expect the probability for a white spot 
in the CMB to be predicted from the NBWF.



No Boundary Wave Function 
Ensemble of Classical Histories 

The probabilities for our 
observations are the NBWF 
probabilities for those histories 
multiplied the probability that there 
is at least one copy of us which is 

Histories with finite N are  
suppressed by pE.

The NBWF ensemble of classical histories is dominated 
by the ones with the lowest exit from eternal inflation.
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The bubble that 
rules them all 
is our bubble!



Quantum Cosmology 
Eternal Inflation

Traditional 
Eternal Inflation

Target 
Probabilities

Probabilities for observations 
in our Hubble volume

Probabilities for observations in 
our Hubble volume

Spacetime
Ensemble of classical 

spacetime histories with 
quantum probabilities

One classical spacetime in 
which quantum events take 

place (eg. nucleation)

Observers like 
us

Quantum systems within the 
U with a probability pE to 

exist in any H-vol. 

Classical -- assumed  to exist in 
all hospitable environments

 Importance of 
Large Scale 
Structure

Details unimportant for local 
observations. 

Central to the definition of 
probabilities (measure). 

Origin of 
Probabilities 

for local 
observation 

The quantum state of the 
universe.  

Ratios of numbers of 
environments for observers of 

different kinds defined by a 
sequence of cutoffs (measure)



No Fine-Grained Infinite Future?
I

•Extending histories into the 
infinite future is an 
operation of fine-graining 
which risks losing 
decoherence. 

•Many more branch state 
vectors have to be 
orthogonal

•Hilbert space rapidly fills up.  

In the far future a fine grained mosaic 
of bubbles may not decohere.  
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Main Points Again 
• False vacuum EI implies quasiclassical histories describing a 

mosaic of bubbles of true vacuum separated by inflating 
regions.  We are in one bubble.

• Our local observations are described by a much coarser 
set of quasiclassical histories that ignores any structure 
outside our Hubble volume.

• Under modest assumptions, probabilities for our 
observations can be calculated  directly from the universe’s 
quantum state.  No further `measure’ is needed. 

• The relative probabilities that we find ourselves in different 
kinds of bubbles is specified by the action of their CDL 
instantons.

• This is significantly different from traditional EI.



Is there a measure problem in 
inflationary cosmology?

YES

Its the problem of
 what is the

 quantum state of the 
universe. 


