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13.7 billion years
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What is Particle Physics?

Particle Physics tries to answer 2 basic

questions
WHAT is the Universe made of?

HOWYV do these building blocks interact?
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By 1930s we knew how it all worked --
Everything is made out of atoms, and every
atom in the periodic table is just different
combinations of protons, neutrons and electrons —
just 3 basic building blocks of the whole,
complicated Universe
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In 1969, we built machines that could look inside protons
and discovered quarks
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In 1969, we built machines that could look inside protons

and discovered quarks

Eventually a total of 6 types
g of quarks were discovered,
VA \" between 1969 and 1994
from the very light ‘up’ and
‘down’ quarks ending with
the very heavy ‘top’ quark

Atom Nucleus Proton

For regular matter; we only need 2:
Proton = (uud) @ @
Neutron = (udd) @

Each quark comes with 3 possible “strong charges” just like
electric charge

These were fancifully named Red, Green, Blue, and called
“colour” charge. Not that they really are coloured, it’s
just 2 name, like “positive” and “negative”



The Standard Model

+Gravity ...
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To represent forces/interactions, we draw diagrams,
invented by Feynman, which show the elements of
the process




In this example, an electron "emits” a photon, which
carries momentum to the other electron, causing
them to scatteroff.ec




In this example, an electron "emits” a photon, which
carries momentum to the other electron, causing
them to scatteroff.ec

Q: How do we know what forces exist (or equivalently
-- what particles can be exchanged) and what are their
properties!
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Forces and Symmetries

Newton Maxwell

| .Observe a force (eg gravity, electromagnetism)

-Measure some properties

-Guess at governing equations (1/r? law, Maxwell’s
equations ...)

-Test experimentally

2. Modern: Special kind of symmetry causes certain
forces to be required



Symmetry




Symmetry

. Rotate through 90°

Object is the same

but only for special values

| x 90°
2 x 90°

3 % 90° Not for any value

eg 36.2°
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Continuous Symmetry

Rotate through any angle

v

Object is the same

for any value

36.2°
82.1
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4 Move the point from which to measure
distances (keeping all else the same)
4 Experiment and determine Laws of Physics

The Laws Of Physics
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Obvious!

+® The Laws of Physics don’t depend on
where we measure them

-&'Not that eg the strength of gravity is the
same on the moon as Earth

-&But, the mathematics of gravity is the same
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-&This is a form of a symmetry!

+®'We can move the coordinate system we
use to measure the object =“Laws of
Physics”, and it is the same (invariant) no
matter where we move our coordinates

'%’Amazingly, this causes the Law of Inertia, or
Conservation of Momentum (momentum =
mass x velocity)
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Symmetry and Force

-®-Start with an empty Universe with one
particle of mass m

-® There are no forces -- particle just moves
freely (Law of Inertia)

-®'Write down the physics equation the
particle follows, that is consistent with both
Relativity and Quantum Mechanics (this
equation is called the Dirac Equation)






-&In writing this equation we have a freedom
to choose a direction, but in some
“internal” mathematical space of the
equation



-&In writing this equation we have a freedom
to choose a direction, but in some
“internal” mathematical space of the
equation

-&'Kind of like choosing coordinate axes of
space to work in ..



-&In writing this equation we have a freedom
to choose a direction, but in some
“internal” mathematical space of the
equation

-&'Kind of like choosing coordinate axes of
space to work in ..

-&It’s just like picking a direction by choosing
a point on a circle




-&In writing this equation we have a freedom
to choose a direction, but in some
“internal” mathematical space of the
equation

-&'Kind of like choosing coordinate axes of
space to work in ..

-&It’s just like picking a direction by choosing
a point on a circle

-® The physics is “symmetric” if you rotate

....................................
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The coolest thing |
know about Physics

-®'Now we try an amazing idea

+®'We demand that our Law of Physics is
unchanged, even if we change our “internal
direction” convention arbitrarily all over space

-®-Like if you had a map and picked what you
called ‘North’ differently all over the map (but
still expected all your directions to work!)

"&'But it turns out this doesn’t work. So we ask
-- what do we have to add to make it work?
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- &It turns out, you can make it work by adding
one new ingredient -- a new type of particle!

- & This particle must satisfy the Laws of
Electricity and Magnetism! (Maxwell’s
Equations, Coulomb’s Law)

-®The particle is the photon — the carrier of the
Electromagnetic force

-&All this only works if the new particle has
mass = 0



Leptons



Leptons



Strong Force

-2-Now we do the same with the strong force

- &It has 3 “charges” which we call Red,
Green, Blue (just to help remember)




Strong Force

-2-Now we do the same with the strong force

- &It has 3 “charges” which we call Red,
Green, Blue (just to help remember)

Require that we can pick

' r k\ any “direction” we want
L P for the R, G, B definitions
and that the Laws of
Physics are unchanged

A
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Strong Force

-®'Need to add 8 new particles to our theory
-- called gluons. These hold the quarks
together in the proton.

-® These must satisfy the laws of Quantum
Chromodynamics (the strong force
equation)

-&-All 8 new particles must be massless
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Weak Force

-®'Now we apply the same reasoning to try
to understand the Weak force

-&Find we have to add 3 new particles -- the
W, Z particles

'%’These must be massless
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Now the trouble

-&'Disaster #|:The W and Z particles are very
heavy! Their mass is 80-90 times that of
the proton!

-®-Disaster #2: It turns out we have to set
the mass of every particle in the Universe
to 0! But all the quarks and leptons have
non-zero mass.

-® This is not good ...
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Remarkable Recovery

-® There is a way out of this

-®'Discovered by Higgs (and Brout & Englert,
and Guralnik, Hagen, Kibble) in 1964(!)

-&'Everything really is massless
'%‘Add a hew particle type -- Higgs Boson

-&Interactions with the H make particles
seem to have mass



The Papers

BROKEN SYMMETRY AND THE MASS OF GAUGE VECTOR MESONS*

F. Englert and R. Brout
Faculté des Sciences, Université Libre de Bruxelles, Bruxelles, Belgium
(Received 26 June 1964)

BROKEN SYMMETRIES, MASSLESS PARTICLES AND GAUGE FIELDS

P.W. HIGCGS
Tudt Instirute of Mathematical Plhysies, Vntverstty of Edinburpk, 5S¢ olland

Received 27 July 1964

VoLUME 13, NUMBER 16 PHYSICAL REVIEW LETTERS 19 OCTOBER 1

BROKEN SYMMETRIES AND THE MASSES OF GAUGE BOSONS

Peter W. Higgs
Tait Institute of Mathematical Physics, University of Edinburgh, Edinburgh, Scotland
(Received 31 August 1964)

GLOBAL CONSERVATION LAWS AND MASSLESS PARTICLES*

G. S. Guralnik,” C. R. Hagen,i and T. W. B. Kibble
Department of Physics, Imperial College, London, England
(Received 12 October 1964)

2013 Nobel Prize -- Higgs and Englert



SideBar: Mass

® Remember: Mass is not the same
as weight



SideBar: Mass

® Remember: Mass is not the same
as weight

® |n space, you are weightless (zero
gravity), but not massless

Cmdr. Hadfield on the
Space Station



SideBar: Mass

® Remember: Mass is not the same
as weight

® |n space, you are weightless (zero
gravity), but not massless

® How would you measure the mass
of something?

Cmdr. Hadfield on the
Space Station



In space, these would all just float in front of me
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But if | wiggle them back and forth, they are different

Shot Put

Beach Ball Pea
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F=ma
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The Beach Ball interacts more strongly with the
water than the pea and so is harder to move
(needs more Force)



Now, imagine my space station is filled with water

F=ma

Beach Ball Pea

Very Hard to move Very Easy to move
Very Large Mass!? Very Small Mass

The interaction with the surrounding medium
makes the ball seem heavy now



Generating Mass



Generating Mass

-&Higgs “field” fills the vacuum, in analogy to
the water



Generating Mass

-&Higgs “field” fills the vacuum, in analogy to
the water

-&Particles interact with the Higgs field



Generating Mass

-&Higgs “field” fills the vacuum, in analogy to
the water

-&Particles interact with the Higgs field

-2 The stronger this interaction the harder it
IS to move



Generating Mass

-&Higgs “field” fills the vacuum, in analogy to
the water

-&Particles interact with the Higgs field

-2 The stronger this interaction the harder it
IS to move

-®'Harder to move = “heavier”



Generating Mass

-&Higgs “field” fills the vacuum, in analogy to
the water

-&Particles interact with the Higgs field

-2 The stronger this interaction the harder it
IS to move

-®'Harder to move = “heavier”

-®'Mass is a mirage, heavier particles just
interact more strongly with the Higgs field!



® That analogy has some flaws -- e.g. why
doesn’t the Higgs field end up slowing
down everything moving, like water would?

® The Higgs field, even in completely empty
vacuum, has a strange property
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Ground States

-&-Physical systems tend to their lowest
energy state (balls roll down hills ...)

+®In the vacuum of empty space (lowest
energy state), the average value of the
electromagnetic field, for example, is zero

- & If we add energy into the electromagnetic
field, we increase the total energy of the
system (obvious, right?)



Higgs in Space

Universe Energy Density

50 100 200

Average Higgs Field Energy (GeV)



Higgs in Space

-® The Higgs field
doesn’t act this way

Universe Energy Density

50 100

Average Higgs Field Energy (GeV)



Higgs in Space

- The Higgs field
doesn’t act this way

Universe Energy Density

50 100

Average Higgs Field Energy (GeV)

-®-As you increase the average field energy
from zero, the total energy of the vacuum
goes down not up, at least to a certain point



Higgs in Space

- The Higgs field
doesn’t act this way

Universe Energy Density

50 100

Average Higgs Field Energy (GeV)

-®-As you increase the average field energy
from zero, the total energy of the vacuum
goes down not up, at least to a certain point

-® The most stable, lowest energy
configuration has a non-zero average Higgs
field energy everywhere
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Making Particles

® Quantum Mechanics showed us a “wave-particle”
duality ...

® Particles are also waves, and waves are
particles -- But waves in what? #

Electron Particle
(local wave)

Electron Field
(everywhere)

® Electron = wave in Electron Field

® (Costs energy to make
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® |f the electron interacts with the Higgs
Field, there is an extra energy cost to make

one

® Ve have to pay for the energy of this
Interaction

® ~(strength of interaction) x (average
Higgs Field Energy)

® No matter how little energy we put into
the motion of the electron wave, we always

have this minimum cost
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® Since £ = mc” this minimum energy looks
just like a mass

® Fach elementary particle type can have a
different strength of the amount it interacts
with the Higgs Field

® (strength of interaction) x (average Higgs
Field Energy)

® Which just means a different minimum
energy is needed to make any wave in that
particle’s field

® Which means a different apparent mass
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Any Evidence!

® Particles are also waves, and waves are " |
iggs Particle
particles -- /’\ (Iocal wave)

Higgs Field
(everywhere)

® Higgs Particle = wave in Higgs Field

(vanishes | billionth of a billionth of a billionth of a second after you make it)
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Seeing Higgs Particles

® We'd like to create excitations in the Higgs
field, ie create Higgs particles -- this would
prove the field is really there

® But we need enough energy to create the
excitation, and it is very rare to excite the
field ... it interacts most strongly with heavy
particles, and our usual accelerators use
electrons or protons (ie up and down
quarks) which are very light

® This is the challenge that the LHC has
finally solved -- high energy and high
repetition rate of collisions
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Trouble with the Higgs

-® The problem is -- the Higgs makes no
sense!

- &If you work out the math of what it’s mass
should be we need an unnatural
cancellation between two unrelated
numbers in the theory to get anything
sensible
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The problem

“Loop corrections’ affect the Higgs mass. Due to the
Uncertainty Principle of Quantum Mechanics, the Higgs
can spend part the time fluctuating to other particles,

The Higgs is actually all these things at once -- the
“Higgs in itself” and all the other particles it can
fluctuate into

It’s properties, such as it’s mass get contributions from
all of these states at once

It turns out the contributions from these loop
fluctuations are enormous, and so must be offset by the
“Higgs in itself” mass to get anything sensible
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Coincidences?

-® Total Eclipse: Angular size of moon =
angular size of Sun (to within ~2.5%)

-2987654321/123456789 = 8.000000073

-&For the Higgs mass to be near 125 GeV
(about 125 times the mass of the proton,
where we think we have found it)
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We need 2 unrelated numbers in our
theory to be equal to about 32 decimal
places!

Such as:

a=8.927463514242835467462516596847024
b=8.927463514242835467462516596847025

But: These numbers aren’t so close for
any reason at all!



We need 2 unrelated numbers in our
theory to be equal to about 32 decimal
places!

Such as:

a=8.927463514242835467462516596847024
b=8.927463514242835467462516596847025

It is just a coincidence

Without which the universe wouldn’t be here anymore

Trust me!
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This naturalness problem is so extreme because
the particles in the loop fluctuations can have
very large energy -- all the way up to the energy
at which gravity becomes strong and must play a
role -- about 10'> times higher than the energy
we can make at our current accelerators

This assumes no new physics is present all the
way to that energy scale -- just Standard Model
+ Gravity

Way out #1| -- Add some new physics!
Way out #2 -- Make gravity strong sooner

Way out #3 -- Make lots of universes
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What’s in the Universe!

Not in our theory anywhere!

= i

Stuff We Understand - 5%

Dark Matter - 27%

Dark Energy - 68%
Lego - 12%
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Standard particles SUSY particles

Hint of Grand
Unification

Many like this model because:

The SUSY particles fix the absurd =
cancellation needed in the Higgs mass

energy (GeV)

The lightest neutral particle would be
Dark Matter -- and Cosmological
data suggest it is right at a mass that
the LHC will produce



Standard particles SUSY particles

Hint of Grand
Unification

Twice as many particles to discover!

/0.

Job security! S T s

energy (GeV)
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.. until they build

a microscope that can
see things smaller than
0.1lmm

To a bug living on this
map, the “World” has 2
large dimensions and one
small (0.1mm thick paper)
It’s “World” is essentially
2-dimensional --the 3rd is is really 3-dimensional!

too small to see

Now they see the world

Extra Dimensions
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Some Extra Dimension models can make gravity strong
at the LHC energies -- could make micro black holes

Many models predict new, massive particles that would
be produced at the LHC and decay in our detector
with striking signatures

Some even have particles that don’t
decay and could be the Dark Matter

The LHC will probe the smallest
distance scales ever

| m = Classical Physics
10-'9 m = Quantum Physics
107 m="




The Machine



The Large Hadron Collider

A Proton-Proton
Collider

27 km around
Energy = 14 TeV
(7 times Fermilab)
100,000 times
hotter than the
Sun

Creates
conditions of |
billionth of a
second after the
Big Bang

~10 Billion $
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LHC Accelerator
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Or, like driving your car into
our detector at 2,500 km/h

$25M / year
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Energy of the LHC






- & Biology, chemistry, art, architecture — move atoms
around to create (very interesting) new
arrangements, but underneath, you are moving
existing atoms around
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-&-Particle physicists create brand new objects that
weren’t there before -- all through the magic of

E = mc?

-& Most of these fun new objects quickly decay back
into regular boring matter -- that’'s how we're
going to see them
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Energy
changes form
but total
amount is
constant



Energy of motion
of highly accelerated
protons

E = mc

2 Turned into mass of new
particles that were
common | billionth of a
second after the Big Bang



Energy of motion
of highly accelerated
protons

E = mc?

Most of these collisions
are actually rather boring
-- need to repeat a lot!

Turned into mass of new
particles that were
common | billionth of a
second after the Big Bang
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Want a device
that can
measure:

Trajectories of all particles produced collision
Energy and momentum of all these particles

What type each of all these particles are

We do this with a huge, multi-layer device, with
different layers specializing in different aspects
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25 m
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Overall weight

7000 Tons
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ATLAS Facts

7000 tons
46m long, 25m diameter

|00M+ channels of electronics (taking data 40M times per second)
3,000 km of cables

Real time data handled by electronics is enormous — just the part
built by UBC crunches 2 Tb/s of data, 24/7

Like checking, compressing, fixing and formatting a medium-sized
hard drive worth of data every second, for |0 years.
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How to find the Higgs







Make some Higgs
(LHC
High Energy
Huge rate of
attempts)



It immediately
decays (into ZZ
in this case)



These particles
decay



Into these,
which we see in

our detector
(ATLAS)






Measure the
Energy and
Momentum of
these



To get the
Energy and
Momentum of
these



Gives us the
Energy and
Momentum of

the H



Gives us the |
Energy and Let’s us

Momentum of calculate
the H the Higgs Mass




@ATLAS

EXPERIMENT
http://atlas.ch

Y

N > 2
Wahtn L0 |yt
e A ot g .
&'}.-.:" 7
P Ny ot
- \\‘ L ’( g
> = W 7,
o --::\\“\ - //A AN
T -~ — S
L*‘. “ = 3 ‘:‘Q.“.“A.
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Event: 143576946
2011-09-14 12:37:11 CEST

Of course, complications
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How many?

It's hard to make Higgs Particles
Might expect |5 H->ZZ events all of last 2 years

But these are hidden among
1,500,000,000,000,000 other events!

And we have to look at
about | billion per second!

Don’t want to miss the
few good ones!
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Finding the Higgs

We use the mass of the system of particles that we
think are from a Higgs decay

We count up how many candidate “events’” have
their mass in various ranges, and plot as a histogram

Real Higgs events should all show up around the real
Higgs mass

Events that just have random combinations of
particles will have masses spread out over a wide
range (called Background events)
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Oh, there it is!

Apr 24, 2011

ATLAS Preliminary
H—)ZZ| '_54| channel —

_ Signal (m)‘:‘l25 GeV)
B Background 22" ]
I Background Z+jets, tt
—4— Data

450 500
M,, [GeV]

Events / GeV

Data - Fit

[ ! I ! ! ! 1 I ! ! ! ! ] T ! ! !

Vs =7TeV _[ Ldt = 0.02fb Apr 18, 2011
4000 —
3500 !

— +Dala
3000 — H—yy channel

| — Background-only
2500 !
2000 —
1500 -

1000 —

ATLAS Preliminary -




We were all pretty excited!
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Both ATLAS and the other similar experiment, CMS,
observe a particle consistent with being the Higgs
Boson, ie an excitation of the Higgs Field that is
responsible for giving elementary particles their
apparent mass

Extensive checks on its properties (how much it
decays into each type of particle, the probability to
produce it, the “spin”, etc) are all underway

So far, these all point to this discovery being the
Standard Model Higgs Boson -- for which we've
been searching for almost 50 years

Can also think of this as a discovery of a new force,
that is of different origin than all the others
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But remember, the Higgs Boson, and the Standard
Model, without some additional new physics, has
deep theoretical problems ...

We have put an enormous effort into searching the
current data for evidence of any of the models that
solve these -- new forces, new dimensions, etc

So far no luck -- no hint of Supersymmetry or Extra
Dimensions or mini black holes or many other ideas

Maybe the new particles in these models are too

heavy to make with our current accelerator! E = mc?
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But we just finished our first years of running. Turning
on again at almost double the energy in another year.
This almost doubles the range of new particles we can
look for

The program has|0-15 more years to go! Hoping to
make some Dark Matter soon in our lab to study ...

Lot’s of fun other ideas to look for ...
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Big Questions for

Particle Physics

Dark Matter?

Invisible forms of matter make up much of the
mass observed in galaxies and clusters of
galaxies. Does this dark matter consist of new
types of particles that interact very weakly

with ordinary matter?

Origin of Mass?

In the Standard Model, for fundamental particles
to have masses, there must exist a particle
called the Higgs boson. Will it be discovered
soon? Is supersymmetry theory correct in
predicting more than one type of Higgs?

Universe Accelerating?

The expansion of the universe appears to be
accelerating. Is this due to Einstein's Cosmo-
logical Constant? If not, will experiments
reveal a new force of nature or even extra
(hidden) dimensions of space?

Why No Antimatter?

Matter and antimatter were created in the Big
Bang. Why do we now see only matter except
for the tiny amounts of antimatter that we make
in the lab and observe in cosmic rays?
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Dark Matter? Origin of Mass?

Particle Accelerators
(looking at the very small)

Invisible forms of matter make up much of the In the Standard Model, for fundamental particles
mass observed in galaxies and clusters of to have masses, there must exist a particle
galaxies. Does this dark matter consist of new called the Higgs boson. Will it be discovered
types of particles that interact very weakly soon? Is supersymmetry theory correct in

with ordinary matter? predicting more than one type of Higgs?

Cosmology »

(looking at the very big)
But that’s another talk ...

Universe Accelerating? Why No Antimatter?

The expansion of the universe appears to be
accelerating. Is this due to Einstein's Cosmo-
logical Constant? If not, will experiments

Matter and antimatter were created in the Big
Bang. Why do we now see only matter except
for the tiny amounts of antimatter that we make
in the lab and observe in cosmic rays?

reveal a new force of nature or even extra
(hidden) dimensions of space?




