VISUALIZING THE QUANTUM WORLD

Cornell University

STOP ME & ASK QUESTIONS!

Cornell University

ELEMENTARY CONSTITUENTS OF MATTER?

Atomos: Indivisible

Democritus of Abdera 460-370 BCE

Epicurus of Samos 342-270 BCE

Titus Lucretius 99-55 BCE

ELEMENTARY CONSTITUENTS OF MATTER

that we know about today. They are no larger than 10^{-18} m. All matter in our world made of ONLY these two particles.

EXPLORING QUANTUM MATTER

CONDENSED

Galaxy Cluster Abell 2218 NASA, A. Fruchter and the ERO Team (STScl) • STScl-PRC00-08

COLLIDER

QUANTUM MECHANICS

FREE ELECTRONS – MATTER WAVES

Electron source

TWO SLITS

FRE

Werner Heisenberg

Max Born

FREE ELECTRONS – MATTER WAVES

Max Born

PAIRED ELECTRONS – SUPERCONDUCTIVITY

Heike Kamerlingh Onnes

Liquefied Helium $4K = -269^{\circ}C$

Superconductivity 1911

Verslagen van de Afdeeling Natuur-kunde der Kon. Acad. van Wetenschappen te Amsterdam, pp. 1479, 28 April 1911.

Superconductivity: Perfectly dissipationless electrical/electronics.

PAIRED ELECTRONS – SUPERCONDUCTIVITY

Leon Cooper

Bob Schrieffer

John Bardeen

MASS: $m = 2m_e$

BOUND PAIR OF OPPOSITE SPIN ELECTRONS

CHARGE: $Q = 2q_e$

Moment: $\mu = 0$

CONVENTIONAL SUPERCONDUCTIVITY

HIGH TEMPERATURE SUPERCONDUCTIVITY

C

HIGH TEMPERATURE SUPERCONDUCTIVITY

Power Efficiency/Capacity/Stability

Efficient Rotating Machines

Ultra-High Magnetic Fields

Power Bottlenecks

Information Technology

Medical

Accommodate Renewable Power

Next Generation HEP

Transport

CHALLENGES TO UNDERSTAND HIGH TEMPERATURE SUPERCONDUCTIVITY

Extremely Strong Electron-Electron Interactions

a b

PHASE DIAGRAMS

Many similarities as a function of electron density.

EXOTIC NEW STATES of ELECTRONIC MATTER

Very challenging to understand!

EXOTIC NEW STATES OF MATTER?

Control Parameter

EXOTIC NEW STATES OF MATTER?

Control Parameter

$Gas \rightarrow Fluid \rightarrow Liquid Crystal$

Increasing interactions & complexity

Liquid Crystal

Vapour

Controllable Liquid Crystal States

Random molecular orientation

Molecules aligned by electric field

Controllable Liquid Crystal States

Controllable Liquid Crystal States

10¹\$ Industry

- Monitors
- LCD Displays
- LCD TVs
- 'Smart' Windows
- Much more.....

Two Key Types of Liquid Crystal States

<u>Nematic LC</u> breaks rotational symmetry only <u>Smectic LC</u> breaks rotational & translational symmetry

Understanding Liquid Crystals Required Visualization

Visualization ↔ Understanding

$Gas \rightarrow Fluid \rightarrow Liquid Crystal$

Increasing interactions & complexity

Liquid Crystal

Vapour

Electron Gas → Electronic Fluid → Electronic Liquid Crystal

Increasing interactions & complexity

Heavy Electron Fluid

Electronic Liquid Crystal

Electron Gas

Electronic liquid-crystal phases of a doped Mott insulator

S. A. Kivelson*, E. Fradkin† & V. J. Emery‡

* Department of Physics, University of California Los Angeles, Los Angeles, California 90095, USA

Department of Physics, University of Illinois, Urbana, Illinois 61801-3080, USA
Brookhaven National Laboratory, Upton, New York 11973-5000, USA

Nature 393, 550 (1998).

ELECTRONIC LIQUID CRYSTALS?

Control Parameter

VISUALIZE ELECTRONIC MATTER DIRECTLY !

Control Parameter

VISUALIZING ELECTRONIC QUANTUM MATTER

Scanning Tunneling Microscopy (STM)

Images atomic locations – not electronic wavefunctions

Differential Conductance Spectrum

Differential conductance $[dI/dV]_{E=eV}$ proportional to $|\Psi(E)|^2$

Spectroscopic Imaging STM (SI-STM)

dI/dV spectrum at every atom

0

Topography

SI-STM

Rev. Sci. Inst. 70, 1459 (1999).
Atomic-scale Wavefunction Imaging

dI/dV spectrum at every atom

ARAN & THE STATE AND A DEST THEAT TARANTA AN AND WART BOARD AN AFAI OF A HUNDRE HAN AN AND AN AND ANTA THE AND AND STORE AND A STORE AND AND TO A PARA AND A DEPARTURE A AND A MARA A MAN HALL AND AND AND A MANY AND A CONTRACT OF gamment of a manual and the when the same are an warman to be an when we are not a provident south it and AL SCHANN SHE THE OWNER AND AND AND AND AND AND 4. Color and the state of the s AND FOR AN AN AN AN AN A AN AN AN AN THE MARK APPEARS & TO BE AND A SHARP CARLANA MARTIN MARTIN CONTRACT AND CONTRACT AA WALL A LOS AND THE WEAR AA HOLD WALL AND A WALL THE AND CARAGOR OF A ALLOWER .

Topography

Atomic-resolution & Energy-resolved $|\Psi(r,E)|^2$

SI-STM

Rev. Sci. Inst. 70, 1459 (1999).

Technically Challenging !

Atomic-resolution & Energy-resolved dI/dV spectrum at every atom $|\Psi(r,E)|^{2}$ Control voltages for piezotube 009 Tunneling Distance control current amplifier and scanning unit Tip Sample Tunneling voltage Data processing and display 0

SI-STM

Passively stabilize tip position $\sim 10^{-15}$ m RMS motion.

Technically Challenging !

Passively stabilize tip position $\sim 10^{-15}$ m RMS motion.

Ultra Low Vibration Laboratory

Rev. Sci. Inst. 70, 1459 (1999).

Ultra Low Vibration Laboratory

ULTRA LOW VIBRATION LAB

ULTRA LOW VIBRATION CRYOSTAT

Rev. Sci. Inst. 70, 1459 (1999).

OUR SISTM SYSTEMS

STM1 (9T/250mK) Iron-based HTS BNL STM1 (4K->100K Copper-based HTS STM2(9T/10mK) Heavy Fermion SC

Visiting scientists from UK, Korea, Japan, Taiwan, Canada, Portugal, France, Italy, Israel, Germany, Switzerland, Holland and several US Nat. Labs use our SI-STM systems.

Imaging Quantum Matter Waves

Imaging Quantum Matter Waves

Imaging Quantum Matter Waves

Imaging Quantum Matter Waves: Cu-based HTS

$g(r,\omega)$

Nature 454, 1072, (2008)

Imaging Quantum Matter Waves: Fe-based HTS

g(r,ω)

g(**q**,ω)

Science 336, 563, (2012)

Imaging Quantum Matter Waves: HF-based HTS

Nature Physics 9, 468 (2013)

g(r,ω)

Science (2014)

IRON-BASED HIGH-T_c SUPERCONDUCTIVITY

Fe-based HTS

Fe-based HTS Crystal Surface

$Ca(Fe_{1-x}Co_x)_2As_2$ -- Excellent cryo-cleave surface

Topography

Electronic Matter Waves in CaFe₂As₂

Topography

94nm 0

94nm

Electronic Matter Waves in CaFe₂As₂

Topography

0

94nm

Electronic nanostructures ~8a_{FeFe} aligned

Effect of Crystal Boundary

Electronic nanostructures rotate by 90 degrees

Electron wavefunctions rotate by 90 degrees

Discovery of Electronic Nematic Phase in Iron-Pnictides

SUPERCONDUCTING WAVEFUNCTIONS

92 x 92 mm²

AsAs direction

Science 336, 563, (2012)

SUPERCONDUCTING WAVEFUNCTIONS

AsAs direction

Science 336, 563, (2012)

34.2 nS

SUPERCONDUCTING WAVEFUNCTIONS

AsAs direction $\Delta(K)$

Science 336, 563, (2012)

ELECTRONIC NEMATIC PHASE / IRON-BASED HTS

COPPER BASED HIGH-T_c SUPERCONDUCTIVITY

Cu-based HTS

Cu-based HTS Crystal Surface

Nature 466, 374 (2010)

Science 333, 4526 (2011)

Science 344, 612 (2014)

Cu-based HTS Electronic Matter

Nature 466, 374 (2010)

Science 333, 4526 (2011)

Science 344, 612 (2014)

 $Bi_{2.2}Sr_{1.8}(Ca,Dy)Cu_2O_y$

Nature 430, 1001 (2004)

Science 315, 1380 (2007)

J. Phys. Soc. Jpn 82, 011005 (2011)

Nature 430, 1001 (2004)

Science 315, 1380 (2007)

J. Phys. Soc. Jpn 82, 011005 (2011)

12 nm

Nature 430, 1001 (2004)

Science 315, 1380 (2007)

J. Phys. Soc. Jpn 82, 011005 (2011)
Electronically Inequivalent Oxygen-sites within CuO₂ Unit Cell

Science 315, 1380 (2007)

J. Phys. Soc. Jpn 82, 011005 (2011)

Complex / Repeatable Patterns

 $Ca_{1.88}Na_{0.12}CuO_2Cl_2$

 $Bi_{2.2}Sr_{1.8}$ (Ca,Dy)Cu₂O_y

150 mV, 4.2 K

Science 315, 1380 (2007)

Nature **466**, 374 (2010)

J. Phys. Soc. Jpn 82, 011005 (2011)

UBC Breakthrough: Comin *et al arXiv* 1402.5415

UBC Breakthrough: Comin *et al arXiv* 1402.5415

Unidirectional *d*-Form Factor DW

Science 315, 1380 (2007)

 $Bi_2Sr_2CaCu_2O_{8+\delta}$

 $Ca_{2-x}Na_{x}CuO_{2}Cl_{2}$

 $\lambda = 2\pi/Q$

PNAS 111, E3026 (2014)

Sublattice Phase-resolved d-Symmetry Form Factor

$S': (O_x(r) + O_y(r))/2$

 $O_{x}(\mathbf{r}) = R(\mathbf{r})\delta(\mathbf{r} - \mathbf{r}_{O_{x}})$

 $O_{v}(\mathbf{r}) \equiv R(\mathbf{r})\delta(\mathbf{r}-\mathbf{r}_{O_{v}})$

PNAS 111, E3026 (2014)

Predominant d-Symmetry Form Factor

PNAS 111, E3026 (2014)

d-SYMMETRY ELECTRONIC CRYSTAL / Cu-BASED HTS

Power Efficiency/Capacity/Stability

Efficient Rotating Machines

Ultra-High Magnetic Fields

Power Bottlenecks

Information Technology

Medical

Accommodate Renewable Power

Next Generation HEP

Transport