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Two models in probability theory

In this talk I will discuss two areas of probability theory:

Random walks. Introduced early 1900s.
The first generation of problems have mainly been solved.
For the second generation of problems, from the 1980s, some
are still open (i.e. unsolved).

Percolation. Introduced in late 1950s.
In spite of 60+ years of work, some basic problems are still
unsolved.



Random walks

The basic idea is of a particle moving ‘at random’/ in space. It
starts at 0, and each time step (second) we toss a fair coin. If the
coin is heads then the particle moves up by 1 unit, if the coin is
tails then it moves down one.







Normal distribution
After a large number of steps the probabilities are close to the
Normal distribution (‘bell curve’):
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RW after a large number of steps

Since heads and tails are equally likely the average value
(mean) is zero.

Central Limit Theorem (de Moivre 1738, Laplace, 1812)
Let Xn be the position of the random particle after n steps. Then
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It follows than after n steps the random walk is very unlikely to
be be less than �3

p
n or greater than 3

p
n.

The RW is unlikely to be exactly zero: for large n

P(X2n = 0) � 1p
�n

:



Brownian motion

If we rescale the RW so that it takes very small jumps very
frequently, then we get ‘Brownian motion’:



Brownian motion in 2 or more dimensions
The previous slides showed a random walk in one dimension
(d = 1): the particle could only move up or down.
But one can also have a RW which moves in two dimensions:
i.e. each step in goes N,S,E or W each with probability 1

4
Three dimensional random walk moves in one of 6 directions
(up, down, N,S,E,W) each time step. Rescaling gives Brownian
motion in 2, 3 dimensions.

Random walk in d dimensions:

Xn = (X1;n;X2;n; : : : ;Xd;n):

At each time step, choose an index i at random from f1; : : : ; dg
and then move X by taking

Xi;n+1 = Xi;n � 1:



Early work on Brownian motion

Louis Bachelier (1870-1946): 1900 thesis ‘Theorie de la
Speculation’. Used Brownian motion to model stock and option
prices.

Albert Einstein (1879-1955): physics papers in 1905, 1906.



Brown and Brownian motion

The botanist Robert Brown (1827) observed through the
microscope random motion in minute particles suspended in
water. Einstein showed this was due to random collisions by the
surrounding (much smaller) water molecules.

He was able to use this to calculate how rapidly a dissolved
substance (e.g. sugar) will spread out in water.

He also showed that the probabilities for the random
walk/Brownian motion obey the mathematical equation for heat
flow, the ‘heat equation’:
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= r2u:



Bachelier’s work

Bachelier used random walks and Brownian motion to model
stock prices. He then used this to calculate the value of options.

Though his work was not neglected, it did not receive the
recognition it deserved.

Brownian motion as a model for stock prices was used by
Fisher Black (1938–1995) and Myron Scholes (1941–) to
obtain their option pricing formula (1973).

(Scholes received the Nobel Memorial prize in Economics for
this work in 1997.)



Open problems for random walks

Suppose two random walks are started a distance 1 apart, and
allowed to run for a large number n steps. What is the
probability that the paths they trace out don’t cross? If this is
roughly

1
n�

then we say the ‘self intersection exponent is’ � . In 2
dimensions this has been proved to be 5/8. (Lawler, Schramm,
Werner).

Not known in 3 dimensions – simulations give about 0.29.

If d � 5 then paths of two independent random walks will with
positive probability fail to intersect, so � = 0.



Two non-intersecting random walks



Fractals and dimension
Brownian motion is ‘statistically self similar’ – if one looks at a
small part of the picture magnified, it will look similar to the
larger picture.

The French mathematician/physicist B. Mandelbrot introduced
the word ‘fractal’ to describe objects of this kind, and gave
examples (coastlines, clouds, trees) of fractal-like objects
arising in nature.

Fractal dimension. This extends our usual idea of dimension
to fractal type objects. If one needs N(r) small cubes/squares of
side r to cover an object, then it has dimension df if

N(r) � 1
rdf

as r ! 0:

Mandelbrot conjectured that the dimension of the ‘Brownian
coastline’ was 4=3 – proved by Lawler, Schramm and Werner.



Percolation

This model was introduced by Broadbent and Hammersley in
1957.
Broadbent was working on gas masks for use in coal mines.
Hammersley said:

“These masks contained porous carbon into which the gas could
penetrate. The pores constituted a random network of tiny
interconnecting tunnels, along which the gas could move. If the
pores were richly enough connected, the gas could permeate the
carbon, but if not then the gas would not get beyond the surface.
So there was a critical point, above which the mask worked
well, and below which it was ineffective.”



One starts with a
complete network
consisting of vertices
(nodes) and bonds.

Choose a probability p
and keep each bond with
probability p. (Here
p = 0:4).



Universality

This is not a very realistic model of the gas mask. In fact it is
what is called a ‘toy model’ – a greatly simplified model which
aims to capture some key features of the real life situation.

It has been found that even toy models of this kind (in statistical
physics) are very hard to solve. In fact they include unsolved
problems as hard and as important as any in mathematics.

Physicists believe many of these toy models have the property
of ‘universality’ – if one can work out the behaviour of the toy
model then the real life situation behaves in the same way.



p = 0.2, largest cluster marked

Percolation clusters – p. 1/1



p = 0.4

Percolation clusters – p. 1/1



p = 0.5

Percolation clusters – p. 1/1



p = 0.6

Percolation clusters – p. 1/1



p = 0.8

Percolation clusters – p. 1/1



Phase transition
One can consider percolation on other lattices, and in any
number of dimensions.

The collections of nodes connected by bonds are called
‘clusters’. Percolation has a ‘phase transition’:
(1) If p, the probability a bond is retained, is small, then all the
clusters are finite, and nearly all are small. (The ‘subcritical
regime’).
(2) If p is large then there is (with probability one) a giant
cluster denoted C1 which extends infinitely far in all directions.
(The ‘supercritical regime’).

This regime change occurs sharply at a critical probability
denoted pc.
Set

�(p) = Pp(0 is in the infinite cluster C1):



Main open problem for percolation

How does �(p) behave at p = pc?



Main open problem for percolation

Are there infinite clusters at the critical point, i.e. if p = pc? It
is believed that the answer is ‘No’ in all dimensions.

Proved for d = 2 by Kesten (1980).

Proved for d � 19 by Hara and Slade (1990). (Extended
recently to d � 12 or so.)

The Hara-Slade approach cannot work if d � 6, and no known
methods can touch this problem in 3 dimensions.

Scaling exponents. It is further conjectured that for p > pc

�(p) � (p� pc)
�; as p ! pc,

and the exponent � is believed to be ‘universal’, i.e. depending
only on the dimension d.



Disease contact networks

Percolation is also used in models of the spread of infectious
diseases.

The nodes are people, and one has bonds between two people if
they have contact. (‘Contact networks’). If the disease has
probability p of being transmitted then the clusters in the new
network represent the people who will be infected if one person
gets the disease.

If the percolation is subcritical one infected person only infects
a small number of people. If the percolation is supercritical then
one person will infect a large number of people.

Contact networks are very different from the Euclidean lattice
shown above – they have the ‘small world’ property.



Random walks and percolation

Percolation provides models for disordered materials. Since
Einstein we have known that there is a connection between
random walks and heat conduction. So, random walks on
percolation clusters should tell us about heat conduction in
disordered media.

This problem was suggested by the French physicist
Pierre-Gilles de Gennes (1932-2007) in a 1976 article in ‘La
Recherche’. He called it the problem of the ‘ant in the
labyrinth’.





The ant in the labyrinth

The random walked is the ‘ant’, and each time step it chooses a
direction at random from those available to it.



First problem – slow down
Does removing bonds ‘slow down’ the random walk? In the
Euclidean lattice (i.e. p = 1) one has, writing Xn for the
position of the r.w. at time n,

E(Xn � X0)
2 = h(Xn � X0)

2i = n:

For the r.w. on the percolation cluster, X0n does one have

E(X0n � X00)
2 = h(X0n � X00)

2i � n?

One can also ask about non-random removal of bonds – i.e.
Question. Starting with the Euclidean lattice, if one removes
some bonds, does one have

E(X0n � X00)
2 � n?

Answer. NO. One can remove bonds so as to ‘speed up’ the
random walk. (But not by very much.)



RW on lattice with bonds removed.

If a random walk is started at the top of the tree, it moves
downwards with roughly linear speed, since at each time step it
has probability 2

3 of going down, and 1
3 of going up.

There is not ‘enough room’ in the two dimensional lattice to put
in a full binary tree B. But one can put in small bits of B so that
one has, for certain n,

E(X0n � X00)
2 � n(ln n):

construction, so is unlikely to occur for percolation.



RW on percolation clusters
There are three regimes.
Subcritical, i.e. p < pc. There are only finite clusters, so there
is not much to say about the random walk.

p = 0.2, largest cluster marked

Percolation clusters – p. 1/1



Supercritical, i.e. p > pc
In this case it is known that there is an unique infinite cluster
C1.
If X is started in C1 then X converges to Brownian motion with
diffusivity D(p), where

0 < D(p) � D(1):

The SRW X also behaves like the SRW on Zd in many other
ways also. In particular, the return probabilities satisfy

p2n = P(X2n = X0) � c
nd=2 as n !1:

So what is called the spectral dimension of C1, given by

ds(C1) = lim
n!1

2 ln p2n

ln(1=n)
; is equal to d:



Only one supercritical regime for heat
If p is close to 1, then C1 looks like Zd with small defects.
If p is close to pc then (e.g. in 3 dimensions) C1 looks like a 3
dimensional net: lots of irregular strands and ‘dangling ends’,
but also lots of connections.

Although the geometry of the cluster seems very different in the
two cases, there is no (known) qualitative difference between
them from the point of view of heat conduction or the random
walk.

It is possible that for more delicate equations, such as the
Schrodinger equation, there is an additional phase transition,
i.e. there exists

pc < pq < 1

with different behaviours for pc < p < pq and pq < p < 1.



Critical percolation
Asking about this means asking either about percolation with
p = pc, or as p ! pc.
Conjectured situation at pc. All clusters are finite, but any
large box side n will contain finite clusters with diameter of
order n.



Incipient infinite cluster

This is an infinite cluster eC which looks locally like the large
finite clusters which (are believed to) occur at pc.
Constructed when d = 2 (Kesten) and for large d (van Hofstad,
Jarai).

Alexander–Orbach Conjecture (1983). For all d � 2,

ds(eCd) = lim
n!1

ln p2n

ln(1=n)
=

4
3
:

(Here as before p2n is the return probability of the RW after 2n
steps.)
This was a bold conjecture, but was at least partially supported
by numerical evidence in 1983.



AO conjecture
Why did they think this could be independent of dimension?

A general idea in statistical physics is of ‘upper critical
dimension’ dc: for d > dc global phenomena cease to be
dimension dependent.

For percolation dc = 6. At pc(d) there is just enough probability
of an edge being open to allow large scale connected structures
to exist. However, these structures are ‘thin’ and when d > dc

they don’t self-intersect except locally – hence they don’t ‘see’
the true dimension of the space they are in. In fact, they are
close to being ‘fractal trees’, and so percolation in high
dimensions should be similar to percolation on the binary tree.

It was known that for the IIC on the binary tree one had
ds = 4=3. The bold part of the AO conjecture was to guess this
also held for 2 � d � 5.



Kozma and Nachmias, 2009 (improving earlier work by MB,
Kumagai, Jarai, Slade on a more complicated percolation
model): the AO conjecure is true if d � 19.

It is not now expected to be true for d = 2; 3; 4; 5.

General situation for models in statistical physics.
(1) Trees are easy, and solutions can often be written down
explicitly,
(2) Next easiest is Euclidean space in very high dimensions,
which approximates the tree case,
(3) Next easiest is two dimensions, due to special properties and
link with complex analysis,
(4) Hardest is the space we live in, 3 (and 4) dimensions.



Two dimensions

Around 2000, Lawler, Schramm and Werner introduced a
family of stochastic processes, now called Schramm-Loewner

evolution or SLE�, which describe random interfaces in two
dimensions.
The parameter � lies between 0 and 16.

For example, the ‘Brownian coastline’ is an SLE process with
� = 8=3.

The interfaces of percolation clusters have been proved (by
Smirnov) to be SLE curves (with � = 6) for one particular
percolation model – site percolation on the triangular lattice.





Using the SLE limit, many exponents have been calculated for
the IIC for this percolation process. For example, the dimension
of the cluster is 91/48. and the dimension of the boundary of the
‘holes’ is 7/4.

I do not know of any generally accepted conjecture on what the
‘spectral dimension’ ds should be.

To calculate ds one needs ‘electrical resistance’ properties of the
IIC, and these are harder to obtain than the geometric properties
which have been obtained from the SLE theory.

It is also likely that one needs to know the length of the shortest
path in the cluster across a box of side n – another quantity that
the SLE theory does not seem to give.


