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Optical dispersion, observed in rainbows and prisms, was already studied seriously by
Descartes and Newton. A satisfactory theory of dispersion, however, was not found
until two centuries later, as part of Lorentz’s elaboration of Maxwell’s
electrodynamics in the 1890s. Only two decades later this theory was called into
question again by Bohr’s quantum model of the atom. In the early 1920s the problem
of dispersion took center stage. The famous Umdeutung (reinterpretation) paper with
which Heisenberg ushered in the era of modern quantum mechanics grew directly out
of a quantum theory of dispersion proposed by Kramers, Bohr’s right-hand man at the
time. Drawing on work by Einstein and Ladenburg, Kramers was able to reconcile
Lorentz’s theory of dispersion with Bohr’s theory of the atom. With hindsight, it was
only a small step from Kramers’ theory to Heisenberg’s matrix mechanics.
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Heisenberg’s first paper (July 1925) on what became matrix mechanics is 

notoriously hard to follow

 

“Über die quantentheoretische 

 

Umdeutung

 

 kinematischer und mechanischer 
Beziehungen.” [On the quantum-theoretical 

 

reinterpretation

 

 of kinematical 
and mechanical relations] 

 

Zeitschrift für Physik

 

 33 (1925): 879–893. English 
translation in: B. L. van der Waerden (ed.), 

 

Sources of Quantum Mechanics. 

 

New York: Dover, 1968.

Steven Weinberg (

 

Dreams of a Final Theory

 

, Ch. IV): “If the reader is mystified 
at what Heisenberg was doing, he or she is not alone. I have tried several times 
to read the paper that Heisenberg wrote on returning from Helgoland, and, 
although I think I understand quantum mechanics, I have never understood 
Heisenberg’s motivations for the mathematical steps in his paper.”
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To understand the 

 

Umdeutung

 

 paper we first need to understand a paper by 

Kramers and Heisenberg on dispersion theory (January 1925): 

 

“Über die Streuung von Strahlung durch Atome.” [On the Scattering of 
Radiation by Atoms] 

 

Zeitschrift für Physik

 

 31 (1925): 681–707. Also reprinted 
in Van der Waerden.

Max Dresden (student and biographer of Kramers): Kramers-Heisenberg paper is 
“the direct, immediate, and exclusive precursor to the Heisenberg paper on 
matrix mechanics.” 

Martin J. Klein (senior historian of modern physics): “this work was the 
immediate predecessor of Heisenberg’s new quantum mechanics.”
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Unfortunately, the Kramers-Heisenberg paper is 

 

also

 

 hard to follow. 

Despite:

 

Jagdish Mehra and Helmut Rechenberg (six-volume history of quantum physics): 
“the authors … wrote in such a way that every physicist, theoretician or 
experimentalist, interested in the subject could understand … the Kramers-
Heisenberg paper stood out for its clarity and straightforwardness, in which the 
results were obtained from a few intelligible assumptions.”

 

Clearer earlier paper (October 1924) by Van Vleck covering similar terrain:

 

 

J. H. Van Vleck, “The absorption of radiation by multiply periodic orbits, and its 
relation to the correspondence principle and the Rayeigh-Jeans law.” Part I. 
“Some extensions of the correspondence principle.” Part II. “Calculation of 
absorption by multiply periodic orbits.” 

 

Physical Review

 

 24 (1924): 330–346, 
347–365. Part One reprinted in Van der Waerden.
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Anthony Duncan and Michel Janssen, 
“On the verge of Umdeutung in Minnesota: 
Van Vleck and the correspondence principle.”

Physics building, University of Minnesota, 1936
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Van the Man: John Hasbrouck Van Vleck (1899–1980).

• Born in Middletown, Connecticut

• Undergrad Madison

• 1922: Ph.D. Harvard

• 1923–1928: Minnesota

• 1928–1934: Madison

• 1934–1969: Harvard

• 1977: Shares Nobel Prize with former graduate 
student Phil Anderson and Sir Nevill Mott “for 
their fundamental theoretical investigations of the 
electronic structure of magnetic and disordered 
systems.” Van Vleck known as the “father of modern 
magnetism.”

Cf. Fred Fellows, J. H. Van Vleck: The Early Life and 

Work of a Mathematical Physicist. Ph.D. Thesis, 
University of Minnesota, 1985.Van Vleck, 

1924–1925
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Van Vleck commenting on his 1924 paper:

 

Van Vleck in 1963 in an interview with Thomas S. Kuhn (1922–1996) for the 

 

Archive for 

the History of Quantum Physics

 

 (AHQP) project:*

 

Kuhn:

 

 “You said something to me about that paper once before […] you thought if you 
had been a little bit more perceptive, you might have taken off from that paper to do 
what Heisenberg did.”

 

Van Vleck:

 

 “That’s true. Perhaps I should say 

 

considerably

 

 more perceptive …”

*Kuhn, author of 

 

The Structure of Scientific Revolutions

 

 (1962) and director of the 
AHQP project (1961–1964), did his Ph.D. in physics with Van Vleck right after WWII.

Autobiographical statement for the AHQP:

“In the two or three years after my doctorate … my most significant paper was one on 
the correspondence principle for absorption … It was somewhat related to 
considerations based on the correspondence principle that led Heisenberg to the 
discovery of quantum mechanics, but I did not have sufficient insight for this.”
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Task of conceptual history of QM: 

 

tracing the transition from

 

 

 

representing states by

 

 

points in classical phase space 

 

to

 

 

 

representing states by

 

 vectors in Hilbert space.

• Old quantum theory 
(Bohr, Sommerfeld)
Retain classical phase space but only allow certain orbits, selected by quantum 
condition  (damage control).

• Dispersion theory / Matrix mechanics 
(Ladenburg, Reiche, Kramers, Van Vleck, Born, Heisenberg, Born, Jordan, Pauli)
- From states (quantized orbits in phase space) to transitions between states (no 

representation of states themselves). 
- From numbers (functions on phase space) to matrices connected with transitions.
- From Bohr-Sommerfeld quantum condition in phase space  to 

commutation relation  for transition matrices.

• Wave mechanics (De Broglie, Schrödinger, Born): states represented by wave 
functions generating transition probabilities

• Mathematical clean-up (…, Dirac, Wiener, Von Neumann): states represented by 
vectors in Hilbert space

p qd!! nh=

p qd!! nh=
q p"# $ ih=

My focus
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A closer look at second stage:

Dispersion theory / Matrix mechanics

-

 

From

 

 states 

 

(quantized orbits in phase space)

 

 

 

to

 

 transitions between states

-

 

From

 

 numbers (

 

functions on phase space

 

) 

 

to

 

 matrices 

 

connected with transitions

• These steps were already taken in dispersion theory.
• Dispersion theory vs. matrix mechanics:

 

-

 

Dispersion theory: problems are first solved classically and then the solution is 
‘translated’ (through inspired guesswork guided by Bohr’s correspondence 
principle) into an expression in terms of quantum transitions.

 

-

 

Matrix mechanics: theory formulated and problems solved in terms of quantum 
transitions from the get-go.

 

-

 

From

 

 Bohr-Sommerfeld quantum condition in phase space 

 

to

 

 commutation 

relation for transition matrices.

 

In two steps:
• Heisenberg: Bohr-Sommerfeld quantum condition (expressed in terms of orbits) 

%

"

 

 

 

Thomas-Kuhn(-Reiche) sum rule

 

 (expressed in terms of transition matrices) 
[by-product of dispersion theory; found independently by Van Vleck]

• Born-Jordan: from 

 

sum rule

 

 to

%

%

 

commutator

 

.
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Dispersion theory as the bridge between the old quantum theory and matrix 

mechanics

Important for breakthrough to matrix mechanics:

 

•

 

Bohr’s frequency condition

 

, 

•

 

Einstein’s quantum theory of radiation

 

 (A & B coefficients)

•

 

Bohr’s correspondence principle

 

. In the limit of high quantum numbers:

 

-

 

radiation frequencies 

%

"

 

 orbital frequencies (Bohr)
- amplitudes " Einstein’s A & B coefficients (Ladenburg)
- derivatives " difference quotients (Kramers, Van Vleck, Born)

• Classical mechanics: action-angle variables, canonical perturbation theory 
(Epstein, Kramers, Van Vleck, Born)

• Dispersion theory (Ladenburg, Reiche, Bohr, Kramers, Van Vleck)

h#
n m" E

n
E

m
–=
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Dispersion theory as the bridge between the old quantum theory and matrix 

mechanics

Unimportant for breakthrough to matrix mechanics:

• Helium [produced Kuhnian crisis for the old quantum theory in 1923–1925]

• Zeeman effect [likewise produced crisis for old quantum theory]

• Light quanta [widely accepted after Compton (1923) but physicists 
continue to talk about light as a wave phenomenon]

• Compton effect [pace Roger Stuewer, The Compton Effect: A Turning Point 

in Physics (1975)]

• Bohr-Kramers-Slater (BKS) theory [except for ‘virtual oscillators,’ but 
those actually originated in dispersion theory]

• Hamilton-Jacobi theory
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From dispersion theory to matrix mechanics

Dispersion has a venerable history (think of Descartes’ rainbow and Newton’s 
prism) but the first reasonable dispersion theory dates from the late-19th century.
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The Lorentz-Drude dispersion theory (1890–1900): the index of refraction is related to 
polarization of groups of charged harmonic oscillators (electrons) in matter.

Radiation (electric field , angular frequency ) hits 
harmonically-bound electron (mass , charge , 
characteristic angular frequency ). 

Component , coherent with 
incident wave and superimposed on pre-existing 
oscillations, is responsible for (normal) dispersion 
(  far from ). Use F = ma, to determine amplitude A 
(ignoring radiation damping):

 " 

Dipole moment

H.  A.  Lorentz (1853–1928)

E $
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0
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The Lorentz-Drude dispersion theory (1890–1900)

 

Dipole moment for one dispersion electron

For groups of  dispersion electrons per unit volume with characteristic frequencies , 
the polarization due to field with frequency  is [

 

Lorentz-Drude dispersion formula

 

]:

Note:

• Resonance poles at characteristic frequencies .

• The number  of dispersion electrons per unit volume is a fraction  of the number 
 of atoms per unit volume.  is called the 

 

oscillator strength

 

.

The Lorentz-Drude formula is in tolerable agreement with experiment if the resonance 
poles are identified with frequencies of absorption lines.
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Two centuries after Newton, the Lorentz-Drude theory finally gave a reasonable account 
of dispersion. Only two decades later, the picture of matter underlying this theory was 
rendered obsolete by the Bohr-Sommerfeld theory.

Quantum condition (action J is some integer multiple n of Planck’s constant h) picks out 
allowed orbits in phase space (spanned by coordinates q and momenta p).

Arnold Sommerfeld
(1868–1951)

Niels Bohr
(1885–1962)

Bohr-Sommerfeld
condition

J p qd! nh= =
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The Sommerfeld-Debye(-Davisson) dispersion theory (1915)

In 1915, Arnold Sommerfeld (1868–1951) and Peter Debye (1884–1966) adapt Lorentz-
Drude dispersion theory to Bohr’s new theory. 

oscillating electrons "%electrons orbiting the nucleus. 

Otherwise, same story as before. Hence, Sommerfeld–Debye theory gives formula of the 
same form as the Lorentz-Drude theory. Polarization for groups of  Bohr atoms per unit 
volume with electrons in orbits with quantum number i and orbital frequency :

Odd feature of Sommerfeld-Debye theory: large accelerations to keep electrons in Bohr 
orbits do not give rise to radiation, but small deviations from such orbits do!

The big problem: orbital frequencies radiation frequencies "%resonance poles at the 
wrong frequencies! 

Erwin Schrödinger to H. A. Lorentz, June 6, 1926: the discrepancy between radiation 
frequency and orbital frequency “seems to me … to be something so monstrous, that I 
should like to characterize the excitation of light in this way as really almost  
inconceivable.”

N
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The Sommerfeld-Debye(-Davisson) dispersion theory (1915)

Bohr’s criticism (in almost published paper in 1916): “… experiments … show 
that the dispersion … can be represented with a high degree of approximation 
by [the Lorentz-Drude formula] in which the characteristic frequencies … 
correspond with transitions between the normal states of the atom … we must 
consequently assume that the dispersion … depends on the same mechanism as 
the transition between different stationary states, and that it cannot be 
calculated by application of ordinary electrodynamics from the configuration 
and motions of the electrons in these states”

and turning it around (dispersion same mechanism as transition "%transition 
same mechanism as dispersion) in what turns out to be a prescient comment: 
“… if the above view is correct … we must … assume that this mechanism [of 
transition between states] shows a close analogy to an ordinary electrodynamic 
vibrator.”
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Ingredients needed to get out of impasse reached with Sommerfeld-Debye 

theory:

(1)Einstein’s A and B coefficients (Ladenburg)

(2)Bohr’s correspondence principle (Kramers, Van Vleck, Born)

(3)Canonical perturbation theory in action-angle variables (Epstein, Kramers, 
Van Vleck, Born)
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First ingredient: Einstein’s A & B coefficients, transition probabilities

Equilibrium condition gives relation between  and 

p = 
*m – *n

c
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m
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cn

m m

n

p = 
*m – *n

c

m

n

m

n

recoil light 

h#
m n" E

m
E

n
–=

‘negative 

quantum
Pr(spontaneous emission) A

m n"(

Pr(stimulated emission) B
m n" +(

Pr(absorption) B
n m" +(

absorption’

+: density
of radiation

Einstein’s
quantum
theory of
radiation
(1916/1917)

A
m n" B

m n"



From Dispersion Theory to Matrix Mechanics

20 Vancouver, January 10, 2007

Ladenburg introducing Einstein radiation theory into dispersion theory in 1921.

Breslau physicists Rudolf Ladenburg (1889–1953) and Fritz Reiche (1883–1969).

Ladenburg

ReicheOtto Hahn Max Born
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Ladenburg dispersion theory (1921).

(0) Just take for granted that the poles must be at the radiation frequencies. 
(1) Replace oscillator strengths  (number of dispersion electrons per atom, measured 

to be as low as 1 in 50,000) by transition probabilities. To find relation between  
and A & B coefficients:

• Calculate energy absorption rate of classical oscillator à la Lorentz-Drude, 
resonating at absorption frequencies

• Calculate energy absorption rate of quantum atom à la Bohr-Einstein with 
transitions between discrete levels corresponding to absorption frequencies. 

• Set the two results equal to one another. 

Result: Ladenburg dispersion formula for group of Bohr atoms in ground state r:

Polarization: 

with . Measurements of line widths give decay times give transition 
probabilities. Formula in good agreement with experiment; still holds today.

Problem: Ladenburg’s derivation is totally unconvincing.
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Ladenburg dispersion theory (1921).

Bohr on Ladenburg’s dispersion theory in early 1923: “when the atom is illuminated … 
the total reaction … is the same as that of a number of harmonic oscillators in the 
classical theory, the frequencies of which are equal to those of the radiation emitted by 
the atom in the possible processes of transition, and the relative number of which is 
determined by the probability of occurrence of such processes … A train of thought of 
this kind was first followed out closely in a work by Ladenburg.”

Together with Reiche, Ladenburg writes another paper on his dispersion theory (1923) 

Conclusion: “the end result of a process in which a wave of frequency  acts upon the 
atom should not be seen as fundamentally different from the effect that such a wave 
exerts on classical oscillators.”

Feynman lectures (1964, Vol. 1, Sec. 31-4): “we will assume that the atoms are little 
oscillators, that is that the electrons are fastened elastically to the atoms … You may 
think that this is a funny model of an atom if you have heard about electrons whirling 
around in orbits. But that is just an oversimplified picture. The correct picture of an 
atom, which is given by the theory of wave mechanics, says that, so far as problems 
involving light are concerned, the electrons behave as though they were held by 
springs”

#
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Ladenburg-Reiche dispersion theory (1923).

Ladenburg and Reiche introduce the notion of ‘substitute oscillators’ [Ersatzoszillatoren], 
crediting Bohr with the basic idea.

The ‘substitute oscillators’ of the 1923 Ladenburg-Reiche dispersion theory became 
popular as the ‘virtual oscillators’ of the 1924 Bohr-Kramers-Slater (BKS) theory.

Slater to Van Vleck, July 27, 1924, on the ship back from Copenhagen to the US

PS We passed Nantucket 
light in the middle of the 
letter.
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The Bohr-Kramers-Slater theory (1924) and virtual oscillators

Slater to Van Vleck, July 27, 1924

“Don’t remember just how 
much I told you about my 
stay in Copenhagen. The 
paper with Bohr and 
Kramers [proposing BKS] 
was got out of the way the 
first six weeks or so—
written entirely by Bohr and 
Kramers. That was very 
nearly the only paper that 
came from the institute at all 
the time I was there; there 
seemed to be very little 
doing. Bohr does very little 
and is chronically 
overworked by it.”
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The Bohr-Kramers-Slater theory (1924) and virtual oscillators

Slater (in follow-up paper in Physical Review in 1925) on BKS: “[i] the stationary state is 
the time during which the atom is radiating or absorbing …. [ii] The radiation … is 
further not merely of the particular frequency connected with the transition which the 
atom is going to make; it includes all the frequencies connected with all the transitions 
which the atom could make … [iii] Although the atom is radiating or absorbing during 
the stationary states, its own energy does not vary, but changes only discontinuously at 
transitions … It is quite obvious that the mechanism becomes possible only by 
discarding conservation.” 

The violation of energy conservation (for which BKS is infamous) was experimentially 
refuted within a year (Bothe-Geiger, Compton-Simon experiments) and is unimportant for 
the genesis of matrix mechanics.

The one important idea of BKS comes from dispersion theory: Dual representation 

of atoms: 

(1) Set of quantized orbits of Bohr-Sommerfeld theory; 

(2) “Orchestra of virtual oscillators” associated with transitions between orbits, 
emitting and absorbing radiation while electron stays in the same orbit.

*Term by Alfred Landé (1888–1976)
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The BKS explanation of the Compton effect:Doppler shift of X-ray waves

• For Doppler effect on the X-rays to come out right, the virtual orchestra must have the 
right velocity .

• For momentum conservation (averaged over many electrons interacting with the X-
rays), the electron must have the right velocity .

• Problem: ! BKS: “That in this case the virtual oscillator moves 
with a velocity different from that of the illuminated electrons themselves is certainly a 
feature strikingly unfamiliar to the classical conceptions.”

primary
X-rays

45o

90o
135o

Measured wave-length increases 
going from 0o to 180o
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of the 
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The Kramers dispersion formula (1924)

Next step after Ladenburg-Reiche but before BKS: Bohr’s first lieutenant, H. A. Kramers
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Correspondence principle requires dispersion formula with 
two terms:

 

Result:

 

 

 

Kramers dispersion formula

 

 for group of Bohr 
atoms in arbitrary state 

 

r

 

:

(sums over 

 

s

 

 and 

 

t

 

 refer to states higher and lower than 

 

r

 

, 
respectively)

Kramers formula reduces to Ladenburg formula if r is the 
ground state (no second term). 

The second (‘negative dispersion’) term is verified 
experimentally in a series of investigations by Ladenburg 
and his collaborators published between 1926 and 1934.

Hans Kramers (1894–1952)
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The Kramers dispersion formula (1924)

 

The Kramers dispersion formula, like Ladenburg’s, is interpreted in terms of 

 

substitute 

 

or 

 

virtual oscillators: 

Van Vleck in his 1924 paper: the Kramers formula “assumes the dispersion to be due not 
to the actual orbits but to Slater’s [in fact: Ladenburg and Reiche’s] ‘virtual’ or ‘ghost’ 
oscillators having the spectroscopic rather than orbital frequencies … The introduction 
of these virtual resonators is, to be sure, in some ways very artificial, but is nevertheless 
apparently the most satisfactory way of combining the elements of truth in both the 
classical and quantum theories. In particular this avoids the otherwise almost 
insuperable difficulty that it is the spectroscopic rather than the orbital frequencies 
[which give the positions of the poles in the dispersion formula].”

Kramers already had his dispersion formula around Christmas 1923 when Slater arrived in 
Copenhagen; only published two short notes on it in 1924 (in Nature); his first complete 
treatment is the Kramers-Heisenberg paper, written over the 1924 Christmas break. 
Meanwhile Born and Van Vleck had already published a detailed derivation.

Slater to Van Vleck, July 27, 1924: “Kramers hasn’t got much done, either. You perhaps 
noticed his letter to Nature on dispersion; the formulas & that he had before I came [and 
thus before BKS] … and except for that he hasn’t done anything.”
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The Kramers dispersion formula (1924)

Van Vleck to Kramers, September 22, 1924: “[my] article was ready to send to 
the printer about the time we received the copy of Nature containing your 
dispersion formula. In your note I did not understand you to state how 
generally you had verified [that the quantum dispersion formula merges with 
the classical one for high quantum numbers], and it immediately occurred to 
me that this question could easily be investigated by the perturbation theory 
method I had previously developed in connection with what I call the 
“correspondence principle for absorption.” I therefore inserted two sections … 
showing that your formula merged into the classical one”

Kramers to Van Vleck, November 11, 1924: “Your note on absorption made me 
much pleasure and I think it very just of Providence that you got it published 
before hearing of our work.”
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Van Vleck’s derivation of the Kramers dispersion formula (1924)

Classical part: perturbation theory in action-angle variables.

Action-angle variables. In general coordinates , Hamilton’s equations are:

,       .

Given the Hamiltonian of a system, one can often find special coordinates  
(J: action; w: angle) such that Hamilton’s equations take on the simple form:

,     

 gives the characteristic frequencies of the system;  is subject to the 
Bohr-Sommerfeld quantization condition: .

Consider some periodic system (example: charged harmonic oscillator) perturbed by a 
weak electromagnetic field. Hamiltonian:  with . 
Calculate the coherent part of the displacement  caused by the perturbation (the part 
responsible for dispersion).
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Van Vleck’s derivation of the Kramers dispersion formula (1924)

Classical part (continued): Calculate the coherent part of the displacement  caused by 
the perturbation 

1. Assume that the unperturbed system can be solved in action-angle variables:

Fourier expansion:        [recall: ]

2. Use Hamilton’s equations in action-angle variables (for ) to calculate  and : 

, .

3. Insert  and  into  and focus on coherent terms 
(i.e., terms with factor ).

Result: .

Reduces to simple expression for charged harmonic oscillator found earlier:
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Van Vleck’s derivation of the Kramers dispersion formula (1924)

Quantum part: translate classical formula into quantum formula using the 
correspondence principle.

(i) derivatives """" difference quotients:  

- Called ‘Born correspondence rule’ but found earlier by both Kramers and Van Vleck.

- Earliest example: Bohr frequency condition: 

(ii) amplitudes """" transition probabilities: 

(Einstein coefficients introduced by Ladenburg)

(iii) orbital frequencies """" transition frequencies:  (  in general) """" .

Basic idea: Formulae are constructed so that they merge with their classical counterparts 
for large quantum numbers. Take the leap of faith that the formulae constructed this way 
will hold for all quantum numbers!
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Van Vleck’s derivation of the Kramers dispersion formula (1924)

Quantum part (continued): 

(i) derivatives """" difference quotients:

(ii) amplitudes """" transition probabilities:

(iii) orbital frequencies """" transition frequencies

Classical formula: .

Quantum formula (special case of charged harmonic oscillator):

Quantum formula (general case: charged non-degenerate multiply-periodic system):
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From Kramers dispersion formula to Heisenberg’s Umdeutung

Kramers dispersion formula

only depends on transition quantities such as  and .

Heisenberg’s Umdeutung [reinterpretation]. Get rid of orbits, focus on transitions.

1. Apply correspondence principle* to the starting point of the classical calculation 
(Fourier expansion of x)** rather than to its end result (classical dispersion formula). 

*Three replacements: (i) derivatives "%difference quotients; (ii) amplitudes " 
transition probabilities; (iii) orbital frequencies " transition frequencies.

**  " array of numbers involving  and 

2. Replace position x in classical mechanics by array of numbers representing position in 
the new theory.

3. Apply correspondence principle to Bohr-Sommerfeld condition to find new quantum 
condition. Result: Thomas-Kuhn(-Reiche) sum rule (high-frequency limit of the 
Kramers dispersion formula). Born and Jordan subsequently extracted the familiar 
position-momentum commutation relations, , from the sum rule.
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From Kuhn’s AHQP interview with Heisenberg

Kuhn (talking about virtual oscillators in BKS but
those are just the substitute oscillators of Ladenburg 

and Reiche): “ … one transforms one’s idea of the 
atom [from a system of quantized orbits] into a 
collection of virtual oscillators that operate between 
states.” 

Heisenberg: “Yes, that was it … this idea of an atom 
being a collection of oscillators was in some way 
contrary to the idea of an electron moving around a 
nucleus. The obvious connection, the only possible 
connection, was that the Fourier components of this 
motion in some way corresponded, as Bohr said, to 
the oscillators. But certainly this paper [BKS] then 
prepared the way for this later idea that the assembly 
of oscillators is nothing but a matrix … In this way, 
you can say that matrix mechanics was already 
contained in this paper [BKS].”

Werner Heisenberg (1901–1976)
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Ernst Zimmer, Umsturz im Weltbild der Physik [The revolution in physics] (1934): 

Matrix mechanics as a theory about virtual oscillators 

“The state of an atom should no longer be described 
by the unobservable position and momentum of its 
electrons, but by the measurable frequencies and 
intensities of its spectral lines … Regardless of the 
nature of the real musicians who play the optical 
music of the atoms for us, Heisenberg imagines 
auxiliary musicians [Hilfsmusiker]: every one plays 
just one note at a certain volume. Every one of these 
musicians is represented by a mathematical 
expression, , which contains volume and 
frequency of the spectral line as in expressions in 
acoustics familiar to physicists. These auxiliary 
musicians are lined up in an orchestra [Kapelle] 
according to the initial and final states n and m of the 
transition under consideration. The mathematician 
calls such an arrangement a “matrix.””

Werner Heisenberg (1901–1976)
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From Kuhn’s AHQP interview with Heisenberg

Kuhn: “Using the Kuhn-Thomas [sic] rule is a stroke
of genius but one supposes that there were a lot of 
other intermediate attempts.”

Heisenberg: “No, I would say it was rather trivial for 
the following reasons: … I felt that perhaps only the 
difference of integral pdq between one quantum 
state and the next quantum state is an important 
thing [cf. the Bohr-Sommerfeld condition 

]. So I actually felt, “Well, perhaps I 
should write down integral pdq in one state minus 
integral pdq in the neighboring state.” Then I saw 
that if I write down this and try to translate it 

according to the scheme of the dispersion theory, 
then I get the Thomas-Kuhn sum rule. And that is 
the point. Then I thought, “Well, that is apparently 
… how it is done.”” [my emphasis]

Werner Heisenberg (1901–1976)
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Conclusions

At the End of the Rainbow: Optical Dispersion as the Bridge 

between the Old Quantum Theory and Matrix Mechanics

• Matrix mechanics grew directly out of dispersion theory; the Bohr-Kramers-
Slater theory was only a sideshow.

• The ‘virtual oscillators’ of BKS are just the ‘substitute oscillators’ of the 
dispersion theory of Ladenburg and Reiche.

• Dispersion theory could play such a central role in the transition from the old 
quantum theory to matrix mechanics because the discrepancy between 
orbital frequencies and radiation frequencies in the Bohr model manifested 
itself glaringly and unavoidably in this area.
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Take-home lesson: why did Van Vleck not do what Heisenberg did? He had the 

Kramers dispersion formula and the Thomas-Kuhn sum rule in the summer of 1924.

Van Vleck (biographical note accompanying his 
Nobel lecture): “I was fortunate in being offered 
an assistant professorship at the University of 
Minnesota [Fall 1923]… with purely graduate 
courses to teach. This was an unusual move by that 
institution, as at that time, posts with this type of 
teaching were usually reserved for older men, and 
recent Ph.D.’s were traditionally handicapped by 
heavy loads of undergraduate teaching which left 
little time to think about research.”

Q: What did Van Vleck do with all this research time?
A: He wrote a 300-page review article on the old 

quantum theory.

J. H. Van Vleck, Quantum Principles and Line 

Spectra. Bulletin of the National Research Council 
10, Part 4. Washington, D.C.: National Research 
Council, 1926.


