Bose-Einstein condensation; Quantum weirdness at the lowest temperature in the universe

JILA BEC Effort Eric Cornell, Carl Wieman 1990-Anderson, Ensher, Jin, Hall, Matthews, Myatt, Monroe, Claussen, Roberts, Cornish, Haljan, Donley, Thompson, Papp, Zirbel, Lewandowski, Harber, Coddington, Engels, McGuirk, Hodby,... \$\$ (NSF, ONR, NIST)

Part I. (1924-95) Making Bose-Einstein Condensation in a gas. BEC- a new form of matter predicted by Einstein in 1924 and first created in 1995 by our group.

Part II. An example of recent research with BEC.

temperature applet

Hot atoms

(more than 10 millionths of degree above abs. zero)

JILA BEC #2 (#1 at Smithsonian)

2 in.

Grad students Neil Claussen, Sarah Thompson, postdoc Liz Donley working on BEC experiment.

Getting atoms cold- step 1

aser

Pushing atoms with light

Why does sunlight heat you up, but laser light cools these atoms down?

laser cooling applet

Rb

optical molasses applet magnetic trapping applet evaporative cooling applet

Shadow "snapshot" of BEC

CCD array (TV camera)

Shadow images of clouds

Cold cloud

BEC! *JII ' 1995*

False color images of cloud

Hot atoms (microKelvins)

0

0

lowest level smallest width- set by uncertainty principle

Quantum physics on "human" size scale Control and Observe

Putting one condensate on top of another

about width of human hair

Fringes formed with two overlapping condensates- waves interfering.

(NIST Gaithersburg atom cooling group - courtesy S. Rolston) <u>Where BEC now (post June '95)?</u> New regime of physicsdirectly observe and manipulate quantum wave function

~ 200+ working experiments, many atoms (⁸⁷Rb, Na, Li, H, ⁸⁵Rb, He*,K, Cs countless theoristsmany thousands of papers

•Measured and predicted all sorts of novel properties.

•New ways to study, make and manipulate.

•Potential applications.

Stockholm Sweden, Dec. 10, 2001

Part II. Some recent research.

New material. Explore behavior, find occasional surprises, understand \Rightarrow new knowledge about laws of nature. \Rightarrow science advances.

Controlling self-interactions with ⁸⁵Rubidium BEC Roberts, Claussen, Donley, Thompson, CEW

repulsive (⁸⁷RB, Na), a > 0

attractive (Li, ⁸⁵Rb), a < 0(unstable if N large, $N_{max} \propto 1/a$)

in 85 Rb have experimental knob to adjust from large repulsive to nothing to large attractive!

3 billionths of a degree!

Magnetic field (like knob to control gravity) Plunging into the unknown-interaction attractive

Lots of theory, varied wildly. Little data

 Make BEC
 Switch to attractive.
 magnetic field where repulsive

What happens? (how do quantum wavefunctions die?

Explosion !!

like supernova:
collapse
explosion... (x 10⁻⁷³)
cold remnant *"Bosenova"*

What is the physics of explosion??? Why remnant remains?

progress...

1500 atom explosion T ~ 200 nK source of energy of Bosenova--chemical

A New Type of Chemistry--

changing magnetic field just right turns atoms in BEC into unusual Rb₂ "molecules".
10,000 times larger than normal molecules
new formation processes
busy studying

Why remnant remains?

2006 BEC finds way to collapse into multiple BEC "solitons"--robust

What is next?

(what is it good for?)

- I. Measure and understand properties. New area of quantum world to explore– turning BEC atoms into strange new sort of molecules
- II. Uses (??).... 5-20 years ("laser-like atoms")
 a. Ultrasensitive detectors (time, gravity, rotation).
 making a quantum computer(?).
 - b. Making tiny stuff--putting atoms *exactly* where want them

simulations shown (and more) www.colorado.edu/physics/2000/ see BEC section

interactive simulations for learning lots of other physics PHET.Colorado.edu