Nuclear Spins in Quantum Dots and Interacting 2DEGs

> Daniel Loss Department of Physics University of Basel

Collaborators:

Pascal Simon Bill Coish Daniel Klauser Special thanks to:

Boris Altshuler Leonid Glazman Leo Kouwenhoven Charlie Marcus Amir Yacoby

\$\$: Swiss NSF, Nanoscience Center Basel, EU, DARPA & ONR, ICORP-JST

Outline

A) Motivation

Spin decoherence in GaAs quantum dots Nuclear spins and hyperfine induced decoherence spin ¹/₂ in single dot and state narrowing in double dots

B) Ferromagnetic phase transition in nuclear spin system

- Kondo lattice model
- RKKY interaction
- Spin wave analysis and Curie temperature
- correlations in 2DEG

Spin-Qubits from Electrons

DL & DiVincenzo, PRA 57 (1998)

Spin 1/2 of electron = qubit

Quantum gates based on exchange interaction:

$$H(t) = J(t) S_L \cdot S_R$$

electrically controlled

Spin-Qubits from Electrons

DL & DiVincenzo, 1998

- qubit: Spin-1/2 g.s. of N (odd) electron system (Kramers doublet)
 'simplest' case: N=1, i.e. |0⟩ =↑, |1⟩ =↓
- single spin read out via spin-charge conversion → Elzerman *et al.*, '04 (T₁=0.1s)

$$H = \sum_{\langle ij \rangle} J_{ij}(t) \vec{S}_i \cdot \vec{S}_j + \sum_i (g_i \mu_B \vec{B}_i)(t) \cdot \vec{S}_i$$

2-qubit gate 'sqrt of swap' (τ_s ≈ 100 ps) Petta *et al.,* Science '05

1-qubit gate via ESR for single spin ($T_2 \approx 1\mu s$) Koppens *et al.*, Nature '06

→
$$T_2/T_s \sim 10^4$$

Single-Spin Rotations by Exchange

Coish & DL, cond-mat/0606550

Requires auxiliary spins, Zeeman gradient & exchange

➔ fast switching times (1ns) with high fidelity (< 10⁻³) Relaxation of spin in GaAs quantum dots dominated by spin-orbit & phonons with ultra-long relaxation times T_1 :

$$T_1 \sim O(s)$$
 for B ~ 1T

Amasha *et al*., cond-mat/0607110

Current record: $T_1 > 1 s$ (B $\approx 1 T$) Amasha, Kastner & Zumbühl, '07

→ data in good agreement with theory Golovach, Khaetskii, DL, PRL 93 (`04)

Hole Spin Relaxation: $T_1 \sim 200 \ \mu s$

Theory: Bulaev & D. Loss, Phys. Rev. Lett. 95, 076805 (2005) Experiment: Abstreiter & Finley group, cond-mat/0705.1466

Relaxation of spin in GaAs quantum dots dominated by spin-orbit & phonons with ultra-long relaxation times T_1 :

 $T_1 \sim O(s)$ for B ~ 1T

Amasha *et al*., cond-mat/0607110

From SOI we expect $T_2 = 2T_1$ Golovach et al., PRL '04

But measured spin decoherence times are much shorter: $T_2 \sim 1-10 \ \mu s$ Petta et al. '05; Koppens et al. '06/'07

Thus, spin decoherence in GaAs must be dominated by other effects \rightarrow hyperfine interaction with nuclear spins

Burkard, DL, DiVincenzo, PRB '99

Hyperfine Interaction in Single Quantum Dot

Khaetskii, DL, Glazman, '02; Coish & DL, '04; De Sousa ea, '05; Sham ea,'06; Altshuler ea, '06;

Separation of the Hyperfine Hamiltonian

Hamiltonian:
$$H = g\mu_B BS_z + \vec{S} \cdot \vec{h} = H_0 + V$$

Note: nuclear field $\vec{h} = \sum A_i \vec{I}_i$ is a quantum operator

 $\underline{\mu}_{i}$

Separation:

$$H_0 = (g\mu_B B + h_z)S_z$$
$$V = \frac{1}{2}(h_+S_- + h_-S_+)$$
$$h_{\pm} = h_x \pm ih_y$$

Iongitudinal component flip-flop terms $\downarrow ... \uparrow \bigcirc \downarrow \uparrow ... \uparrow \bigcirc \uparrow \uparrow ... \downarrow \bigcirc \cdots$ Nuclear spins provide hyperfine field *h* with quantum fluctuations seen by electron spin:

Nuclear spins provide hyperfine field *h* with quantum fluctuations seen by electron spin:

Nuclear spins provide hyperfine field *h* with quantum fluctuations seen by electron spin:

With mean <h>=0 and quantum variance δh :

Coish &DL, PRB 70, 195340 (2004)

Spin dynamics for V=0*):

• Superposition (1) or mixture (2) of h_z-eigenstates:

Rapid Gaussian decay!

• But: Single h_z eigenstate (3):

No decay! (if flip-flop V is neglected)

*) corresponds to B>>h

Presented at the PITP/SpinAps Asilomar Conference in June 2007

Initial conditions for nuclear spins

Coish &DL, PRB 70, 195340 (2004)

• Superposition or mixture of h_z-eigenstates:

Rapid Gaussian decay!

• But: Single h_z eigenstate

 \rightarrow

No decay! (if flip-flop V is neglected)

It is advantageous to prepare the nuclear spin system with a von Neumann measurement on the Overhauser field (operator!):

➔

[via ESR, see Klauser, Coish & DL, PRB 73, 205302 (2006)]

Sharp initial nuclear spin state: δh=0 at t=0

changes hyperfine field in time by $1/N \rightarrow$ spin precesses in fluctuating hyperfine field \rightarrow spin dephases (power law decay)

Khaetskii, DL, Glazman, PRL '02 & PRB '03 Coish &DL, PRB 70, 195340 (2004) Sharp initial nuclear spin state \rightarrow δ h=0 at t=0

Time scale is N/A = 1μ s (GaAs) and decay is bounded

Summary: Nuclear spins in quantum dot

Dephasing due to 'random hyperfine fields' yields Gaussian decay on a scale:

 $T_2^* = \sqrt{N} / A = 10 \text{ ns}$ dephasing *)

Note: for times t > $T_2^* = \sqrt{N} / A = 10$ ns (and B>0) classical (mean field) and quantum dynamics differ!

Coish, Yuzbashyan, Altshuler, and DL, cond-mat/0610633

Dephasing removable by state preparation and/or spin echo, and remaining decay is purely quantum (power law) on a scale:

" T_2 " = N/A = 1 µs

and amount of decay is strongly suppressed by factor (A/B)² (1/p²N)<<1

i.e. for large magnetic fields B (>4T) and/or high polarization p

*) ensemble of dots: Merkulov, Efros & Rosen, PRB '02

Presented at the PITP/SpinAps Asilomar Conference in June 2007

Narrowing of nuclear spins in double dots with ESR Klauser, Coish & DL, PRB 73, 205302 (2006)

• ESR: oscillating exchange $J(t)=J_0+j\cos(\omega t)$ leads to Rabi oscillations:

$$\left|\downarrow\uparrow\right\rangle = \left|+\right\rangle \qquad = \left|+\right\rangle$$

ESR at frequency $\omega = g\mu_B B + \delta h_n^z$ measures eigenvalue \rightarrow nuclear spins projected into corresponding eigenstate |n>

If quantum measurement is ideal, then Gaussian superposition collapses to a single Lorentzian (ESR linewidth):

Presented at the PITP/SpinAps Asilomar Conference in June 2007

Brought to you by PITP (www.pitp.phas.ubc.ca)

Quantum control of many-body system through transport measurement

Klauser, Coish & DL, PRB (2006)

Optical scheme: see Stepanenko, Burkard, Imamoglu, `06

Brought to you by PITP (www.pitp.phas.ubc.ca)

Polarization of nuclear spins

1. Dynamical polarization

- optical pumping: <65%, Dobers et al. '88, Salis et al. '01, Bracker et al. '04
- transport through dots: 5-60%, Ono & Tarucha, '04/ '07, Koppens et al., '06,...
- projective measurements: experiment?
 - 2. Thermodynamic polarization

i.e. ferromagnetic phase transition? Simon & Loss, PRL '07

Q: Is it possible in a 2DEG? What is Curie temperature?

Problem is quite old and was first studied in 1940 by Fröhlich & Nabarro for bulk metals!

Hyperfine interaction in tight-binding formulation

P. Simon & DL, Phys. Rev. Lett. 98, 156401 (2007)

on d-dimensional lattice

Kondo Lattice formulation

is the electron spin operator at lattice site $ec{r_j}$

NB: For a single electron in a strong confining potential, we recover quantum dot description by projecting the hyperfine Hamiltonian in the electronic ground state

alternative approach for numerics on dot-spin dynamics ?

Effective nuclear spin Hamiltonian (RKKY)

Strategy: A (hyperfine) is the smallest energy scale → integrate out electronic degrees of freedom including e-e interactions (e.g. via Schrieffer-Wolff trafo):

Pure spin-spin Hamiltonian for nuclear spins only:

'RKKY interaction'

where is the electronic spin susceptibility in the static limit (ω =0) (justified since nuclear spin dynamics is much slower than electron dynamics)

Assuming no electronic polarization:

is the electronic longitudinal spin susceptibility in the static limit (ω =0).

Free electrons: J_r is standard RKKY interaction Ruderman & Kittel, 1954 Note that result is also valid in the presence of electron-electron interactions

Curie-Weiss mean field theory (2)

electron DOS (2D)

2D: What about the Mermin-Wagner theorem?

The Mermin-Wagner theorem states that there is no finite temperature phase transition in 2D for a Heisenberg model provided that

$$\sum_{\vec{r}} r^2 |J(r)| < \infty$$

For non-interacting electrons, J(r) reduces to the long range RKKY interaction:

$$J(r) \sim \frac{\cos(2k_F r)}{r^2}$$

→ nothing can be inferred from the MW-theorem !

Nevertheless, due to the oscillatory character of the RKKY interaction, one may expect some extension of the Mermin-Wagner theorem, and, indeed it was conjectured that in 2D $T_c = 0$ (P. Bruno, PRL 87 ('01)).

FM phase and spin waves in 2D

The mean field calculation suggests a ferromagnetic phase a low temperature. Let us assume such a FM phase and analyze its stability against spin wave excitations:

1. Non-interacting electron gas in 2D

In the continuum limit the condition $m(T_c)=0$ becomes:

with

For non-interacting electrons (2D):

with

the electronic DOS in 2D

But:

for any finite T_c

Brought to you by PITP (www.pitp.phas.ubc.ca)

1. Non-interacting electron gas in 2D

with

In the continuum limit the condition $m(T_c)=0$ becomes:

For non-interacting electrons (2D):

Thus:

Include now electron-electron interactions Perturbative calculation of spin susceptibility in 2DEG

Consider screened Coulomb U and 2^{nd} order pert. theory in U:

Chubukov, Maslov, PRB 68, 155113 (2003)

→ give singular corrections to spin and charge susceptibility due to non-analyticity in polarization propagator Π (sharp Fermi surface)

→ non-Fermi liquid behavior in 2D

Perturbative calculation of spin susceptibility in 2DEG

Consider **screened** Coulomb U and 2^{nd} order pert. theory in U:

Nuclear magnetization at finite temperature

Magnon spectrum ω_{q} becomes now linear in q due to e-e interactions:

with spin wave velocity

(GaAs: c~20cm/s)

What about $q > 2k_F ? \rightarrow such q's$ are not relevant in m(T) for temperatures T with

since then $\beta \omega_q > 1$ for all $q > 2k_F$

estimate for GaAs 2DEG: $T_c \sim 25 \ \mu K$

Note that self-consistency requires

→ temperatures are finite but still very small!

since $a\pi/a_B \sim 1/10$ in GaAs

Beyond simple perturbation theory (1) P. Simon & DL, PRL 98, 156401 (2007)

vertex

 Γ is the exact electron-hole scattering amplitude and G the exact propagator

 Γ obeys Bethe-Salpether equation as function of p-h--irreducible vertex Γ_{irr}

 \rightarrow solve BS in lowest order in Γ_{irr}

Presented at the PITP/SpinAps Asilomar Conference in June 2007

Brought to you by PITP (www.pitp.phas.ubc.ca)

Beyond simple perturbation theory (2)

P. Simon & DL, PRL 98, 156401 (2007)

Lowest approx. for vertex:

 \rightarrow can derive simple formula:

The local field factor approximation

with long history: see e.g. Giuliani & Vignale*, '06

Consider unscreened 2D-Coulomb interaction

Idea (Hubbard): replace the average electrostatic potential seen by an electron by a local potential:

Determine 'local spin field factor' $G_{(q)}$ semi-phenomenologically*:

Thomas-Fermi wave vector, and $g_0=g(r=0)$ pair correlation function

Note: $G_{-}(q) \sim q$ for $q < 2k_F \rightarrow$ this is in agreement also with Quantum Monte Carlo (Ceperley et al., '92,'95)

The local field factor approximation

i.e. again strong enhancement through correlations:

strong enhancement of the Curie temperature:

Conclusions

- Spin decoherence in GaAs quantum dots dominated by hyperfine interaction → increase nuclear polarization
- Kondo lattice formulation of hyperfine interaction in 2DEG
 (→ useful for numerics in quantum dots?)
- non-Fermi liquid correlations in 2DEG permit ferromagnetic phase in 2d-Kondo lattice at finite temperature
- Electron correlations increase Curie temperature:

 $T_c \approx O(mK)$ for $r_s \sim 5$

• Many open questions:

Disorder, nuclear spin glas? Spin decoherence in ordered phase? Experimental signature?