IBM T. J. Watson Research Center

Energy-conserving
classical computation:

prospects and challenges

Thomas N. Theis,
Director, Physical Sciences, IBM Research

© 2007 IBM Corporation




IBM Research

An exploratory quantum device
IBM Josephson Junction Qubit
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5 criteria for building a practical quantum computer
(The DiVincenzo Criteria)

Well-defined extendible qubit array (stable memory)
Preparable in the “000...” state

Long decoherence time (>10* operations)

Universal set of gate operations

= extremely precise control of dynamical phase

5. Single-quantum measurements (read out)

W -

T.N. Theis,
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The criteria for historically successful classical logic
devices are very different.

Amplification:

= Input drives the output
= Signal level restoration
= Noise immunity

= Global as well as local
communications

After H.-S. P. Wong, “Novel Device Options” in Sub-100nm CMOS Short Course, IEDM, 1999
T.N. Thelis,
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Topics

= The extension of silicon CMOS technology
= The search for the “ultimate” FET
= Prospects for adiabatic switching and reversible logic

= “Beyond the FET":
The Nanoelectronics Research Initiative -- a path for
the commercial emergence of quantum devices?

T.N. Theis, 5 © 2007 IBM Corporation
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Transistor Scaling
Dennard, et al., 1974
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The silicon transistor in manufacturing ...

<«—35nm—

Gate Length )
90 nm technology generation
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... and in the lab.

ource

Tg=7/nm
Lgate:6nm B. Doris et al., IEDM , 2002
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Still, we are approaching some limits.

Power Density (W/cm?2)

T.N. Theis,
06/03/2007
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'he Problem with Passive Power Dissipation:
"he Inabllity to Scale Atoms

Gate\A

‘Drain , /

Field effect transistor

= Direct tunneling through the gate insulator will be the dominant cause of
static power dissipation.

= Single atom defects can cause local leakage currents 10 — 100x higher

than the average current, impacting reliability and generating unwanted
variation between devices.

T.N. Theis, © 2007 IBM Corporation
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| High-k/Metal Gate Stack

| poly-Si
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90nm Generation Gate Stack: High-k/Metal Gate Stack:
Tinv =1.9 nm Tinv =1.45nm
ToxGL = 1.1 nm ToxGL =1.6 nm

T.N. Theis, © 2007 IBM Corporation
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Improving Performance

= No longer possible by scaling alone
— New Device Structures
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Innovation Will Continue:
Transistor Roadmap Options

Ultrathin SOI High k gate dielectric Double-Gate CMOS FInFET

Strained Si, Ge, SiGe

buried oxide

isolation

Silicon Substrate

In general, growing power dissipation and increasing process variability will be addressed by
introduction of new materials and device structures, and by design innovations in circuits
and system architecture.

T.N. Theis, © 2007 IBM Corporation
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Post-Silicon CMOS: The Quest for the Ultimate FET

LU

Self-Aligned Carbon Nanotube FET: Vertical Transistor

Extension Contacts Based on Based on Semiconductor Nanowires
Charge-Transfer Chemical Doping

T.N. Thels, © 2007 IBM Corporation
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Individual Vertical Surround Gate Si Nanowire FET
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= Undoped 60 nm SiNWSs on n-Si
= Al bottom contact

Ni top contact

= 20 nm PECVD SiO, dielectric
= Al gate

T.N. Theis,
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= Accumulation (p-type)

= Weak inversion

= Large currents (20pA @ V4=3V)

= No gate leakage (< 1pA @ V= 4V)
= Swing ~250 mV/decade

= On/Off ratio ~ 10*

17 © 2007 IBM Corporation
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Intrinsic Performance of Carbon Nanotube FETs

Simple back-gated CNTFET Output Characteristics
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Intrinsic Switching Speed of CNFETSs

Im

Cut-off Frequency fr = > C, : gate capacitance
7C,
Lin et al. Javey et al. Seidel et al.
(IBM) (Stanford) (Infineon)
Diameter ~1.8 nm ~1.7 nm ~1.1nm
Gate Dielectric 10-nm SiO, 8-nm HfO, 12-nm SiO,
Maximum g, 12.5 uS 27 uS 3.5uS
C4/L 38 pF/m 120 pF/m 32 pF/m
fr@ Ly =65nm 800 GHz 550 GHz 260 GHz

T.N. Theis,

Yu-Ming Lin et al. (IBM), EDL 2005
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Carbon Nanotube FET:

Potential for greatly improved turn-on characteristics (low-voltage operation)
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FETs approach the “KT" limit
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Can we operate FETs near or below the KT “limit"?

Two paths

1. Conventional Logic:

Reduce the stored energy, %2 CV?, toward the kT limit, accept the reduction in switching
speed, and use redundancy and error correction to keep the error rate in bounds.
(Refrigeration is allowed, but this makes economic sense only if total power dissipation
is reduced.)

2. Reversible Logic:

Maintain 2 CV? well above kT, implement adiabatic switching, energy-conserving
reversible logic circuits, and energy-recovering (i.e. resonant circuit) power supply to
reduce energy losses per switching event to ~ kT or below.*

* Note: Dissipation > KT per logical operation is not a thermodynamic limit.
It is a practical limit for computing architectures that are not logically reversible.

T.N. Theis, 29 © 2007 IBM Corporation
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Adiabatic Charging

How much energy must be dissipated to charge a capacitor?

Abrupt method
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Adiabatic Switching

To take advantage of quasi-static charging in logic, there are
2 steps:

First, close switch (Ve x = Veap)

R
CLK ——AAA ,_."‘;Q_| —-
PWR ] !
Then, apply clock power (slowly)

R sw
SwRL > MW———]

Rule 1: never close a switch (turn on an FET)
while there 1s voltage across it
Rule 2: don't ramp the voltage too quickly.

David Frank, IBM Research

T.N. Theis, © 2007 IBM Corporation
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Applications of Adiabatic Charging

= Drive specific capacitances which cause large dissipation.
— Power supplies

— Energy conserving data bus drivers

= Broadly implement reversible logic.
— Retractile cascade, reversible pipelines (easy)

— High-efficiency regenerative power supply (difficult)

T.N. Theis, 25 © 2007 IBM Corporation
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Reversible Logic: Implementation with FETs

= |t is conceptually possible to build general purpose reversible computers
with energy dissipation per operation going asymptotically to zero as
frequency goes to zero.

= But, frequency must be reduced by about 1/1000 to achieve benefits with
respect to conventional approaches to CMOS logic.
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Dissipation of 4 bit ripple counter (D. J. Frank, 1995)

T.N. Thels, 26 © 2007 IBM Corporation
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Adiabatic Computing

Energy dissipation depends on the physics of the device!

Quasi-static Charging
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DJ Frank, MIT Workshop on Reversible Computation, February 14, 2005
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Will there be a successor to the FET?

= Many have written about this subject.

= An article by George Bourianoff (“The Future of Nanocomputing”,
IEEE Computer 36, pp. 44—-53) sparked discussions within the
SRC regarding the objectives of a new research program — the
Nanoelectronics Research Initiative (NRI) — which would stimulate
the exploration of devices “beyond the FET".

—> computational state vectors other than electronic charge

T.N. Theis, 28 © 2007 IBM Corporation
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Beyond Charged-Based Logic?

= Spintronics = Nanomechanics

Magnetic Held
<

CoFe

= Plasmonics
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Nanoelectronics Research Initiative (NRI)

= AMD, Freescale, Micron, TI, IBM, Intel
—> Joint Industry funding of University Research

=  Promoting both
— Invention / Discovery (distributed research, “let many flowers bloom?)

— Proof of Concept (focused university consortia with outstanding facilities)

= “Extend the historical cost/function reduction, along with increased
performance and density ... orders of magnitude beyond the limits of
CMOS”

— Computational State Vectors other than Electronic Charge
— Non-equilibrium Systems

— Novel Energy Transfer Mechanisms

— Nanoscale Thermal Management

— Directed Self-assembly of such structures

T.N. Theis, 30 © 2007 IBM Corporation
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A device that switches much faster than the ultimate transistor must
dissipate much less power per switching event than the ultimate
transistor.

mm) Fast, near-adiabatic switching
‘ Energy-conserving (reversible) logic

m®) Precise control of dynamical phase over
many logical operations

m=) Fine-grained error correction

A device that can be integrated much more densely that the ultimate
transistor will be much smaller than the ultimate transistor.

mm) “Classical” logical states approximated by small
ensembles of quantum states

‘ Quantum decoherence contributes to error rate

BE) Fine-grained error correction

T.N. Theis, © 2007 IBM Corporation
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The is much excitement regarding the possibility of
spin-based logic devices.

= “If the operations are done coherently the minimum switching energy
derived for charge-based information processing does not apply.”

= “,..the switching energy of a fast spin-based device can be much
closer to the fundamental limit than a charge-based device”

D. D. Awschalom and M. E. Flatte,
Nature Physics 3 (153 — 159) March 2007

T.N. Theis, © 2007 IBM Corporation
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Spin-based insulated gate field effect transistor
K.C. Hall and M.R. Flatte, APL 88, 162503 (2006)
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Spin angular momentum transfer and spin-torque:

J. C. Slonczewski, J. Magn. Magn. Mater. 159, L1 (1996); ibid, 195, L261 (1999).
J. Z. Sun, J. Magn. Magn. Mater. 202, 157 (1999); Phys. Rev. B62, 570 (2000) , Nature 425, 359 (2003).
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=JGEai0l | ransport current affecting magneto-dynamics
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Unknowns

* The device
(So far, nothing smaller or faster than an FET can reliably gate another device.)

The non-local interconnections

» Energy cost of the control system.

— Analogous to a clock in a conventional circuit? ... or are there reversible
versions of non-clocking (handshaking) circuits?

— Stringent timing requirements and limits on energy dissipation?

Energy cost of error correction

Trade-offs between energy dissipation and raw error rate.

T.N. Theis, © 2007 IBM Corporation
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Conclusions

= Silicon CMOS logic will be extended at least another 10 years.
— New materials and transistor structures

— Cooperative circuit and device technology co-design

= BUT ... we appear to be entering an era in which fundamental
physics and truly adventurous electrical engineering can again
play a central role in the evolution of information technology.

T.N. Theis, © 2007 IBM Corporation
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Thanks to colleagues ...

Paul Solomon
David J. Frank
Charles Bennett

Bob Keyes

for many discussions, both recent and long past ...

T.N. Thels, 37 © 2007 IBM Corporation
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... and thanks for your attention!

T.N. Theis, © 2007 IBM Corporation
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