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Transmission line stabilizer 

Measured probability of finding the 
system in the “current flowing out” state

Three 100 nm 
Josephson junctions

An exploratory quantum device
IBM Josephson Junction Qubit
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5 criteria for building a practical quantum computer
(The DiVincenzo Criteria)

1. Well-defined extendible qubit array (stable memory)
2. Preparable in the “000…” state
3. Long decoherence time (>104 operations)
4. Universal set of gate operations

extremely precise control of dynamical phase
5. Single-quantum measurements (read out)
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The criteria for historically successful classical logic 
devices are very different.

After H.-S. P. Wong, “Novel Device Options” in Sub-100nm CMOS Short Course, IEDM, 1999

Amplification: 
Input drives the output
Signal level restoration
Noise immunity
Global as well as local
communications
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The extension of silicon CMOS technology

The search for the “ultimate” FET

Prospects for adiabatic switching and reversible logic

“Beyond the FET”: 
The Nanoelectronics Research Initiative -- a path for 
the commercial emergence of quantum devices?

Topics
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RESULTS:
Higher Density: α2

Higher Speed: α
Lower Power: 1/α2

per circuit  
Power Density: Constant 

L
xd

GATE
n+ source n+ drain

WIRINGVoltage, V

W

p substrate, doping  NA

tox

L/α
xd/α

GATE
n+ source n+ drain

WIRINGVoltage, V / α

W/α

p substrate, doping  α*NA

tox /α

Transistor Scaling
Dennard, et al., 1974
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The silicon transistor in manufacturing …

35 nm
Gate Length

90 nm technology generation 
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… and in the lab.

 TSi=7nm
 Lgate=6nm

 Source Drain

  Gate

B. Doris et al., IEDM , 2002
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Microprocessor Transistor Count
Lithography continues to deliver density scaling.
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Still, we are approaching some limits.

E N k IBM J R&D (2002)
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Cooling costs are limiting clock speeds.

2004 Frequency Extrapolation
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The Problem with Passive Power Dissipation:
The Inability to Scale Atoms

Direct tunneling through the gate insulator will be the dominant cause of 
static power dissipation.

Single atom defects can cause local leakage currents 10 – 100x  higher 
than the average current, impacting reliability and generating unwanted 
variation between devices. 

Field effect transistor

Source Drain

Gate

1.2 nm oxynitride
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10S Tox=11A

High-k/Metal Gate Stack

90nm Generation Gate Stack:
Tinv = 1.9 nm
ToxGL =  1.1 nm

High-k/Metal Gate Stack:
Tinv = 1.45 nm
ToxGL = 1.6 nm

SiON/poly-Si Gate Stack

The Work-Around: High-k Insulator / Metal Gate Stack

Oxide interlayer

High-k material

Metal gate electrode
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Improving Performance
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Beyond 2005

No longer possible by scaling alone
– New Device Structures

– New Device Design point

– New Materials
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Innovation Will Continue:
Transistor Roadmap Options

2004 2007 2010 2013 2016 2020

37 nm 25 nm 18 nm 13 nm 9 nm 6 nm Physical Gate 

back-gate

channel

isolation

buried oxide

channel

top-gate

Double-Gate CMOS

Source Drain

Gate

depletion layer

isolation

buried oxide
halo

raised source/drain

Silicon Substrate

doped channel

High k gate dielectric FinFET

Strained Si, Ge, SiGe

isolation

buried oxide

Silicon Substrate

Ultrathin SOI

In general, growing power dissipation and increasing process variability will be addressed by 
introduction of new materials and device structures, and by design innovations in circuits 

and system architecture. 
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Post-Silicon CMOS: The Quest for the Ultimate FET

W
200n
m

Self-Aligned Carbon Nanotube FET: 
Extension Contacts Based on 

Charge-Transfer Chemical Doping

Vertical Transistor 
Based on Semiconductor Nanowires
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Individual Vertical Surround Gate Si Nanowire FET

Undoped 60 nm SiNWs on n-Si
Al bottom contact
Ni top contact
20 nm PECVD SiO2 dielectric
Al gate

Accumulation (p-type)
Weak inversion
Large currents (20μA @ Vsd=3V)
No gate leakage (< 1pA @ Vg= 4V)
Swing ~250 mV/decade
On/Off ratio ~ 104

ION

IOFF

VTΔVg = VSD=2V
1 μm

Al gate

NW + dielectric
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Simple back-gated CNTFET 

Intrinsic Performance of Carbon Nanotube FETs

Yu-Ming Lin et al. (IBM), EDL 2005
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Intrinsic Switching Speed of CNFETs

Yu-Ming Lin et al. (IBM), EDL 2005
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Carbon Nanotube FET:
Potential for greatly improved turn-on characteristics (low-voltage operation)

J. Appenzeller, Y.-M. Lin, 
J. Knoch, and Ph. Avouris, 
Phys. Rev. Lett. 93, 196805 (2004)

Dual-Gate 
CNTFET
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FETs approach the “kT” limit

Data compiled by 
R. Keyes, 

IBM Research 
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Can we operate FETs near or below the kT “limit”?

Two paths
1. Conventional Logic:

Reduce the stored energy, ½ CV2, toward the kT limit, accept the reduction in switching 
speed, and use redundancy and error correction to keep the error rate in bounds.
(Refrigeration is allowed, but this makes economic sense only if total power dissipation 
is reduced.)

2. Reversible Logic:

Maintain ½ CV2 well above kT, implement adiabatic switching, energy-conserving 
reversible logic circuits, and energy-recovering (i.e. resonant circuit) power supply to 
reduce energy losses per switching event to ~ kT or below.*

* Note: Dissipation > kT per logical operation is not a thermodynamic limit. 
It is a practical limit for computing architectures that are not logically reversible.  
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How much energy must be dissipated to charge a capacitor?

Adiabatic Charging

( T >> RC)
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David Frank, IBM Research
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Applications of Adiabatic Charging 

Drive specific capacitances which cause large dissipation.
– Power supplies

– Energy conserving data bus drivers

Broadly implement reversible logic.
– Retractile cascade, reversible pipelines (easy)

– High-efficiency regenerative power supply (difficult)
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Reversible Logic: Implementation with FETs

It is conceptually possible to build general purpose reversible computers 
with energy dissipation per operation going asymptotically to zero as 
frequency goes to zero.
But, frequency must be reduced by about 1/1000 to achieve benefits with 
respect to conventional approaches to CMOS logic.  

Dissipation of 4 bit ripple counter (D. J. Frank, 1995)
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Energy dissipation depends on the physics of the device!

Adiabatic Computing

Energy-time 
trade-off depends 

strongly on     
device physics!

DJ Frank, MIT Workshop on Reversible Computation, February 14, 2005
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Will there be a successor to the FET?

Many have written about this subject.

An article by George Bourianoff (“The Future of Nanocomputing”,
IEEE Computer 36, pp. 44–53) sparked discussions within the 
SRC regarding the objectives of a new research program – the 
Nanoelectronics Research Initiative (NRI) – which would stimulate 
the exploration of devices “beyond the FET”.

computational state vectors other than electronic charge
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Beyond Charged-Based Logic?

Spintronics

Plasmonics

Nanomechanics

DNA Chemistry
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Nanoelectronics Research Initiative (NRI)

AMD, Freescale, Micron, TI, IBM, Intel
Joint Industry funding of University Research

Promoting both 
– Invention / Discovery (distributed research, “let many flowers bloom”)  

– Proof of Concept  (focused university consortia with outstanding facilities)

“Extend the historical cost/function reduction, along with increased 
performance and density … orders of magnitude beyond the limits of 
CMOS”
– Computational State Vectors other than Electronic Charge

– Non-equilibrium Systems

– Novel Energy Transfer Mechanisms

– Nanoscale Thermal Management

– Directed Self-assembly of such structures
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A device that switches much faster than the ultimate transistor must 
dissipate much less power per switching event than the ultimate 
transistor.

A device that can be integrated much more densely that the ultimate 
transistor will be much smaller than the ultimate transistor.

Fast, near-adiabatic switching

Energy-conserving (reversible) logic

Precise control of dynamical phase over 
many logical operations

Fine-grained error correction

“Classical” logical states approximated by small 
ensembles of quantum states

Quantum decoherence contributes to error rate 

Fine-grained error correction
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The is much excitement regarding the possibility of 
spin-based logic devices.

“If the operations are done coherently the minimum switching energy 
derived for charge-based information processing does not apply.”

“…the switching energy of a fast spin-based device can be much 
closer to the fundamental limit than a charge-based device”

D. D. Awschalom and M. E. Flatte, 
Nature Physics 3 (153 – 159) March 2007
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Spin-based insulated gate field effect transistor
K.C. Hall and M.R. Flatte, APL 88, 162503 (2006)
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Spin angular momentum transfer and spin-torque:

Co Cu Co

<100nm

F2(<5nm)F1

N NN
Spin-transfer:

Transport current affecting magneto-dynamics

N F2 NM

Conduction electrons

M

H

θ

damping

spin-torque

J. C. Slonczewski, J. Magn. Magn. Mater. 159, L1 (1996); ibid, 195, L261 (1999).

J. Z. Sun, J. Magn. Magn. Mater. 202, 157 (1999); Phys. Rev. B62, 570 (2000) ,  Nature 425, 359 (2003). 
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Unknowns

The device
(So far, nothing smaller or faster than an FET can reliably gate another device.)

The non-local interconnections

Energy cost of the control system. 
– Analogous to a clock in a conventional circuit? … or are there reversible 

versions of non-clocking (handshaking) circuits?
– Stringent timing requirements and limits on energy dissipation?

Energy cost of error correction

Trade-offs between energy dissipation and raw error rate.
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Conclusions

Silicon CMOS logic will be extended at least another 10 years.  
– New materials and transistor structures

– Cooperative circuit and device technology co-design

BUT … we appear to be entering an era in which fundamental 
physics and truly adventurous electrical engineering can again 
play a central role in the evolution of information technology. 
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Thanks to colleagues ...

Paul Solomon

David J. Frank

Charles Bennett

Bob Keyes

for many discussions, both recent and long past ...
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… and thanks for your attention!


