Gravity-related spontaneous disentaglement: cause of Newton force?

Lajos Diósi

Wigner Center, Budapest

23 May 2013, Galiano Islands

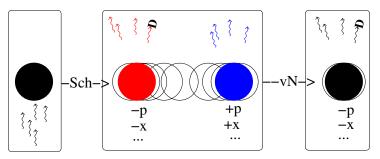
Acknowledgements go to:

Hungarian Scientific Research Fund under Grant No. 75129 EU COST Action MP1006 'Fundamental Problems in Quantum Physics'

- Cat Problem: more than a paradox
- 2 G-related spontaneous disentanglement
- 3 Key equation: rate of disentanglement
- 4 Equilibrium rate of disentanglement
- 5 Mass density spatial resolution
- If G-related disentanglement is cause of gravity?
- 7 Testing gravity's laziness

Cat Problem: more than a paradox

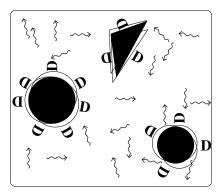
QM = Sch-equation (dynamics) + vN-measurements (predictions)Measurements violate conservation laws, device compensates. Macroscopic extension of QM = Schrödinger Cat (SC)Measurements violate conservation laws, device cannot compensate.



Macroscopic non-concervation of c.o.m. x,p,..., of local density, ... Let's disclose SCs before they arise!

G-related spontaneous disentanglement

Universal weak ($\sim G$) monitoring of mass distribution f(r, t). "Devices" act everywhere like real devices, but remain unseen. Massive d.o.f. are disentangled (localized, collapsed, also decohered).



Shall we construct the modified Schrödinger equation?

Lajos Diósi (Wigner Center, Budapest) Gravity-related spontaneous disentaglement: 🕡 23 May 2013, Galiano Islands 👘 4 / 9

Key equation: rate of disentanglement

SC: radius *R*, density ρ , mass $M = (4/3)\pi R^3 \rho$, c.o.m. *x* Just notation, with no dynamic role:

$$U(|x - x'|) = -G\rho^2 \int_{|r-x| \le R} d^3r \int_{|r'-x'| \le R} \frac{1}{|r-r'|}$$

The proposed disentanglement rate:

$$\frac{1}{\tau_G} = \frac{2}{\hbar} \left[U(x - x') - U(0) \right]$$

For $\Delta x = |x - x'| \ll R$ (i.e., for small coherent spread):

$$rac{1}{ au_G} = {
m const} imes rac{M \omega_G^2}{\hbar} (\Delta x)^2$$

where $\omega_{G} = \sqrt{4\pi G \rho/3}$ is the "Newton oscillator" frequency.

Equilibrium rate of disentanglement

Modified QM:

 $d\psi(x,q)/dt =$ Sch. lin. term + $G \times$ stoch. nonlin. term.

q : SC internal d.o.f. plus light environmental d.o.f. Sch. increases Δx — G-term decreases Δx . Equilibrium condition:

$$rac{\hbar}{M(\Delta x)^2}\sim rac{M\omega_G^2(\Delta x)^2}{\hbar}$$

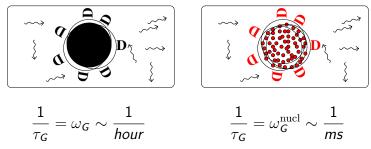
Equilibrium rate:

$$rac{1}{ au_{G}^{
m eq}}\sim\omega_{G}\simrac{1}{
m hour}$$

That's too slow, would be irrelevant in Nature. Loophole?

Mass density spatial resolution

Issue: low equilibrium disentanglement rate $\omega_G = \sqrt{4\pi G \rho/3}$. Loophole: resolve microscopic structure, $\rho \Rightarrow \rho^{\text{nucl}}$.



Bad news: Nuclear mass distribution is vaguely defined! Good news: High(er) disent. rate (1/ms) can be relavant for Nature. Bad news: Local environmental decoherence is always faster. *Experimental prediction?*

If G-related disentanglement is cause of gravity?

Why should it be?

Consider free massive object, ignore environment (don't need to):

- C.o.m. $p \neq \text{const}$ under G-related spontaneous disentanglement.
- We prefer to restore p-conservation, at least on average.
- In equilibrium, c.o.m. world-line is wiggling.
- Wiggle is universal.
- Wiggly world-line *is the* geodetic one.
- This assumes gravitational forces along the world-line.
- These forces might restore *p*-conservation.
- These forces emerge from disentanglement at rate $1/ au_{G} \sim 1/{
 m ms.}$
- Mean of these forces constitute the object's Newton field.
- Newton field has the emergence time scale $au_{\rm G} \sim 1 {\rm ms.}$

Testing gravity's laziness

A fully classical proposal to test the "delay" $\tau_{?}$ of the Newton field of a mass *M* moving along the path x_t :

$$\Phi(r,t) = \int_0^\infty \frac{-GM}{|r-x_{t-\tau}|} e^{-\tau/\tau_?} d\tau/\tau_?$$

valid (i) in the free falling reference frame where $M\ddot{x}_t$ is equal to the non-gravitational forces; (ii) in the t-dependent co-moving system where $\dot{x}_t = 0$.

(ii) guarantees boost-invariance. (i-ii) say Newton law is restored in absence of non-gravitational forces.

Example: Revolving at angular frequency Ω under non-gravitational force, the accelerated source yields in the center $(1 + \Omega^2 \tau_?^2/2) \times$ the standard Newtonian force.

There must be feasible tests of $\tau_{?} = \tau_{G} = 1 m_{S}!$