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Motivations to look into this issue:

“Innate conflict between the fundamental principles of general relativity and of
quantum mechanics.” *

1. Macroscopic Quantum Phenomena

2. Emergent Quantum Mechanics

Are there fundamental changes as one traverses between the micro and the macro domains?
New laws for meso-physics? (e.g., Leggett)

3. Emergent Gravity: GR as Hydro, Gravity as Thermodynamics

We assume the validity of QFT (for matter) and GR (for gravity)

- Questions the soundness of theories with spacetime fluctuation- induced decoherence

Gravitational decoherence reveals the textures of spacetime, elemental or contains
structure: May provide hint on whether gravity is fundamental or emergent

L Diosi (84,87,89) //
R. Penrose, Phil. Trans. R. Soc. Lond. A (1998) 356, 1927-1939 / GRG (96)

G.C. Ghirardi, R. Grassi and A. Rimini, Phys. Rev. A42, 1057 (1990). GRW; Steve Adler’s book



Part I: Diosi-Penrose Schemes:
(nonrelativistic) Schroedinger-Newton
and von-Neumann-Newton Eqgs

Part II: Relativistic, covariant formulation based on known physics
QFT+GR: QFT in curved spacetime = semiclassical gravity = stochastic gravity
[Hu .. 94-95, Verdaguer.. 96-99. Hu and Verdaguer, Liv Rev Rel 11 (2008) 3 | Einstein-Langevin Equation.
Noise from fluctuations of quantum matter field, not put in by hand.
For the present purpose, simpler: Einstein - Klein-Gordon Eq = Newton-Schrodinger Eq.
Part III:
- Quantum dynamics of N particles in a gravitational field (Anastopoulos PRD1996)
- Quantum Field description of particle moving in a grav. field  (Anastopoulos and Hu 2013)

-- derived a master equation, then take the nonrelativistic limit.
Quantum open system treatment of decoherence, cf Quantum Brownian Motion model.

Then compare with D-P and other modified quantum theories.

Many quantum alternatives cannot be found as limit of ordinary QFT+GR.



Penrose (1996) “On gravity's role in quantum state reduction”.
Gen. Rel. Grav. 28, 581-600

addresses the question of the stationarity of a quantum system
which consists of a linear superposition |y> = |o> + [3> of two
well-defined states |oo > and |B >, each of which would be
stationary on its own, and where we assume that each of the
two individual states has the same energy E
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If gravitation is ignored, then the quantum superposition
l\w> = alo> +b |p> would also be stationary,
with the same energy E and this is the normal supposition.
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However, when the gravitational fields of the mass
distributions of the states are taken into account, we must
ask what the Schr odinger operator /gt actually means
in such a situation.

Let us consider that each of the stationary states |a > and |3 >
takes into account whatever the correct quantum
description of its gravitational field might be, in
accordance with Einstein's theory.

Then, to a good degree of approximation, there will be a
classical spacetime associated with each of |o> and |3>,
and the operator @9/t would correspond to the action
of the Killing vector representing the time displacement of
stationarity, in each case.



Now, the problem that arises here is that these two Killing vectors
are different from each other. They could hardly be the same, as
they refer to time symmetries of two different spacetimes.

It could only be appropriate to identify the two Killing vectors with
one another if it were appropriate to identify the two different
spacetimes with each other point-by-point.

But such an identification would be at variance with the principle of
general covariance, a principle which is fundamental to Einstein's
theory. According to standard quantum theory, unitary evolution
requires that there be a Schr odinger operator that applies to the
superposition just as it applies to each state individually; and its
action on that superposition is precisely the superposition of its
action on each state individually.

There is thus a certain tension between the fundamental principles
of these two great theories, and one needs to take a position on
how this tension is to be resolved. Jump to Diosi 2



Penrose’s position is (provisionally) to take the view that an
approximate pointwise identification may be made between the
two spacetimes, and that this corresponds to a slight error in the
identification of the Schr odinger operator for one spacetime
with that for the other. This error corresponds, in effect, to a
slight uncertainty in the energy of the superposition.

One can make a reasonable assessment as to what this energy
uncertainty E. might be, at least in the case when the
amplitudes a and b are about equal in magnitude.

This estimate (in the Newtonian approximation) turns out to be
the gravitational self-energy of the difference between the mass
distributions of the two superposed states. This energy
uncertainty E; is taken to be a fundamental aspect of such a
superposition and, in accordance with Heisenberg's uncertainty
principle, the reciprocal hbar/E; is taken to be a measure of the
lifetime of the superposition (as with an unstable particle).

The two decay modes of the superposition ‘w> =a |o> +b |B>

would be the individual states |o. > and | >, with relative
probabilities  |a|? : |b]?.



Diosi’s scheme and difficulty, according to Penrose

This scheme has a number of points in common with that of Diosi (1987, 1989),
particularly in that no additional fundamental constants are introduced other
than the standard ones h, G and ¢ (where, in fact, c does not enter, in this
Newtonian approximation). However, Diosi's scheme encountered a certain
severe difficulty, as pointed out by Ghirardi et al . (1990), who suggested a
remedy that, unfortunately, required the reintroduction of an additional
constant whose value is without fundamental motivation.

This difficulty is closely related to the fact that there has been no specifiicationof
which particular quantum states are to be regarded as the (stable) "basic'
ones and which are to be regarded as the superpositions of basic states’, the
states which are to decay into basic states. If, for a single point particle, we
considered the basic states to be position states, then the superpositions
would involve an infinite gravitational energy uncertainty E; so that state
reduction to one of the basic position states would occur instantaneously on
this scheme, which is clearly an unreasonable requirement.

It is for this reason that an additional parameter defining a fundamental length
scale was introduced by Ghirardi et al . (1990), so that the state reduction
would be to an entity of the size of this fundamental length.



Penrose’'s scheme:
Schr odinger-Newton (SN) equation

No additional parameters are required.

The basic stationary states into which a general superposition would
decay by state reduction are to be stationary solutions of the
Schr odinger-Newton (SN) equation in this Newtonian approx-
imation, where velocities and gravitational potentials are small.

The SN equation is the Schr odinger equation for a wavefunction,
where there is an additional term provided by a Newtonian
potential ® for the Newtonian matter distribution which is the
expectation value of the mass distribution given by the
Schr odinger wavefunction ¥

The (stationary) solutions of the SN equation are obtained by solving
this nonlinear pair of coupled differential equations.



According to the state reduction scheme of Penrose, all quantum
measurements arise because of the instability of quantum
superpositions involving significant mass displacements.

In various circumstances, where a piece of physical apparatus is
involved in making the measurement, the mass movement would
occur in the measuring apparatus itself.

An extreme situation might occur in an observer's retina or optic
nerve, when it is the reception of an individual photon that is
involved.

Very frequently, the major mass displacement would take place in
the (random) environment when this environment becomes
entangled with the quantum system under consideration.

Spontaneous state reduction in the environment would necessarily
be accompanied by the simultaneous reduction of any quantum
system with which it is entangled.

In this way, contact is made with the standard "decoherence’
viewpoint of quantum state reduction, the essential distinction
being that in the present scheme the state reduction is taken as
actual rather than merely FAPP.



Diosi’s modified QM
larXiv:qp/060711]

Two inter-related elements of classical
behaviour of a rigid macro-object:
1) precise center of mass localisation

2) decoherence (decay) of superposition
between separate positions.

2] L. Diési, Phys. Lett. 105A, 199-202 (1984).
3] L. Diési and B. Lukécs, Annln. Phys. 44, 488-492 (1987).
4] L. Diési, Phys. Lett. 120A, 377-381 (1987).

5] L. Diési, Phys. Rev. A40, 1165-1174 (1989).



Localization:
Schr odinger-Newton Eq.

In both localisation and decoherence mechanisms, resp., the relevant
quantity is the Newtonian interaction

{Xk)——ﬁ/f

between two mass densities corresponding to two configurations
X,X' of the macro-objects that form our quantum system.

Typically for rigid objects, position X contains the center of mass
coordinates x1, x2, and the rotation angles 61, 62, . . . .

| X7)

drdyr’

r/ ——1|

For simplicity, we shall consider spherically symmetric or point-like
objects, to discuss their translational degrees of freedom.

Hence X stands for x1, x2, ... only.



With the help of the interaction potential (1), we
construct the Schr odinger- Newton equation for the
wave function (X) of the massive objects

dib(X)

07 - = standard q.m. terms -

ih

+ [ UX, X")W(X2dX (X)) .

The second term on the rhs leads to stationary solitary
solutions. The Schr odinger- Newton eq. ensures the
stationary localisation of the objects.

Yet, the equation can not account for the expected
decoherence of macroscopic superpositions like

X> + [Y>.



Decoherence:
von Neumann -Newton Eq.

The von Neumann equation which is equivalent to the
standard Schr odinger equation evolves the density
matrix p (X, Y ) rather than the wave function vy (X).

The von-Neumann-Newton eauation reads

dp(X.Y)
dt

— standard g.m. terms -

U(X,X)+U(Y,Y) - 2U(X.Y)
_I_
2h
The second term on the rhs contributes to an

exponential decay of the superposition [X> + |Y>,
with decoherence time:

p(X.Y)



2h
2U(X,)Y)-UX,X)-U((Y.,Y)

To avoid misunderstandings, we emphasize that the
Schr odinger-Newton eq. (2) and the von-Neumann-
Newton eq. (3) are two alternative equations to modify
the standard quantum mechanics for macro-objects. We
shall treat these two separate equations parallel to each
other because the gravitational terms depend on the
same Newton interaction (1) in both equations.

|The desired two effects, localisation plus decoherence, have been
realised through a single stochastic Schr odinger/von-Neumann-
Newton equation based invariably on the structure U(X,X").]



Overall: Diosi-Penrose theory

Effect of gravity on a quantum system is to induce
some fuzziness in space and/or time.

This effect is captured by a noise term added
phenomenologically, not in standard QM.

D-P is a modification of quantum theory described
by a stochastic Schroedinger equation,

[t is similar in nature to the GRW collapse models,
but with no external parameter.



[I. Decoherence in Open Quantum
Systems, with known QFT+ GR

e Quantum Mechanics: Path integral representation

Nonequilibrium Statistical Mechanics: Open Systems
- Classical: Projection Operator Formalism Zwangzig-Mori (57,61)
- Quantum: Influence Functional Formalism  Feynman-vernon (63)

e Quantum Open Systems: Environment induced Decoherence
e Models: QBM, spin-boson, atom-field, Heisenberg chain ...

First Class of Models : Quantum Brownian Motion: one harmonic
OSC interacting with n HOs Caldeira-Leggett (83), Hu Paz Zhang (92)

Classical field as environment: weak gravitational field
= 2 modes of minimally coupled massless scalar field
easy generalization from 1HO interacting with a scalar field vnruh-zurek (89)
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Quantum Open System

Closed System: Density Matrix ~ 2(t) = J (¢, t:)p(ts).

J(z,q,z’,q',t | i, qi, zt, ', t5) IS the (unitary)
evolutionary operator of the system from initial time t_| to tin
L.

OPEN SYSTEM: System (s) interacting with an Environment
(e) or Bath (b): Integrate out (coarse-graining) the bath dof
renders the system open. Its evolution is described by the

Reduced Density Matrix +00 +o0
4 ! [ dq/ dg'p(z,q;z',q")0(q — q')

pr(z,T') =

/ oo oo / / ! !
pr(z,z' t) = dz; dz; J.(z,z',t | z;,z;, ;) pr(Ti, Tt ).
—00 — oo



Quantum Brownian Motion

Q Harmonic Oscillator + Bath (HOB) Feynman-Vernon (63) and many others
- time-independent frequency: QBM1 Caldeira-Leggett (83) Hu- Paz- Zhang (92)
- time-dependent frequency: QBM2 connects to Q Field Theory Hu Matacz (94)

System (S). quantum oscillator with time dependent natural frequency
Environment (E) : n-quantum oscillators

with time-dependent natural frequencies = Scalar Field
Coupling: ¢ _nF (x) g_n.

Slz,q| = S[z] + Sklq] + Sint|z, q]

- A ds (%M(s)[ﬁ:z + B(s)zz — Q°(s)z?

+ Z{%mn(s)[dﬁ + bn(8)qngn — w.ﬁ(s)qg]} + ;(*CH(S)F(m)qn)-



Influence Functional

Assume factorizable condition between the system (s) and the bath (b)
|n|t|aIIy p(t = t;) = ps(ti) X pu(ts),

Evolutlonary operator for the reduced density matrix is

To(zg,2ht | 2,2, /me:::/ Dz’ exp( {5fa] - [I}}) Fla, 2

Influence Functlonal

+ oo -|—:::- + o0
Flz,z'] f dq;y f f dq; f
qi 1

exp (%{Sb[ | + Sint[z, 4] — So[q] — Sint[z’ sf-l]}) X pb(qi, '[li: ti)

E‘ !
Influence Action = exp (55«4[:3# ])




Influence functional for a Paramp

Flz,2'] = E:h:]}{ . f ds f’ ds' | F(a(s)) - F(z'(s))| u(s,s") [F(2(s) + F(z'(s))

ds f ds'|[F(a(s)) - F(a'(s))|v(s,8) |[F(a(s))) - F('(s))] }
5(s) = 3 (F(a(s)) + F(a'(s))).
Als) = F(a(e)) — F(a'(8)) Dissipation pu and Noise v Kernels

f[f”:]--exp{ /dsﬁ ——/ ds/ ds' A(s)A(s")Ca(s, 3)}

= Cas, f) hv(s,s')
Langevm Equation:
%2— — %%2 - 23?5{:3) li p,(t,S)F(.TJ(S))dS BF(:B)E_( )




Noise and Dissipation Kernels

Equation of Motion for the amplitude function of a Parametric Oscillator
bn =0and m=1 Kn = mn_(ti)wf}(ti} ji‘n +wi(t)xﬂ = (,

uo,8) = 5 [ dwl(w,s,9) | X2 (6 Xale') = Xulo) X2

v(s,s') = / dwl(w, s, s") coth (Z:{t’f}') ]:cnshir{u} [X;(SJXW{S'} +X..,{3}X:,[s'}]

— sinh 2r(w) {E_zf‘b{“]l’;{s]x:‘,[s’} + ezié{wjxu{s]xm[afjﬂ .

IHw,s,8") = ZJ{“ _ wn]cn[*?]ﬂniﬂr]

2Kn

Spectral Density Function m
I(w) ~ wm n=1: Ohmic, n>1 Supra Ohmic;  n<1 Subohmic

S.(r(n ST (r(n), d(n
Squeezed and Rotation parameters H (r(n), $(n))pen Sy (r(n), 6(n))
e.g., for an |n|t|al squeezed thermal bath



Stochastic Equations

Non- Markovian P )
(Hu-Paz-Zhang 92) 'm‘ggﬁr(t) = [Hren, p| + 1Dypp|2, (2, p]) + 1D [, [P, ]
Master Equation:

+ iDgp [, [P, p)] + tDpe [P, (2, ] + T2, {P, A},
Nonlocal dissipation ” B M
Nonlocal fluctuations  H___ = p~__ B (pz + zp) + *—(?-)-an(t)i‘:?.
(Colored noise) 2M(2) ! ?

5| + %>d&,

fi

1 < A
, : Fw(Z,p,t) = — A Y - =
Wigner Function: w(2.p,t) zﬂﬁf_; < 2

Fokker-Planck or Wigner Equation' (Non- Markovian)

s, p 9 3 ﬂ“
= S Y S — 4T t —p —2D,,(t)—

aﬂ
u(t)@ + 2( ep(t) + Dpa (1)) aEap]Fw[E,p,t}.




Decoherence in QBM models:
1 HO System- nHO bath

1

t -
S[x,q,,]=f0ds E-M(x 2—Qox2)+2-—m 1r—wiq?)
— > Cuxq, | (3)
n
Yix.t=0)=W¥ + . x Hu Paz Zhang PRD 92
x, ) (%) 2(x) Paz Habib Zurek PRD 93
where
_ (x FLy)* _
W, ,(x)=Nexp |— 557 exp(+iPyx) ,
-1
N 1 Lj
2
V=re o TP | T O




Wix,p)= f_+ ” %efpzp(x —z/2,x+z/2)

Wix,p,t)=W,(x,p,t)+W,(x,p,t)+W,,.(x,p,t),
(18)

where
N2, (x Fx.)?
w )= —— —
12(x,p,t) — exp 8?
Xexp[ —85(p Fp,—B(x Fx,))?], (19)
N2 95,
Wim(I,P,f}=2—F‘S_1EKP(_Aim]

Xexp

2
— % —83(p—Bx)? ]
1

chs[2xpp +2(k, —BK,)x ], (20)



Pointer
Basis:
Interaction
Hamiltonian

left: xq
right: pp

t=0.001

FIG. 2. The time evolution of initial conditions 4 and A'.
The oscillations disappear faster in the first case since the envi-
ronment can distinguish between the two peaks. In the second
case, the interference is damped over a dynamical time scale.



[I. Relation of Master Equations in
QOS to stochastic Schroedinger Eq

Quantum State diffusion / reduction is usually discussed with a
stochastic Schroedinger equation.

Similar for q trajectory, q jump

Distinction from master equation description:
Same Schroedinger picture.

From Q state diffusion (single run) easy to derive density matrix.
From density matrix, need to “unravel” to q trajectory.

QBM models, work of Strunz Yu, (earlier with Diosi, Gisin), have proven the
equivalence of q trajectory formulation with density matrix
formulation for convolutionless nonMarkovian processes,
such as described by the HPZ Eq.



Nonrelativistic Weak Field Limit

« Einstein egn > Newton eq.
* Klein-Gordon egn - Schrodinger eq.
[rel. quantum field - 1-particle representation]

* Einstein —KG eqgn: Self consistent soln
Reduction in the nonrelativistic limit to the
Newton-Schrodinger equation.

What is needed here is q field theory in curved spacetime:

 Where the background spacetime is a perturbed
Minkowski space: Graviton bath acting as environment to

« System: massive scalar field - Quantum Particle Motion



Specifically,

Campos and Hu Phys. Rev. D 58, 125021 (1998) treated a
scalar field in a weakly perturbed Minkowsky space at
finite temperature which act as a model for thermal
graviton bath.

[ See also D. Arteaga, R. Parentani, and E. Verdaguer,
Phys. Rev. D 70, 044019 (2004). ]

The system of scalar field can be reduced to a particle
trajectory by means of the worldline influcence functional
formalism. [next slide]

Quantum Field - Particle Motion

Blencowe (2012)[arXiv:1211.4751] used a coherent state
representation to get the particle motion.



Worldline Influence Functional
(WLIF)

Field—> Particle:

1) Particle Number (Fock Space) Representation: second quantization.

2) Waves (wave equation: first quantization)
a) Phase: Hamilton-Jacobi function, Eikonal Approx [Wheeler-Feynman 1949]
—> Action, saddle pt approx, g. corrections, trajectory of particle derived
b) Ray representation: Constructive interference of wavefronts
—> Geodesics eqn

Worldline is a ray representation of the quantum field
At the lowest order: classical geodesics.
Adding quantum corrections gives semiclassical theory.

WLIF or Influence Action contains quantum phase information and the
the backreaction effects of the environment
~ Quantum Open Systems Approach: [Feynman-Vernon 1963]



Influence Functional Approach to Gravitational Decoherence

e WLIF for N HOs interacting with a quantum field

Raval Hu and Anglin (1996) derived the coupled Langevin equations for this system,
with Fluctuation-Dissipation relation manifest and a new Correlation-Propagation
relation

« WLIF for a charge /mass moving in a classical field:

-- Charge in EM field: Phil Johnson and Hu (2000)
-- Mass in Grav Field: self force studies: Chad Galley & Hu (06)
e Scalar field in a thermal graviton bath: Campos and Hu (1998)

e Graviton-induced decoherence of moving detectors
Anastopoulos, Hsiang and Hu, (in progress)

e For the gravitational decoherence problem:
- Gravitational self energy plays a key role in the D-P scheme.
- Need to account for that in whichever model deemed suitable.



Ul

N

I[II. N quantum particles (described by
a scalar field) in a gravitational field

. Hamiltonian for a massive scalar field interacting with a

gravitational field

. 3+1 decomposition. Perturbation off Minkowski space

background .

. Gauge choice, transverse-traceless components: physical

degrees of freedom:
Hamiltonian -- Quantization = Hamiltonian operator

. Tracing out the gravitational field. Technically possible for

weak perturbuations = Master eq for reduced density matrix
of matter field [similar to QBM model]
Projecting to one-particle subspace

. Take non-relativistic limit.

[It is similar to CA’s 96 paper, but here the calculations are more rigorous and
the effect of self-gravity is fully taken into account. ]



We prefer to describe the quantum mater as a field because the
coupling is by the well-defined Laplace-Baltrami operator.
In contrast, a treatment that starts from particles coupled to the
gravitational field, the interaction term would be of the form

~

H;py = /dg.f(:f(x — q)zzlijf2,-ij(x),

where Aij is an operator on the particle’s Hilbert space,
q represents the position of the particle, and

f is a phenomenological function that needs to be inserted in
order to describe the localization of the interaction, taking into
account the finite dimensions of the particle.

There is no fixed rule that allows for the determination of the
function f from first principles, as is necessary in a treatment
of gravitational decoherence. A quantum field theory
treatment of particle-field interaction is more fundamental and
avoids the ambiguities in the choice of couplings.



Action

The action for a classical scalar field theory describing the matter degrees of freedom ¢

interacting with the gravitational field 1s

1 , 1 1
Slg. o] = ;[v—!}ffd‘if-'RJr fr'i4:r-'( Zfﬁ” V,.oV,0 — Err2c2> , (1)

where V, 15 the covartant derivative defined on a background spacetime with Lorentian
metric g, . [ 1s the spacetime Riccl scalar and m 1s the scalar-field’s mass.

3+1 decomposition

Sailhi 0. N.N'] =~ / dtd* s NVh [K,; KY — K* + PR (2)
1 ., 1 . NiNi L.
—I_QNQ 07 — E(hj e ——— )V,oV,0 — e —oN'V,;0

where N is the lapse function, N* the shift vector, and
K L \Y v 3
li-j == ()—\r 3-.3"?' — V.a'i Y v‘?; P (, )
1s the extrinsic curvature on 2. The dot denotes taking the Lie derivatives with respect

to the vector field %.



Weak gravitational perturbation off Minkowski background

We consider perturbations around the Minkowskl spacetime (N = 1. N* =0, h;; =
0,;) that are first-order with respect to n. That is. we write

hi; = 0i; + K. N =1+ rn. N = kn’, (4)

and we keep in Eq. (3) only terms up to first order in k. We obtain

. 1 - 1. 1
2 3, 2__-1._:-__.-___ 212
ng[; Lo, n'| = /(h‘d (2 2() h; Qm o, )

5 |1, L. -
+K /(H;-ﬂi;: [4[ Vi ‘)r)( n; J( —29\ipd) ) — 1(“ — Qr')_l.-n-g}Q
—V[(07)?] + n(D:0;y — 0*7)]
—|—T§ / dtd* s l(af} —n)o? — 2000 + 47 0,00;¢0 — (n —l— 5 YN pD;0 + mP oy

The indices in Eq. (5) are raised and lowered with the background 3-metric 0. We
have defined 7 = §%~;;. The "potential” V[(97)?] corresponds to the second order terms
m the expansion of \/_.3P with respect to v. Explicitly,

S L L '
V= _ zqﬂﬁqﬁ——@~da+d~da +1d~)k” (6)

The first term in Eq. (5) 1s the action for a free scalar field on Minkowski spacetime,
the second term describes the self-dynamics of the perturbations and the third term
describes the matter-gravity coupling. Note that the terms for the gravitational self-
dynamics and the matter-gravity coupling are of the same order i s.



2.2, The Hamiltonian

To obtain the Hamiltonian we perform the Legendre transform of the Lagrangian density

L);, associated to the action Eq. (5). The conjugate momenta ITV and 7 of 7;; and ¢

respectively are

.. ‘_),C i1 .y . o1 —
MY .= (O ; = S (q,--z-_,,,- — A0 4+ ' + Pnt — 20" (5”) (7)
0L, : 1 ]
T :(_f; — O+ K (,—-ﬁ—n))—nOo (8)
e 2

The conjugate momenta Il,, = 9L;;,, /0n and H% = 0Ly, /On; vanish identically. Thus,

he equations II, = 0 and IT- = 0 define primary constraints.
the equations II,, = 0 and [ =0 define primary constraints

The Hamiltonian H = f d%r(ﬂij Yij + 7O — Liin) 18

1911, — 172 -
H = / d3a L 27 4L kV09)?]) + elo.7)

Y

—% ve(o, ™) + 30 0Ojp — ,-'(i');i:(;)i')k(;’) + "I'?'z.g(jbz)}
n [0 v — ;0,7 + ¢(, )| + n [—QE?jHji + mp' (1L o] 9)
where T = 1% 0;j, and
1, 1 : 1 5 .
e(o,II) = 57 T+ 56')3'(;56')%(;5 -+ 5'??‘2.2(;’)2 (10)

1s the energy density of the scalar field, and
p(o,m) =7d'o

is the momentum density (energy flux).



Eq. (9) can also be obtained from the full gravitational Hamiltonian

TI91L. — 1172
H= / N Y20 PR+ b(o, 7, by
h\/i? h( y I .?)
4 \,t —2V; 1_["'Z + hi(o, 7 hU)” (12)

by expanding the metric variables around flat spacetime as in Eq. (4) and keeping terms
to first order in k. Eq. (12) applies to a larger class of field theories than the one we
consider in this paper: any diffeomorphism-invariant action where matter fields do not
couple to derivatives of the spacetime metric gives rise to a Hamiltonian of the form
(12) (plus additional constraints reflecting other gauge symmetries).

[t follows that the longitudinal part of the metric perturbation “~;; and the
transverse trace 'II of the gravitational conjugate momentum are pure gauge,
reflecting the freedom of space and time reparameterization in the evolution of the
matter degrees of freedom. The associated symmetry is not that of spacetime
diffeomorphisms, but of the spacetime diffeomorphisms that preserve the spacelike
foliation introduced for the purpose of the 3+1 decomposition. The fact that time and
space reparameterizations are not dynamical in general relativity is a very mmportant
criterion for all proposers of alternative models of gravitational decoherence to take
notice. Any postulate of dynamical or stochastic fluctuations that correspond to space
and time reparameterizations confiicts with the fundamental symmetries of general
relativity.



Gauge Choice must preserve the Lorentz frame of foliation:
¢ =0 and 7 = 0, or equivalently *~;; = 0 and "I = 0.

Thus the true physical degrees of freedom in the system correspond to the transverse
traceless components 7;;, IIV of the metric perturbations and conjugate momenta, and

to the matter variables ¢ and 7. The Hamiltonian (9) then becomes

e [ (M St e % [,

i 313 1 E(.I.){E (.‘I_-") _ p(.‘_r-’) _ ég(r)] NG (ANA (o _', 5
+ 5 /d xd’x ( 2% — x| —p(2)p’ () Agj(r — a7) ) (21)
where

| 0 P A 3k k. o

. _ 1o 190 L o 2 A2
and we wrote p(x) = z0;00'¢ and g(x) = m=¢~. - -
(z) = 3000 () | Quantization:

We next proceed to the quantization of the physical degrees of freedom appearing in the
Hamiltonian Eq. (21). We write the quantum operator representing the free part [ d*ze
of the Hamiltonian as Hy and the operator representing the gravitational self-interaction

as nV,. Both operators act on the matter degrees of freedom. At the moment, we do



B » e N
i (o \[ Z / iy Fak) (br(k) kx|t () ek ) (23)

\[Z/ : A' \/ELT (k) (b ()e™ — by (k)e _“‘”‘), (24)

where r = 1,2 denotes the two polarizations, and wy = v/ k;k*. The matrices L ;

are transverse-traceless, and normalized to satisfy the conditions ) L (k)Lj,(k) =

%(PikijLPﬁ Pii), where P = 0;;,—kik;/ k? is the projector onto the transverse direction.
The operator representing the Hamiltonian Eq. (21) is

5 . A Bk
H = Hy+ rV + Z/ ) wib! (k)b (k)

T B e X SEAISRA ISR AT] (25)

where [E)T(k)ﬂi) (K)] = [fi(k) b, (K')] = 0. [E)r(k)j)i(k’)] 0(k — K')d,s. We defined the
operators j,,,(k) — j(—k) as’

J.(k) = L7.(k) / T CACD (26)

where tY () 1s the (normal-ordered) quantum operator representing the stress-tensor in

Eq. (21).



Relation to QBM models:

Eq. (25) shows that the environment consists of a collection of harmonic oscillators
coupled to the matter degrees of freedom. The coupling is linear with respect to
the creation and annihilation operators of the environment oscillators. The system is
formally similar to a quantum Brownian motion (QBM) model, with the transverse
traceless degrees of freedom playing the role of the bath oscillators. In order to
compare with the standard QBM models, we note that for the system consisting of
a single-particle—a case considered in Ref. [29]— the interaction Hamiltonian between
system and environment is proportional to p*g;, where ¢; is the position operator of
the environment oscillators (the gravitational perturbations) and p? is the particle’s

momentuin.

But only for quadratic order of perturbations



Initial condition for gravitational field

Two situations:

Minkowski spacetime viewed as the ground state of
a quantum gravity theory. Gravitons weakly coupled,
decoherence insignificant

Spacetime as the thermodynamic / hydrodynamic
limit of a more basic theory:

Classical stochastic fluctuations, decoherence effect
could be big.



We want to choose a state “pg that interpolates between the
two alternatives. The state should be stationary, reflecting the
time-translation symmetry of Minkowski spacetime.

Assuming that it is also a Gaussian state, the only choice is a

thermal state at a “temperature” ®&: NOt viewed as a

temperature of the graviton environment, but as a
phenomenological parameter interpolating between the fully
guantum and the classical/stochastic regime of gravitational
fluctuations.

Noise temperature, I.e., a parameter characterizing the power
spectral density of the noise

In stochastic systems, that is not related to a thermodynamic
temperature.



In fact, the specific form of the initial state may
not affect significantly the physical
predictions In certain regimes.

For a single non-relativistic particle only the
behavior of the state in the deep infrared sector
of the environment (o— 0) contributes

to the non-unitary part of the dynamics



A potential problem in the choice of the state above for the gravitational
perturbations is that a thermal state is not Lorentz invariant. The ensuing open system
dynamics would then lead to a breaking of Lorentz invariance of the field. However,
in the present context, Lorentz invariance has been broken by gauge-fixing prior to
quantization. There is no physical representation of the Lorentz group in the Hilbert
space of the quantized gravitational perturbations, so we do not know a prior: the rule
under which a thermal state transforms with the changes of coordinate systems. We
can postulate that the chosen initial state remains unchanged when transforming from
one frame to another, or, more plausibly, that the thermal state is an approximation
to a state that remains invariant under the, yet unknown, physical representation of
the Lorentz group. In this perspective, the correct rule for Lorentz transformations
can be obtained only if we have a gauge-invariant prescription for quantization of the

matter-gravity system.



Master equation for the matter field

Tracing out the gravitational degrees of freedom yields to second-order in y/x the master
equation for the reduced density matrix p; of the matter fields |3, 4]

dp o Ko
ﬁ = —i[Ho + T"" , Pt
u)th “’— A, 2 A A2 A
Y ) (75, el + L [ ). )
K 1 2
-2 ({J a(wa) iy = Lo [l wa). pil}) (27)

a

where we used the combined index a to denote the pair (k. r) such that >~ [ (fi)g — > .

J. (k) — J, and so on. The operator J 1s defined as

. 00 .
J(w) = / dsemise=iflos ] iflos (28)
0

The master equation (27) has constant coeflicients and it is of the Lindblad type
[31]. Its derivation (to second order in v/ does not require the Born and the Markov
approximation, only the condition that the coupling is very small [3]. It does not hold
for times much larger than the relaxation time, but this is not a problem for the study

of decoherence.



Proceeding to the computation of the operators .J,(k), we decompose the quantum
operator ¢(x) for the field in terms of creation and annihilation operators

3,
(3(1) — / @ (&peip'x +al e_ip'x) , (30)
| (2m)3\/2 p '

where [ay,. ay] = [af. EiT ] =0, [ap, &L,] = Jpp’, and wp = /p? + m?.

From Eq. (26), we obtain

(['3}) ]_)Z]).? a a'k p (IT (I —k— P ; (IT ak_|_p

J’*’(k)%(k)/(zw)f% 2o \ V2w Vs Vs

In the derivation of Eq. (31) we have used the normal ordered form of the operator
1;33 (.‘I.') = ()3 (L) (.‘I.‘) ()j' (*) (.‘I-') .

In order to compute the operator J,(w) we write

Flw) = / dse™™* = 78 (w) — -ztptf(i), (32)
0

(31)

w

-~

where PV denotes the Cauchy principal part. When evaluating .J,(w) according to Eq.
(28), the terms in Eq. (31) involving two creation or two annihilation operators are
multiplied by f(wp + wpr £ w). Since wp >> m, and the frequencies of the environment
are bounded by a cut-off A << m, their contribution is suppressed in comparison to the
other terms, which are multiplied by f(wp — wpr £ w). Hence,

d3p piplal akﬂ)

2m)3 /)wp V% 4p f(Witp

J.(k.w) =~ L7;(k) — wp + w). (33)



Gravitational Self-Interaction

1e term V' describing eravitational self-interaction is
The t Vd bing g tat | self-int t

. k[ 2efe 2e(pe o 3kik; plpL el
/(QW)'S ( k2 k2 (i — 452 ) k2 k2 534

expressed in terms of the normal-ordered operators

: 4 |2 4 ‘2 D) f1
. (igp Wy — W[)Wk+[) + P k R Wp — WplWp—k — P k Atoat
Ck — (27 )? ((p(r_p k + , Ay,

4\/W1)Wk+p 4\/w1)w[)—k

wp +wWpwpk —P-K e
+ - apup K (35)

. 1/ d*p (p +p-k. . pP—p-k..
Pk = — iy ————atal
6 27 N prprr,[‘ p P A prwp k p k p

' —p-k .
+ +)¥(ll)(1p k) (36)
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I N
+ +f”p”p k| - (38)
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Energy density, isotropic pressure, momentum density



Projection of master equation to one particle subspace

we restrict the density matrix p into the single-particle subspace H; of the Hilbert space
H of the field [34, 35]. A single-particle state is expressed in the field Hilbert space as

| (f; 3’3? p)al 110), where ¢»(p) is the particle’s wave-function in momentum space and |0)
is the field vacuum. The density matrix for a single particle p; is thus represented by

the field density matrix

*p  dPp s
= - al 10)(0|ay 3¢
o= [ s e ) 0) O (39
where pi(p,p’) = (plp1|p/)n, is the single-particle density matrix in the momentum

representation.

We then project the master equation (27) to H;. To this end, we substitute a
density matrix of the form Eq. (39) into Eq. (27) and retain only the terms that
preserve this form.

The von Neumann term —-i[f]o, p| for the free Hamiltonian preserves the single-
particle subspace, giving rise to a term —i[\/p?+ m? py] on H; representing the
evolution of a free relativistic particle.



Non-unitary terms from gravitational backreaction

The non-unitary terms. To project the non-unitary terms of Eq. (27) into H; we
proceed as follows. The commutators with the J, operators of Eq. (33) preserve the
single-particle subspace. The only terms that fail to preserve H; are the components
of .J, involving two creation or two annihilation operators in Eq. (31). Dropping these
terms we find that the projection of the non-unitary terms correspond to a superoperator

L on H, defined by

A K coth (£ e o A L
Lip) = [W() (4L 1B, ) + Lo, 1B )

b

W

(4L 1Bl = A [BL ) (10)

where A, = A, (k) and B, = B, (k) are operators on H; defined by their matrix elements

in the momentum basis

(pl A, (K)|p) = L (k) ——L—(2n)*5(p' = p — k) (41)
wpwpf
(p| B, ()[p') = (p| A, (K)|P') f (wp — wpr + wi) (42)



Gravitational Self-interaction

The gravitational self-interaction. The projection of the von Neumann term describing
gravitational self-interaction onto H; yields a term —if[U, p], where

A k1 o 0o o X ‘
0 [ S )+ B+ Filp o+ )] a3

The operators Fi(p) are functions of the 3-momentum operator p’ for a relativistic
particle. Each corresponds to one of the terms in the sum of Eq. (34), as they are
projected in the single-particle Hilbert space. In particular, F}! corresponds to the term
2¢l ey, F2 corresponds to —2¢] ., F corresponds to (8;; — %)fbgpf{ and F}} corresponds
to —ELQk. Their explicit form 1s the following

Fie(P) = 2wpwpik — — lwp (p-k+k’)—p-k (44)
. : k f .
Fp) - -2 P00 e o
(gwpwp_H(
. 1w ,  3(p- k)2 W , 3l(p+k)- k]Q
3 _ _ = |*ptk 2 _ P k)2 _
(P 4 [ Wp p 4k2 T Wptk (p+K) A2
oo 1 3(p - k)?
92 L Ty
et gk r s
m? [ 3w w ,
Fl;l _ m ( P + p+k +2I)k—k2) . (47)
4 \wpsk Wp
Thus, the master equation for a single relativistic particle is
p; 5 - Koy . -
% — _Z[ -I??_Q + 1)2‘ [_)1] — 37[(/ , pl} -+ L[[)l] (48)



Non-relativistic limit

3.5. The non-relativistic limit

The master equation (48) is still very complex. However, it simplifies significantly in the
non-relativistic limit. For [p| << m, the matrix elements of the operators A, become

X | pipl ‘
(p| A (k)[p) ~ L;;.-’(k)j ! (27)5(p' — p — k). (49)

m

and thus A, can be expressed as
A 33[/53 . ~ .
) _Tr ! ik X F
m
where 7% is the position and p. the momentum operators of a non-relativistic particle.
g

The master equation for a non-relativistic particle interacting
with gravity, valid to first order in k.

(9[31 ) . . KO
v o [PQaﬂl]—ﬁ
ot 2mp 18my

(678" + 6" 67" [pip;. [Drprs 1]

OrA

the renormalized mass  mp = m(1 + 5 ).

29T



Gravitational Decoherence Time

- 4ArGO
9,

(‘)[’} - f 22
ot 2mp

10" [, 7)) (61)
where we reinserted Newton's constant by setting x = 87G.
This master equation is exactly solvable in the momentum representation

‘ ATGO
12
) t—
ann(z — ) Im7,

;

pi(p,p') = exp ——(* = p)%t| po(p.1) (62)

[t is evident that the master equation leads to decoherence in the momentum
basis. Let us assume that the initial state is a superposition of two states, localized in
momentum p; and ps. Define the mean momentum p = (py + p2)/2 and Ap = |py — p1|.
Then, after time of order of

my 1
GOp2Ap:  GOm%v26v?’
the momentum superpositions will have been destroyed; v and v refer to the mean
velocity and the velocity difference, respectively. Inserting back ¢ and h the decoherence
time is

tdee = (03)

h?cd
t .'E 51 — ‘ LRV 6{1.
aec (}r (_) "?'?"?,-%T_ET.? 2 v 2 ( )




Note dependence not only on G but another parameter, @.
A general feature of grav decoh

The Newtonian force term, that involves only Newton’s
constant, always appears in the Hamiltonian part of the
evolution equation and it does not lead to decoherence.

Decoherence is due to the transverse-traceless (TT)
perturbations and the corresponding non-unitary term will
involve parameters corresponding to the unequal-time
correlation function that characterizes the perturbations.

These parameters are, in principle, determined by the
detailed features of the environment, like the spectral
density of a harmonic oscillator bath

With gravity as the environment it refers to the underlying
constituents of Minkowski spacetime, what we referred to
as the ‘textures’of spacetime..



IV. Main Results

Gravitational decoherence happens in the momentum
basis, not (at least directly) in the position basis, as
many env-ind decoh.

Significance of space and time reparameterizations in
the description of a quantum field interacting with
linearized gravity. Require specific gauge choice.

A gauge-invariant treatment of the associated

constraints does not appear compatible with the
structures of Poincar e covariant QFT.

Penrose’s concern leading to his grav decoh proposal.
Ours is a more formal characterization of the same point.



Critiques on STFI-Decoherence

Many theories of gravitational, intrinsic or fundamental
decoherence assume it is induced by temporal or spatial
fluctuations (STFI) cast in terms of stochastic processes.

Such fluctuations correspond to time or space reparameter-
izations, which are pure gauge variables with no dynamical
content.

Being gauge variables, time and space reparameterizations are
decoupled from the interaction at the level of the classical theory.
Classical general relativity does not provide any information
about the strength of such interactions. Newtonian’s constant
need not appear.

The rationale for such theories of -decoherence come from
sources which violate the fundamental symmetry of classical GR.
STFI are not gravitational decoherence.



Broader Implications

Gravitational decoherence depends strongly on assumptions
about the nature of gravitational perturbations:

The usual assumption that Minkowski spacetime is the ground
state of quantum gravity would imply that gravitational
perturbations are very weak and cannot lead to decoherence.

However, if general relativity is a hydrodynamic theory and
gravity is in the nature of thermodynamics, Minkowski spacetime
should presumably be identified with a macrostate (i.e., a coarse-
grained state of the micro-structures). In this case, the
perturbations are expected to be much stronger acting as agents
of decoherence.

Thus, observation of the magnitude and features of gravitational
decoherence may reveal the nature of gravity, whether it is
elemental or emergent.



End






Discussions

1) Problems with modifying Quantum Mechanics, esp, Decoherence due
to space-time fluctuations.

2) Revealing the deeper textures of spacetime. Gravity: fundamental or
emergent ?



Comparison with Diosi-Penrose

e Our master equation derived from known
physics -- quantum field theory and general
relativity - looks very different from that of
the Diosi-Penrose theories.

e The Lindblad operators are quadratic in
momentum, so the environment can
decohere momentum superpositions, but
not position superpositions.



Our findings: [this slide made in 2011 is superseded by those in 2013]

e D-P master equation does not follow from any known physics, or
at least from quantum theory and GR in their standard form.

e Itis different from decoherence induced by gravity acting as an
environment on quantum matter.

e (Penrose) “In this way, contact is made with the standard
‘decoherence’ viewpoint of quantum state reduction, the essential
distinction being that in the present scheme the state
reduction is taken as actual rather than merely FAPP".

Our Position:

“FAPP decoherence” of quantum matter by gravity acting as
environment is based on falsifiable assumptions in known

physics, and thus is from the epistemological and logically
views better than the

“Actual” decoherence in the Diosi-Penrose scheme put in by hand,
argued phenomenologically to serve a stated purpose.



3rd class of working models:

Campos and Hu (98) considered a conformal massless scalar
field at finite temperature in a weakly perturbed Minkowsky

Calculated the backreaction of the scalar field on the spacetime -

meant to be useful for backreaction of Hawking radiation in
(far-field) black hole dynamics

For the present problem: Matter field sector is the system,
Gravity sector is the environment.

Need to convert scalar field to particle trajectory: WLIF



4th class of models: O(N) ¢*in CST

e Ramsey and Hu (1997):
O(N) model in CST with ¢* interaction

e Take the QM (0-dim q field theory) version.

Calzetta & Hu (2002) QM O(N) model, large N
expansion (semiclassical Limit)

(CH worked out NLO- LN 2PI effective action for
existence of H theorem considerations)

e Construct density matrix p (X,X).

After integrating over gravitational field sector get
equation of motion for reduced density matrix



Noise and fluctuations in quantum

field induced metric fluctuations
spacetime (foam) microstructure

described by Einstein-Langevin Eq.

Stochastic Semiclassical Gravity

Main advantage: Minimal speculative assumptions
A natural extension of well known and tested theories:

1. Quantum field theory in curved spacetime,
(e.g., Hawking effect)

2. Semiclassical gravity (e.g.inflationary cosmology)



Semiclassical Gravity

Semiclassical Einstein Equation (schematically):

it Fat

G;u-u (Qa,ﬁ) — ﬁ'<.Tj,LU>q+ K (Tpv) C

(=, is the Einstein tensor (plus covariant terms
assoclated with the renormalization of the quantum field)
r = 81y and G 1s Newton’s constant

Free massive scalar field , .
(d—m~—&R)p =0.

1, 1s the stress-energy tensor operator
o 2\
()4 denotes the expectation value



Stochastic Gravity

Einstein- Langevin Equation (schematically):

A~

Gﬁ.f;(gﬁﬁ) = K (TC 4 Tas

L ﬂp)

177, 1s due to classical matter or fields

A

TSE* = <.TML">C1 T ;Lf

1, 1s a new stochastic term

related to the quantum fluctuations ot 1,



Einstein-Langevin Equation

o Consider a weak gravitational perturbation h off
a background g 2. =&\ + /.. The ELE is
given by (The ELE is Gauge invariant)

Gn‘f:r[g T h] T A(Q{'h T huh) _ GA{;!J T ﬁBn'h) [.Q T h]
—SHG“TmM+hD+§mMD.

= Nonlocal dissipation and colored noise
Nonlocality manifests with stochasticity
because the gravitational sector is an open system



NOISE KERNEL

* Exp Value of 2-point correlations of stress tensor: bitensor

* Noise kernel measures quantum flucts of stress tensor

It can be represented by (shown via influence functional to be
equivalent to) a classical stochastic tensor source &, [g]

<§ab>s =0 <§ab (X)écd (y)>s — Nabcd (X1 Y)

« Symmetric, traceless (for conformal field), divergenceless



* In the stochastic gravity approach, the
source of noise is fully accountable,
coming from matter field's q. fluctuations,
not put in by hand.

* Einstein-Langevin equation describes the
quantum matter- gravitational field
Interaction in a self-consistent manner.



Stochastic Gravity Program

 Review
B. L. Hu and E. Verdaguer, “Stochastic gravity: Theory and
Applications”, in Living Reviews in Relativity 7 (2004) 3.
updated in 11 (2008) 3 [arXiv:0802.0658]
 Recent work (sample)
- Black hole fluctuations and Backreaction.
B.L.Hu, A. Roura, Phys. Rev. D 76 (2007) 124018
- Cosmological perturbations:
A. Roura and E. Verdaguer, Phys. Rev. D (2008), (2009)
- Current work by
- L. Ford, JT Hsiang, SP Miao, R.Woodard, CH Wu,
- Paul Anderson, Jason Bates, HT Cho and B L Hu



http://xxx.lanl.gov/abs/0802.0658

Conventional Theory: N Eqg
Quantum Statistical Mechanics

 Quantum Mechanics: Path integral representation

 Nonequilibrium Statistical Mechanics: Open Systems
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Influence Functional

In(F[x,y])= J-Drdx f;ds'(x —y)(s)

X[ —in(s—s")x+p)s')

—wv(is—s" N x—yNs")], (12)

where v(s) and 7(s) are the noise and dissipation kernels
defined in terms of the spectral density:

1](5]=—‘f:dmf{m]5in[ms] , 13

v(s)= [ “doI(a)coth cos(ws) .

{
2k, T




System: Quantum Brownian particle
Environment: n param HO - Scalar Field
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