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THE PROBLEM OF TIME IN CANONICAL GRAVITY

There is by now extensive literature addressing the problem of time in classical 
and quantum gravity (e.g. Kuchař ‘s review). http://www.phys.lsu.edu/faculty/pullin/kvk.pdf

The heart of the problem lies in the fact that Einstein’s theory is a totally
constrained system whose Hamiltonian vanishes, and since observable quantities 
are those that commute with the constraints (Dirac Observables) they 
therefore do not evolve. 

We will discuss here two approaches to this problem. 

Both have in common their relational character. In fact, one of the basic ingredients in 
the different proposals to describe evolution is the use of relations between 
different degrees of freedom in the theory .

▪ Evolving Dirac observables. (Bergmann, DeWitt, Rovelli, Marolf…) 

▪ Conditional probabilities approach proposed by Page and Wootters. 



We will see that both approaches present problems and do not provide a 
completely satisfactory solution to the issue of the evolution. 

Problems are particularly acute when we try to compute propagators or assign 
probabilities to histories. 

We will show that a combination of both approaches addresses most of the 
issues mentioned above. The resulting framework has an intrinsic loss 
of coherence.



1) Evolving Dirac Observables in totally constrained systems:
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The Hamiltonian vanishes: the
generator of the evolution also 
generates gauge transformations

Dirac observables are gauge invariant quantities
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Therefore, they are constants of the motion.



The issue of time: If the physically relevant quantities in 
totally constrained systems as general relativity are constants
of the motion, how can we describe the evolution?

Evolving Dirac observables: Bergmann, DeWitt, Rovelli, Marolf … They are
Dirac observables that depend on a parameter.
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For instance,  for the relativistic particle.

Two independent observables:

Notice that one needs to assume 
that there are variables as  q0 that are physically 
observable, even though they are not Dirac observables
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The issue of the parameter t: does the proposal solve the problem of time?

Evolving observables depend on a real parameter t.  That is we are assuming that 
there is an external quantity t, that is not represent by any quantum operator 
nor  belongs to any physical Hilbert space.
One may wonder about the meaning of the condition               in the generic situation 
in which the clock variable         is not defined in 0q physH

tq =0

In any generally covariant system as general relativity the clock will be associated 
to certain physical sub-system with dynamical variables that will not be well defined
in  Hphys . We don’t have any external variable.

Summarizing, evolving constants are measurable quantities but, in the quantum 
realm,  they depend on an external parameter, whose observation is not described 
by the theory.



2) Conditional probabilities.

The second alternative we want to consider is a description of the evolution in 
terms of conditional probabilities.

The idea is that one promotes all variables to quantum operators and computes
conditional probabilities among them. This idea appears simple, natural and 
attractive in a closed system.

Unfortunately one runs into problems due to the totally constrained nature of
gravity. Which variables to promote? Dirac observables? Page and Wootters
proposed using kinematical variables, not Dirac observables. That way they
had some form of evolution.    Phys.Rev.D27:2885,(1983)

But Kuchař showed that if one used this proposal in model systems (two
particles parameterized) and computes the propagator, one essentially
gets that the particle does not propagate <x’,t’|x,t>~ δ(t-t’) δ(x-x’).



3) Our proposal: Conditional probabilities in terms of evolving Dirac 
observables.

As we have seen, both approaches require the use of variables which are not
defined in the physical space. 

Here we will elaborate upon a different approach where all reference 
to external parameters is abolished, and evolving constants are used to define 
correlations between Dirac observables in the theory.



We propose to revisit the Page-Wootters construction  by computing 
relational probabilities among evolving Dirac observables. The latter are well
defined on the physical space of states of the theory and are quantities that one
can expect  to observe and to be represented by well defined self-adjoint 
quantum operators.

First you choose an evolving observable as your clock, let us call it T(t) .
Then one identifies the set of observables O1(t)…ON(t)   that commute with T 
and describes the physical system whose evolution one wants to study 
and compute: 

Notice that this expression is a proposal.
t is the parameter associated to the variable used to define the 
evolving observables. This variable is treated as an ideal quantity that we do not
need to observe (it is integrated over).



A simple example.

One considers the constrained system:

0),( =+= a pqHpφ 2

2
2

1

2
1

22 m

p

m

p
H +=

0),(
0

=+=
a

pqHpφ
We have two free particles and one can define:

t
m

p
q

m

p
qtX

t
m

p
q

m

p
qtX

x

2

20

2

22
2

1

10

1

11
1

)(

)(

+−=

+−=

and compute )|(
12

XXP

1
1 0|)( qtX

qt
=

=
We are using  q0 as unobservable 
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We can then write the conditional probabilities that yield the propagators,
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This simple problem is completely solvable: one can find the space of states
that is annihilated by the constraint, find the common eigenstates of the evolving
constants and compute the probabilities explicitly.

Notice that in particular no assumption about the relative ordering 
of the unobservable variables t and t’ is needed.  
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This expression would be associated with the propagator for the system to move from



One can show that the previous  expression yields the correct propagator, with 
suitable assumptions. Namely:

a) The clock and system under study don’t interact. (Interactions can be 
added, they lead to additional effects, Asher Peres studied this in detail).

b) The clock is in a coherent state behaving semiclassically, with a well
defined position and velocity and evolves monotonously without recurrences.

c) One does not demand too much accuracy in the measurement of times 
(otherwise one “breaks the clock”)

In fact there are a lot of parallels between the work of Peres in the context
of non-relativistic quantum mechanics and the consequences of our  proposal. 
A. Peres “Measurement of time with quantum clocks” AJP 48, 552 (1980).



Under the assumptions stated, one 
gets the result:

Real clocks and loss of unitarity.

∫ =1')'(
1'
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unobservable time  is   t’ when the variable taken as a clock
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This probability will be controlled by the position of the peak and the width of 
the wave packet of the particle 1. If were a Dirac delta we would recover
the exact ordinary non-relativistic propagator.
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The use of real clocks may lead to a loss of quantum coherence and therefore to 
corrections to the standard propagator.



We have therefore ended with the standard probability expression with an
“effective'' density matrix in the Schrödinger picture given by   ρ(T)
Unitarity may be lost since one ends up with a density matrix that is a 
superposition of density matrices associated with different values of t

The underlying unitary evolution of the evolving constants in the ideal time t is crucial, 
yet unobservable. All we observe are the correlations in physical time, then it is 
not surprising  that  they present a fundamental level of loss of coherence due to the 
Intrinsically limitations of real clocks.

If we assume the “real clock'' is behaving semi-classically. 
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The Schrödinger evolution is modified: RG, R. Porto, JP, NJP 6, 45 (2004)
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If we assume σ is constant, the equation can be solved exactly and one gets that the
density matrix in an energy eigen-basis evolves as

ρ ρ



The effect can be made arbitrarily large simply choosing “lousy
clocks” to do physics. This is not usually done, but an interpretation
of experiments with Rabi oscillations indicates the effect is there,

R . Bonifacio, S . Olivares, P. Tombesi et. al., J. Mod. Optics, 47 2199 ( 2000) 
PRA61, 053802 (2000).
D. Meekhof, C. Monroe, B. King, W. Itano, D. Wineland PRL76, 1796 (1996).

Has this been observed?

D. Meekhof, C. Monroe, B. King, W. Itano, D. Wineland PRL76, 1796 (1996).



Therefore,  the off-diagonal elements of the density matrix decay to zero exponentially, 
and pure states generically evolve into mixed states. Quantum mechanics with real 
clocks therefore does not have a unitary evolution. 

There are many phenomenological arguments based on quantum and gravitational 
considerations that lead to estimates of such a limitation, 
(Salecker-Wigner and Ng, Karolyhazy, Lloyd, Hogan, Amelino Camelia)
They seem to survive the introduction of contracting states and other 
techniques to beat the standard quantum limit (Ozawa, Kasugi).

The effects are more pronounced the worse the clock is. Which raises the question: 
is there a fundamental limitation to how good a clock can be?

We will not enter into the analysis of these phenomenological estimations, (which have
been questioned in the literature). But it is  important to remark that the evolution with 
real clocks will not be unitary if the  spread in the error of the clock grows with time 
with some power of T.

That is, if   δT=Tplanck he evolution is unitary, but if  δT=TaTPlanck
1-a with a>0 there will

Exist a fundamental loss of unitarity.   

techniques to beat the standard quantum limit (Ozawa, Kasugi).



Where the omega’s are the Bohr frequencies associated with the 
eigenvalues of H.

Putting this together with the formula we had for the evolution:
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It would require “Schrödinger cat” type of states to observe this. 
BECs?



Alternatives?

Is the proposal for the probability we postulated the only one?

Anastopoulos and Hu (CQG 25, 154003 (2008))  have proposed an alternative 
for the joint probability

If one works out this proposal in detail one gets an expression that coincides
with ours at leading order but also involves many crossed products of projectors
at different times. It may be that the extra terms restore unitarity, but at the cost
of a very complicated expression for the probability that has to be analyzed case
by case. So our approach can be seen as postulating that the simpler expressions
are the ones that describe nature. This seems to lead to a coherent axiomatic
for quantum mechanics (Stud. Hist. Phil. Mod. Phys. 42, 256 (2011)). In the end,
which is the correct description for systems without time will have to be settled
by experiment.



Conclusions:

• Using evolving constants of the motion in the 

conditional probability interpretation of Page 

and Wootters allows to correctly compute the 

propagator and assign probabilities to 

histories.histories.

• The resulting description is entirely in terms of 

Dirac observables.

• There are corrections to the propagator due to 

the use of “real clocks and rods” to measure 

space and time associated with loss of 

quantum coherence.
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