Displacing entanglement back and forth between the micro and macro domains

158

Nicolas Sangouard

University of Geneva, Group of Applied Physics, Switzerland

Why do we not observe macro quantum systems?

Existence of a quantum/classical border

Decoherence

Measurement precision

Lacking suited entanglement witness

What is a macroscopic quantum state?

The number of particles is not a sufficient criteria

I. Usmani, C. Clausen, F. Bussieres, N. Sangouard, M. Afzelius, and N. Gisin, Nature Photonics. 6, 234 (2012)

What is a macroscopic quantum state?

The number of particles is not a sufficient criteria

Example: entanglement involving 100 000 photons

T.S. Iskhakov, I.N. Agafonov, M.V. Chekhova, and G. Leuchs, PRL 109, 150502 (2012)

The Schroedinger cat provides an example

From $|1\rangle_{\rm atom}|0\rangle_{\rm photon} + |0\rangle_{\rm atom}|1\rangle_{\rm photon}$

to $|1\rangle_{\rm atom} |{\rm Alive}\rangle_{\rm cat} + |0\rangle_{\rm atom} |{\rm Dead}\rangle_{\rm cat}$

Creating Entanglement at a beamsplitter

Consider a separable state

 $\rho = \sum_{i} p_{i} \ \rho_{a}^{i} \otimes \rho_{b}^{i} = \sum_{k} \bar{p}_{k} |\psi_{a}^{k}\rangle \langle\psi_{a}^{k}| \otimes |\psi_{b}^{k}\rangle \langle\psi_{b}^{k}|$ for each component $U_{\rm bs}^{-1} |\psi_{a}^{k}\rangle |\psi_{b}^{k}\rangle = |\Psi_{i}\rangle |0\rangle$

Since the only pure state leading to a product state after a beamsplitter is the coherent state

All non-classical states lead to entanglement $\int d^2 \alpha \ P(\alpha) |\alpha\rangle \langle \alpha | \otimes | 0 \rangle \langle 0 |, \ P(\alpha) \ge 0$

dip, reported in FIG. 2, has a visibility limited by tains, leaving aside the reflectivity of the beamsplitter and the photon statis tate that describes the only. As such, after the displacement, the detection of sharing a single photon idler photon heralds the generation of an entangled st of the form path entangled state, glement, can be seen as $\frac{1}{\sqrt{2}} \left(\mathcal{D}_a(\alpha) |1\rangle_A |0\rangle_B + |\alpha\rangle_A |1\rangle_B \right).$ d feature of the heralded $|\alpha\rangle_A$ results from $\sqrt{3}$ he displacement of the vacuum. X(2) follows a Poissonian photon number distribution v plifying the mode A by mean photon number $|\alpha|^2$ equal to the variance. $\lambda(\alpha)$ corresponding to α displacement also increases the mean photon num of the single photon state 1, but it preserves e. The latter is obtained in intense local oscillator non-gaussian character. Specifically the state $\mathcal{D}_a(\alpha)$ tter 18, 19. The physics is characterised by a photon number distribution v d on an interference proa mean photon number $|\alpha|^2 + 1$ and a variance 3 ocal oscillator need to be The state (1) thus describes entanglement betwee ed in practice by producmicroscopically populated mode B and a mode A wh of a difference frequency mean population can be adjusted by tuning the inten itical nonlinear crystal to of the local oscillator. Remarkably, for large $|\alpha|^2$ involves a superposition of two components $\alpha \rangle_A$ creation but stimulated

Definitions of a macroscopic quantum state $\Phi_0 + \Phi_1$ involving N particles 1_ Sensitive to decoherence mechanisms

W. Dur, C. Simon, and J.I. Cirac, Phys. Rev. Lett. 89, 210402 (2002)

2_ Local distinguishability between Φ_0 and Φ_1

J.I. Korbakken et al., Phys. Rev. A 75, 042106 (2007)

3_ Large number of one particle operators to go from Φ_0 to Φ_1

F. Marquardt et al., Phys. Rev. A 78, 012109 (2008)

4_ $\Phi_0 + \Phi_1$ significant advantage for interferometric applications over Φ_0 and Φ_1 G. Bjork and P. Mana, J. of Opt. B 6, 429 (2004) NaN

NaN

Displaced single-photon entanglement Micro-macro entanglement?

_ large number of photons

Displaced single-photon entanglement

Micro-macro entanglement ?

_ large number of photons

_ local unitary

Displaced single-photon entanglement

Micro-macro entanglement ?

- _ large number of photons
- _ local unitary

_ 1ebit

Displaced single-photon entanglement

Micro-macro entanglement ?

_ local unitary

_ 1ebit

_ entanglement decreases fast under dephasing process

 $\mathcal{N} = (1 - 3|\alpha|^2 \delta \phi)/2$

Displaced single-photon entanglement Micro-macro entanglement?

Displaced single-photon entanglement Micro-macro entanglement ?

Proposal of a macro measure

based on the distinguishability with a «classical» detector

No need for a microscopic resolution to distinguish $|{\rm Alive}\rangle_{\rm cat}$ and $|{\rm Dead}\rangle_{\rm cat}$

Pointer state $\rho_{\hat{x}} = \int dx \ G(x) \ |x\rangle \langle x|$ G(x) Gaussian with spread σ

P. Sekatski, N. Sangouard, and N. Gisin, in preparation

Proposal of a macro measure

based on the distinguishability with a «classical» detector

Macroscopicity as a function of Pguess

(1) $|0\rangle, |\alpha\rangle$ (2) $\mathcal{D}(\alpha)|+\rangle, \ \mathcal{D}(\alpha)|-\rangle$

P. Sekatski, N. Sangouard, and N. Gisin, in preparation

Proposal of a macro measure

based on the distinguishability with a «classical» detector

Any phase fluctuation can be seen as a weak measurement of the photon number

States that are macro with respect our criteria are inevitably very sensitive to phase decoherence

P. Sekatski, N. Sangouard, and N. Gisin, in preparation

Detecting displaced single-photon entanglement

Detecting macro entanglement is a difficult task

- _ decoherence inevitably increases the Hilbert space dimension
- _ requires high resolution detection

The decoherence problem and the requirement on the precision of the measurement are two facets of the same problem

Conclusion

Proposal for a macro measure based on the distinguishability of superposition components with a «classical» measurement

Displaced single-photon entanglement as an example

Use of a well established entanglement measure

measurements precision <----> decoherence

Useful for opto-mechanics? phase estimation in interferometric measurement?

