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We investigate roughening transitions in the context of transverse-field Ising models. As a modification of
the transverse Ising model with short range interactions, which has been shown to exhibit domain wall
roughening, we have looked into the possibility of a roughening transition for the case of long-range interac-
tions, since such a system is physically realized in the insulator LiHoF4. The combination of strong Ising
anisotropy and long-range forces lead naturally to the formation of domain walls but we find that the long-
range forces destroy the roughening transition.
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I. INTRODUCTION

Magnetic systems present us with the opportunity to study
not only classical but also quantum critical phenomena and
thus provide us with unique insights in condensed matter
physics and the intertwining of classical and quantum
mechanics.1 Of particular interest is the transverse field Ising
model,1–3 whose representation in terms of Pauli spin matri-
ces is

H = �
i,j

N

Jij�̂i
z�̂ j

z − hx�
i

N

�̂i
x, �1�

where hx represents an applied transverse magnetic field and
Jij are coupling constants. Notice that in the absence of the
magnetic field the Hamiltonian is diagonal in the �̂z basis,
and the system is simply a classical Ising model. As the
magnetic field is turned on, �̂x operators are introduced
which do not commute with the �̂z operators. Thus, turning
the transverse field on or off essentially turns quantum me-
chanics on or off in the system. The spins of this system
align at temperature T=0 in a ferromagnetic ground state,1

whereas at high temperatures the system becomes disor-
dered. In the absence of a transverse magnetic field, a con-
tinuous phase transition occurs between the paramagnetic
and ordered ferromagnetic states. This phase transition is
driven by thermal fluctuations.

Applying a transverse magnetic field, hx, perpendicular to
the axis of preferred magnetization, can also cause a transi-
tion between the ferromagnetic and the disordered states
even at zero temperature.1,2 This behavior is driven by quan-
tum zero-point fluctuations of the z component of the spins
due to the transverse field.

We now imagine the system described by Eq. �1� has
domain walls—this is achieved in principle by imposing ap-
propriate antiperiodic boundary conditions. It is expected
that, in the absence of the transverse field, at T=0 the domain
walls would be flat. As we increase temperature we would
first observe nucleation of steps in the interface. At some
temperature, called the roughening temperature TR, the en-
tropy of thermal fluctuations of the interface would dominate
the interfacial energy and the interface would become
rough.4 At temperatures above the roughening transition, the
amplitude of fluctuations in the surface’s position scales as

L�, where L is the system size and � is an exponent charac-
terizing the nature of the interface. Thus the interface fluc-
tuations would diverge as the system length increases to in-
finity. However, we note that if ��1 then the system size
would diverge faster than the fluctuations and so the fluctua-
tions of the interface would not overwhelm the bulk order in
the system. This would allow for a roughening transition to
take place at a temperature lower than the bulk order-
disorder phase transition temperature.

A physical realization of the transverse Ising model as
described by Eq. �1� is provided by the insulating magnet2,3

LiHoF4. In this case, the coupling constants Jij are actually
no longer near-neighbor but dipolar in nature and so decay as
the inverse distance cubed, �1/r3. In LiHoF4 the Ho3+ ions
are responsible for the magnetic behavior. The crystal field
splitting of the Ho3+ states is such that the ground state is
doubly degenerate and well below the higher states, thus
leading to a very strong Ising anisotropy. The two spin states
for each Ho3+ ion point along the z-axis, as shown in Fig. 1.
The phase diagram, Fig. 2, is indicative of a quantum phase

FIG. 1. LiHoF4 behaves essentially as an Ising model with long
range interactions. Interesting physics arises with the application of
a transverse magnetic field.
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transition at T=0 and at a critical transverse magnetic field2

Hx=Hc�49 kOe, as well as a classical phase transition be-
tween ferromagnetic and disordered states in the absence of a
magnetic field at Tc=1.53 K.

The dipolar long-range forces and the insulator nature of
LiHoF4 lead to the natural formation of needlelike alternat-
ing domains of antiparallel magnetization, without the need
to force antiperiodic boundary conditions upon an experi-
mental sample. Since LiHoF4 is an insulator, the electrons
and hence the constituent spins of the system are localized.
The large anisotropy of the system means the domain walls
which separate regions of opposite magnetization in a
LiHoF4 sample are sharp and well defined, in the sense that
as we move across a domain interface the system abruptly
switches from one magnetization state to another. This is to
be contrasted to domain walls found in metals which are
extended and provide for a continuous smoother transition of
the magnetization as we move from one domain to the next.
Thus, the first impression we get is that LiHoF4 appears as an
ideal system to study roughening transitions of domain inter-
faces. However, our analysis suggests otherwise.

In what folllows we first briefly review the case of only
short-ranged exchange interactions being present, where we
would expect to see a roughening transition, as described by
Fradkin.5 Then, we demonstrate that in the case of dipolar
forces such as seen in LiHoF4 the long-range nature of the
interactions drives the roughening temperature up to the bulk
transition temperature, so that the domain walls remain flat
throughout the ferromagnetic regime. We show how to ob-
tain a Hamiltonian for a field theoretical description of a
single domain wall, which results in a modified sine-Gordon
model that behaves as the regular sine-Gordon model but
with effectively higher dimensionality. We see how this be-
havior is verified by a renormalization group calculation us-
ing a smooth cutoff and conclude that the effective higher
dimensionality of the domain wall, d�2, indicates the ab-
sence of a roughening transition and the persistence of flat
domain walls in the ferromagnetic phase. Finally, we men-
tion some further considerations for stepped interfaces.

II. TRANSVERSE ISING MODEL WITH ROUGHENING:
SHORT RANGE INTERACTIONS

Using an Ising model for a two-state spin system with
appropriate boundary conditions, a two-region problem can

be set up with an interface of finite width separating regions
of opposite spin. Investigations of this interface for the case
of short-range interactions show that it undergoes the rough-
ening transition.6–11 A numerical estimate for the roughening
transition was carried out some time ago by Weeks et al.12

for a 2D interface in a classical Ising model, obtaining a
roughening critical temperature of 0.57Tc, where Tc is the
bulk critical temperature for the order-disorder transition. It
would be useful to redo this calculation with higher precision
using newer computational techniques.

In the case of two-dimensional interfaces it was proposed
by Fisher and Weeks13 that the interfaces of three-
dimensional quantum crystals are always smooth at zero
temperature. This suggests that there can be no quantum
roughening transition. Fradkin5 investigated the suggestion
further and verified it for two different models, namely, a
model describing the solid to vacuum interface of a three-
dimensional quantum crystal, which is similar to the model
used by Fisher and Weeks, and a model describing the inter-
face of the three-dimensional quantum transverse Ising
model. Fradkin obtains the effective Hamiltonian of the two-
dimensional interfaces, both for the quantum crystal model,

HQC = − K�
r

cos�p̂�r� − p̂�r��� +
J

2 �
�r,r��

�n�r� − n�r���2,

�2�

and for the transverse Ising model,

HTI = − K�
r

cos p̂�r� +
J

2 �
�r,r��

�n�r� − n�r���2, �3�

where p̂ is canonically conjugate to n, the discrete height
variable.

Notice here the difference in the kinetic energy term
which arises from the difference in symmetry between the
different models and gives rise to different dynamics.5 For
the quantum crystal model the particle number N=�rn�r� is
conserved while for the analogous quantity for the transverse
Ising model it is not. Since our model for LiHoF4 is the
transverse Ising model we take into account the consider-
ations by Fradkin5 instead of the Fisher and Weeks model.13

The 2+1 dimensional quantum interface model for the
transverse Ising model is dual to a three-dimensional general
Coulomb gas which is known to have only a conducting
plasma phase.14 Since the surface has to be smooth at T=0
this implies that roughening can only occur if the bulk loses
its long-range order, so the critical magnetic field parameter
for the roughening and order-disorder transitions will coin-
cide, i.e., hR=hc.

For finite temperatures, where the transition is classical,
we can ignore the cosine kinetic energy terms since these
become unimportant, and notice that the two models in Eqs.
�2� and �3� become the same, namely a realization of the
discrete Gaussian SOS model.5 A continuum version of the
discrete Gaussian SOS model is the sine-Gordon model.15

Briefly, the sine-Gordon model hamiltonian contains two
terms:

FIG. 2. LiHoF4 undergoes both a classical thermal phase tran-
sition as well as a quantum phase transition with the application of
a transverse magnetic field, after Ref. 2.
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HsG =	 d2r
 J

2
��n�r��2 − y cos�2�n�r�

a
� . �4�

The first term describes the cost of local fluctuations of the
interface. The second term takes the effects of the lattice into
account, and the fact that the interface height field n�r� can
really only take discrete values, namely multiples of the lat-
tice spacing a. This periodic term promotes the pinning of
the interface onto equidistant parallel planes, and thus en-
courages the interface to remain smooth. The sine-Gordon
model undergoes a Kosterlitz-Thouless phase transition15,16

and displays two distinct phases corresponding to the smooth
surface at low temperature, where the cosine term is pertur-
batively important, and a rough phase at high temperatures,
where the cosine term is unimportant. Thus we expect a
roughening phase transition at some finite temperature, TR,
less than the bulk order-disorder transition temperature.
Given that the interface has to be smooth at T=0 we propose
the phase diagram shown in Fig. 3, where we include, for
completeness, the related renormalization group �RG� flows.
For the two-dimensional interface we notice that in the tem-
perature region TR�T�Tc the flows are opposite for the two
different phase transitions. This is related to the fact that the
onset of high fluctuation for the interface occurs at a tem-
perature below the critical order-disorder transition where
the bulk system loses its long-range order.

It is also interesting to consider a one-dimensional inter-
face in the transverse field Ising model, in which case we
expect the domain wall to be rough at any finite tempera-
tures. However, as pointed out by Fradkin,5 at zero tempera-
ture the transverse Ising model is dual to a two-dimensional
Coulomb gas.17 This is dual in the continuum limit to a two-
dimensional sine-Gordon model and is known to have a
metal-insulator phase transition14,16,18 at some value of hx at
T=0: we expect a smooth interface for small hx; as we in-
crease hx we go through a phase transition to a rough inter-
face for some hR, before the onset of the order-disorder tran-
sition at hc. The proposed phase diagram and qualitative RG

flows are shown in Fig. 4. We see that for the roughening
transition, temperature is always a relevant parameter and
flows to a fixed point at infinity.

III. LiHoF4 TWO-DOMAIN SYSTEM: LONG-RANGE
INTERACTIONS

As mentioned in the Introduction, the behavior of LiHoF4
can be understood in terms of a quantum Ising model in the
presence of a transverse magnetic field,2,3 in which the states
of the Ho3+ ions are represented by the Ising spins �↑� and
�↓�. The effective Hamiltonian looks like3

H =
1

2�
i�j

J
rij

2 − 3zij
2

rij
5 Si

zSj
z − hx�

i

Si
x +

1

2 �
�i,j�

Jex� i
z� j

z, �5�

where hx corresponds to an applied transverse magnetic field
and Jex is an effective antiferromagnetic exchange term that
is added to obtain an effective Hamiltonian that matches the
experimental results.

Since LiHoF4 forms domains naturally, we consider for
our calculations a system consisting of two semi-infinite
three-dimensional domains of antiparallel magnetizations
�directed in the positive or negative z-directions� that are
separated by a domain wall set at x=0. We want to calculate
the configurational energy for fluctuations in the domain wall
with respect to a flat interface. We proceed by assuming a
height for the domain interface to be a general function
��y ,z�, so that the magnetization vector for the system be-
comes,

M = �0,0,m0 sgn�x − ��y,z��� . �6�

We consider the classical magnetostatic problem and after
we relate a “magnetic charge density” q�x ,y ,z� to the mag-
netization,

q�x,y,z� = − � · M , �7�

we see that in analogy with electrostatics, the extra energy
associated with having a nonflat profile is given in the con-
tinuum limit by19

FIG. 3. For a two-dimensional interface we expect a thermal
roughening transition at some finite temperature. At zero tempera-
ture the critical transverse field for the roughening transition coin-
cides with that of the bulk order-disorder transition. The two sets of
arrows indicate the expected qualitative renormalization group
flows for the different phase transitions: the bulk order-disorder
transition �plain arrows� and the interface roughening transition
�double-headed arrows�.

FIG. 4. For a one-dimensional interface the system is rough at
all finite temperature. The roughening transition occurs at zero tem-
perature. In addition we expect a quantum roughening phase tran-
sition. The two sets of arrows indicate the expected qualitative
renormalization group flows for the different phase transitions: the
bulk order-disorder transition �plain arrows� and the interface
roughening transition �double-headed arrows�.
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U =
1

2
	

V

q�r���r� , �8�

where � is the magnetic potential given in three dimensions
by

��r� = 	
V�

q�r��
�r − r��

. �9�

This results in the following expression for our system:

U = 2m0
2	 dydzdy�dz�

	
�z��y,z��z���y�,z��

����y,z� − ��y�,z���2 + �y − y��2 + �z − z��2�1/2 .

�10�

We now assume that the profile of the interface does not
vary greatly from one position to another and so we can
expand the denominator to zeroth order in ���y ,z�
−��y� ,z���, which is certainly true in the “smoother” regime
of �
1 and probably asymptotically correct for all ��1. We
can rewrite the energy in this approximation in Fourier space
to obtain

U0 = 4�m0
2	 dkydkz

�2��2

kz
2

�k�
�� �ky,kz��2. �11�

Odd order terms vanish and higher even-order terms do not
display the singular behavior of the zeroth-ordered term
which will ultimately dictate the critical behavior of our sys-
tem.

A point of concern here is that, in the continuum model
used, the fluctuations in the y-direction do not have any en-
ergy cost since they do not change the angle between mag-
netization up and down in the z-direction as we move across
the interface. Thus we should consider fluctuations in the
y-direction in a lattice model rather than in the continuum to
see their effect. A further complication arises, since in addi-
tion to the dipolar Ising model interaction which would raise
the energy of the system there could be an effective ex-
change interaction in LiHoF4 as indicated in Eq. �5�, tending
to lower the energy as the domain wall fluctuates. This ef-
fective exchange interaction has recently been discussed by
Chakraborty et al.,3 who obtained an estimate of Jex from
Monte Carlo simulations,

Jex = 0.75J = 0.75 	 0.214K . �12�

To get a feel for the system stability to deformations and the
domain wall surface tension we took a LiHoF4 system start-
ing with two semi-infinite domains of antiparallel magneti-
zation �a cube with sides extending to ±N� and then we in-
troduced a semi-infinite unit step deformation in the chosen
y-direction. Briefly, this is a lattice sum calculation where the
dipolar interactions were summed over the infinite Bravais
lattice, which for LiHoF4 has tetragonal unit cells with di-
mensions �a ,a ,c�= �1,1 ,2.077�a, where a=5.175 Å is the
lattice constant. Each unit cell has four spins, at the positions
�0,0,0�, �0,a /2 ,c /4�, �a /2 ,a /2 ,−c /2�, and �a /2 ,0 ,−c /4�.

The sums show slow convergence, �1/x3, so we used
Ewald20 summation to obtain faster convergence. Our results
indicate that the deformation causes an increase in energy
from the dipolar term of 1

2 	2�2N+1�	0.927J, whereas the
exchange interaction would cause a decrease by 1

2 	2�2N
+1�	0.75J. Thus, we have an overall positive energy cost to
a single step deformation and a positive surface tension as-
sociated with this deformation. Taking the zeroth order term
of the Hamiltonian Eq. �11� and following the above discus-
sion of our numerical considerations for the deformation of
an interface in equilibrium, we add an extra tension term,
and consider the free interface to be modeled by

U0� = 4�m0
2	 d2k

�2��2� kz
2

�k�
+ �ak2����k��2. �13�

We note that at this Gaussian level the individual modes are
not coupled and hence we can evaluate the average of U0
assigning a variance of 1 /2� to each mode. Thus we can
write down the mean correlated height difference, G, as

G = ����y,z� − ��0,0��2� �14�

=	 d2k

�2��2

1 − eik·r

4��m0
2� kz

2

�k�
+ �ak2� . �15�

In the large distance limit, G�O�L0�, thus indicating that the
interface has bounded fluctuations and is smooth at all tem-
peratures.

A. Long-range sine-Gordon model

We now wish to investigate any possibility of critical be-
havior, by performing a renormalization group analysis.
Starting from the zeroth order term in our modified energy
expression Eq. �13� we now include a sine-Gordon term to
take into account the existence of the lattice and write the
full action as

− �Hu = − ��4�m0
2	 d2k

�2��2� kz
2

�k�
+ �ak2���k���− k�

−
gu

a2 	 d2r cos�2���r�
a

�� , �16�

where �=kBT, a is a lattice constant, and � and gu are cou-
plings for the surface tension term and fugacity of the sys-
tem, respectively. To make the coupling constants dimen-
sionless we take �m0

2→m2 /a3, �gu→g, and in addition we
define a dimensionless field in real space,

��r� =
2���r�

a
, ��k� =

2�

a
��k�

so that our action becomes
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S = −
m2

�
	 d2k

�2��2� kz
2

a�k�
+ �k2���k���− k�

+
g

a2 	 d2r cos���r�� . �17�

The above action is just the familiar sine-Gordon field, with
an extra coefficient kz

2 /a�k� in the quadratic part, which ac-
counts for the long range nature of the interactions. The sine-
Gordon model can be renormalized via a smooth cutoff
approach.18 Note here that if we now try to renormalize the
above action using standard isotropic rescalings then the end
result is that the singular �kz

2 /a�k� term cannot be renormal-
ized and will dominate—since the renormalization of nons-
ingular couplings cannot generate singular terms. Therefore,
let us consider a different rescaling for the x and y directions
while, as is usual, also requiring that the field ��r� does not
change under rescaling so as to preserve the lattice structure.
We rescale so that z�=e−bsz, y�=e−sy, kz�=ebskz, ky�=esky,
���k��=e−�b+�s��k�, and g�=e�b+�sg, where  ,b�0.

We concentrate on the terms quadratic in the field and
choose a and b so that the two terms in the quadratic pref-
actor scale the same way under the transformation. This can-
not be done consistently unless we assume �b which leads
to the choice = 2

3b. We choose =1 and notice that terms
which behave as kz

2 become irrelevant in this RG scheme.
Bearing in mind the above discussion and in addition in-

troducing a smooth momentum cutoff function f�ky ,kz� in
the simplified action to take the effects of the lattice into
account, we finally obtain the rescaled action

S = −
m2

�
	 d2k�es/2

�2��2f�ky,kz�
� kz�

2

a�ky��
+ ��ky�

2������k���2

+
ge5s/2

a2 	 d2r cos���r�� . �18�

This has the form of the original hamiltonian if we define our
new couplings as

g� = e5s/2g , �19�

m�2 = es/2m2, �20�

and the new cutoff function

f��ky�,kz�� = f�ky,kz� = f�e−sky�,e
−�3s/2�kz�� . �21�

We try to pick the cutoff function in a way consistent with
the spatial anisotropy of the problem, and also for future
convenience. One reasonable choice is

f�ky,kz� = e−a2�kz
2+�a�ky�3�. �22�

The RG calculation �described in more detail in the Appen-
dix� now proceeds as usual18 though we notice straight away
that we have scaling of the temperature even before we go to
higher order terms. Thus, even though we are looking at a
2D problem we have effectively higher dimensional behav-
ior. As is known14 the Ising model is equivalent to a Cou-
lomb gas in all dimensions and this is always in the plasma
phase for d�2. Our final results from the perturbative renor-

malization group to first order in g yield the following dif-
ferential renormalization equations

dg

ds
= �5

2
−

�� 2
3�

8m2���2/3�g , �23�

d�m2�
ds

=
1

2
m2. �24�

The resultant flows in the �m2 ,g� plane are shown in Fig. 5.
The differential RG equations show that m2 always grows
and that the flow of the variable g changes sign from positive
to negative as m2 becomes smaller than

�� 2
3�

20���2/3
,

indicated by point c on the plot. However this point is of no
special importance because there is no phase transition: re-
calling that m2�1/T we see that the temperature always
flows to zero. Thus, the system remains in the same phase
with flat domain walls that it has at T=0, even as the tem-
perature becomes finite. This formal RG result thus confirms
the earlier expectation based on Eq. �15�. This result is to be
contrasted with the first order flow equations for the case of
short range interactions where dm2 /ds=0 and flows are ver-
tical at this level of approximation, cf. Eq. �2.24� in Ref. 18
truncated to first order in y, with y and J being the analogs of
g and m2, respectively, in our analysis. It is interesting to
note that simple tree level RG rescaling in a d-dimensional
�short-range� sine-Gordon model yields dJ /ds= �d−2�J, in
the analogous notation of Ref. 18, suggesting that our model
is in effectively 5

2 dimensions.
In addition to this classical case, we have also considered

the quantum mechanical case, which is equivalent to a clas-
sical sine-Gordon model in one extra dimension. Since this
raises the dimensionality of the system even more, we find
that there is no quantum roughening either.

B. Further possibilities: Stepped surfaces

It is also interesting to consider the possibility of steps
and investigate whether the steps themselves are smooth or
rough. As our system we considered two semi-infinite three-
dimensional domains of antiparallel magnetization in the

FIG. 5. Renormalization group flows in �m2 ,g� parameters.
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z-direction and added to the domain interface a unit lattice
step in the x-direction. The magnetization vector in this case
is defined by a one-dimensional interface height function
h�z�,

M = �0,0,m0 sgn�x − a��y − h�z���� . �25�

For the case of short-range forces as shown in Fig. 4, the
classical interface is always rough. Here we investigate the
effect of the long range forces at finite temperatures. A simi-
lar problem has been investigated by Thouless21 who looked
at one-dimensional Ising systems that have long range inter-
actions �r−2. He concluded that for interactions that fall off
faster than r−2 there cannot be an ordered state, whereas for
an interactions that falls off as r−2 the order cannot go con-
tinuously to zero. Even though our one-dimensional interface
problem is a height model, not an Ising model, the Thouless
results suggest that the interface may be rough at finite tem-
peratures.

As before we obtain the energy for the step fluctuations in
analogy with electrostatics,

US = 2m0
2a2	 dzdz�

h��z�h��z��
��h�z� − h�z���2 + �z − z��2�1/2 .

�26�

By assuming that ��1 we get to zeroth order in �h�z�
−h�z��� the step fluctuation energy in Fourier space,

US0 = 4�m0
2a2	 dkzdky

�2��2

kz
2

�ky
2 + kz

2�1/2 �h�kz��2. �27�

Our approximation scheme here introduces the necessity for
an ultraviolet cutoff, �y in the ky integral, which is set by the
discreteness of the lattice, and namely, that the two height
variables considered in the correlator are not evaluated at
arbitrarily close points, but are at the very least on adjacent
lattice sites.

If we now consider the mean height correlation, and once
more introduce a surface tension term, �skz

2, we have,

Gs = ��h�z� − h�0��2� =	 dkz

2�

1 − eikzz

4�m0
2kz

2 ln� �y

�kz�
+ �s� .

�28�

In the large distance limit Gs�L / ln L, and the Gaussian
model is rough at all finite temperatures. The long range
interaction gives rise to a logarighmic term in the energy,
raising the effective dimensionality of the system only very
slightly above one. This suggests that if we were to take into
account the lattice structure by adding a periodic pinning
potential to form another modified sine-Gordon model there
would be no effect on the roughness of the interface since the
periodic sine term cannot pin the interface in dimensions
lower than 2. This is clear if we keep in mind that the usual
sine-Gordon model for short range interactions only displays
a phase transition in exactly two dimensions, where the free
Gaussian model has logarithmically divergent correlations.
In the usual sine-Gordon model in one dimension the sinu-
soidal pinning potential is unable to control the linearly di-

verging correlations of the free Gaussian model, and hence
interfaces remain rough. This argument suggests that for the
long-range sine-Gordon model in one dimension where the
effective dimensionality is close to one, the parameters flow
to the high temperature limits, and just as for the case of
short range forces, the periodic potential is unable to pin the
step which fluctuates freely and hence is rough at all finite
temperatures.

For the quantum case with short range forces, Gs diverges
as �ln L for the Gaussian model and the full sine-Gordon
model exhibits a roughening transition in the KT universality
class as shown in Fig. 4. Here, for the case of long-range
forces in the quantum problem, similar analysis shows that
that the divergence of Gs��ln L is extremely weak for the
Gaussian problem, possibly indicating that the sine-Gordon
model will be smooth though we have not been able to verify
this in a full RG calculation.

IV. DISCUSSION

We have found that even though LiHoF4 interfaces ini-
tially appear to be ideal for having a roughening transition,
the same long-range interactions which account for the sys-
tem’s domain structure turn out to be also responsible for the
lack of a roughening transition. The long-range interaction
term which arises from the dipolar interactions effectively
raises the dimensionality of the system and makes it equiva-
lent to a sine-Gordon model in dimensions greater than 2.
The RG flow diagram, Fig. 5, which we obtain for m2

�1/T and g, indicates that in effect the roughening transi-
tion coincides with the bulk order-disorder transition and the
whole ferromagnetic region is smooth. In contrast, a step in
the interface seems to have a rough profile at all tempera-
tures, and the long-range interactions do not raise the dimen-
sionality of the step enough to drive it into the smooth phase.
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APPENDIX: RENORMALIZATION DETAILS

In the following we give some more details of the smooth
cutoff procedure18 leading to the differential renormalization
group Eqs. �23� and �24�. Beginning with our choice for a
smooth cutoff function,

f�ky,kz� = e−a2�kz
2+�a�ky�3�, �A1�

and using kz�=e�3/2�s, ky�=esky, we obtain for small s a re-
scaled cutoff

f��ky�,kz�� = e−a3e−3s��kz�
2/a�+��ky��3� �A2�

� f�ky�,kz�� + ��ky�,kz�� + O�s2� , �A3�

with
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��ky�,kz�� = 3sa3� kz�
2

a
+ ��ky��

3� f�ky�,kz�� . �A4�

We can now define a new field, say ��r�, having � as its
smooth cutoff. We consider a sine-Gordon model for both the
� and � fields and write

S� = S0���, f� + S1��,�� + S01���,�� , �A5�

with

S0���, f� = −
m2

�
	 d2ke�1/2�s

�2��2f�ky,kz�
� kz

2

a�ky�
+ ��ky

2������k��2,

�A6�

S1��,�� = −
m2

�
	 d2ke�1/2�s

�2��2��ky,kz�
� kz

2

a�ky�
+ ��ky

2�����k��2,

�A7�

and

S01���,�� =
g�

a2 	 d2r cos����r� + ��r�� . �A8�

It is straightforward to show18 that the action S� results in the
same partition function corresponding to the rescaled action
S in Eq. �18�. In Ref. 18 this is done by mapping to the
Coulomb gas, but an easier method is simply to shift the
argument of the cosine term by −��r� and then carry out the
Gaussian integral over ��r�, to recover the rescaled action S.

Now, as part of the RG calculation we integrate out the
extra field � to restore the original cutoff function. We use a
cumulant expansion, in S01 and write

Z =	 D��eS0�eS01�1 =	 D��eS0e�S01�1+�1/2���S01
2 �1−�S01�1

2�+O�S01
3 �,

�A9�

where the averaging � �1 indicates integrating out the extra
��r� fields using the Gaussian action S1. In addition, a mul-
tiplicative constant has been absorbed into the measure.

In this analysis we consider the first term in the exponen-
tial of the cumulant expansion

�S01�1 = �	 d2r�g�

a2�cos����r� + ��r���
1

=	 d2r�g�

a2�cos����r���cos���r���1

− sin����r���sin���r���1. �A10�

The average over the sine term is zero by symmetry. For the
other term we can use the result for Gaussian integrals which
states

�e−i��r��Gaussian = e−�1/2����r�2�Gaussian, �A11�

so we obtain

�S01�1 =	 d2r�g�

a2�cos ���r��cos���r���1

=	 d2r�g�

a2�cos ���r�e−�1/2����r�2�1. �A12�

The average of ��r�2 is given by

���r�2�1 =	 d2k

�2��2

a��ky�e−�1/2�s��ky,kz�
2m2�kz

2 + �a�ky�3�
=

se−�s/2��� 2
3�

4m2���2/3
.

�A13�

We gather our results to obtain

�S01�1 =	 d2r�g�

a2�cos ���r�e−�se−�s/2���2/3��/�8m2���2/3�

� � gs

a2� 	 d2r cos ���r� + O�s2� , �A14�

where we have introduced the renormalized coupling gs,
which is related to the original g coupling,

gs = �1 −
s�� 2

3�
8m2���2/3�g� � �1 + �5

2
−

�� 2
3�

8m2���2/3�s�g .

�A15�

From the above relation we obtain the differential renor-
malization Eq. �23�. Note that m2 receives no further correc-
tions to this order in the cumulant expansion and hence Eq.
�24� is obtained directly from Eq. �20�.
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