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® Formal discussion of quantum distance and
Berry curvature

Application to the Anomalous Hall effect in

3D Ferromagnets, and 2D composite
Fermions.

Fermi surface geometry.




geometry of a manifold of quantum states

W(g)) =) Vilg)li)

oo

continuous famil)' of orthonormal fixed basis
states parameterized (g-independent)
by d real parameters

{g',pel,2 . ..d}
® Berry gauge ambiguity: nothing physical
changes if we make a g-dependent gauge

T u(g)) — O [u(g))




Examples of manifolds of states:

® bands of Bloch states (manifold = Brillouin
zone)

Fermi liquid quasiparticles (manifold = Fermi
surface in 2D or 3D)

eigenstates of a family of non-degenerate
Hamiltonians (manifold = parameter space
of Hamiltonians)

Coherent states (spin coherent states,
Landau level “guiding center” coherent
states, etc.)




Hilbert-space distance

dp(1,2)* =1 - (T(1)[¥(2)", p=1

d(12) = d(21) > 0
d(12) =0 iff 1 =2
obeys the triangle inequality, positivity, etc. d(12) + d(23) > d(13)

<« fundamental property
dimensionless: dp(1,2) = 1 for orthogonal states of a distance

Berry gauge invariant (absolute Value)

case p=1 is Bures-Uhlmann distance, p=2 is Hilbert-Schmidt
distance, p=00 is classical (“trivial distance” dj; = 1 for i=j)

Eigenstates of Hamiltonian are stationary (only phase changes
with time): with this definition of distance, the speed of
motion in Hilbert space of a non-eigenstate is

9 1/2
v, = (p/h) (AH) 50 (AH)* = (H?) — (H)
energy variance




® a generic quantum state on a manifold induces
both a Riemannian metric (through its distance
property) and a U(1) gauge field (the “Berry

connection”)(“unitary’ case)

(Hermitian) (symmetric) (antisymmetric)

(DY (9)|D,¥(g)) = G (g) + iFuu(9g)
\ f Riemann Berry

covariant ,
. metric curvature
derivative

If the states are eigenstates of a family of time-
reversal-invariant Hamiltonians, the Berry gauge
field is Z(2) (“orthogonal” case, without spin-
orbit coupling, or SU(2) (“symplectic” case):

(Du¥5(9)|Du¥si(9)) = Guw(9)0oor +iF,,(9)05 0

non-Abelian .
Berry curvature matrix

Pauli




® regular derivative

A,,J(g) — —Z'<\I/(g)\8u\11(g)> ® Berry connection

D, V) =|0,¥) —iA,|V) ® covariant derivative

significance of covariant derivative:

W(g)) — e'x(9) | W(g)) €—— Transform the same way
; with a gauge change
D, ¥(g)) — XD, W(g)) e T

<\Ij(g)‘DM\Ij( )> — 0 gauge-invariant relation

(parallel transport)




® after a gauge transformation:

AM — A,u + auX(g) not gauge invariant

® The metric and Berry curvature are gauge-invariant
G, = Re.((0,7]9,0)) — A, A,
f’u,V — aluA]/ - aVA,u

® VWe can also make a GR-like covariant tensor

formulation by using the metric to obtain the

Christoffel connection:

~
° D)V, =0,V — FZVVU

unchanged
fluy :DILLAV _DVA,LL

(antisymmetric)




Unitary case:
Berry phase and Chern invariant:

® For a closed path I' on the manifold:
AT , geometrical U(1)
€Z¢( ) — €Xp Z\% A,udg'u Berry phase factor
® For a closed 2-surface X2 on the manifold:

1 topological

dg,u A dgv = Cl( ) (1st) Chern class

27T integer invariant

(These are the analogs of the Bohm-Aharonov
phase and the Dirac monopole quantization)




Orthogonal case:

® Vanishing Berry curvature

® Berry phase factor:

topological Z(2)

U(F) — eXp’i% Audg'u — -+ 1] Berry phase factor
I

Symplectic case:

® As above, plus Chern invariant |
topological

1
oM integer invariant
f Puvor = F,For +F - F o +F . F;

pHv= oT utY vo poY T

integral over

O3 tor dot duct
closed 4-d surface (O(3) vector dot product)




2D manifolds.

There is only one independent 2-form
(volume element) of an (orientable) 2-d
manifold; all others can be related to it.
Various choices are possible.

Fou(g) = F(g)(det G(g)) "/ 2e,, o

since G,,,, + 1F,,, is positive Hermitian,
is a dimensionless pseudoscalar with the
bounds

0 < (f(g))Q <1 (unitary case)

0 < F%g)F“(g) <1 (symplectic case)




In general
g,u)\g)\l/ — g,uy Z gﬁ)\flu,ﬁ;fy)\

L

® |f the Berry curvature diverges at some
point, so does the Riemann metric.

® These divergences are associated with

“Dirac points” where bands touch linearly -
like “wormholes” in GR though which
quantized magnetic flux passes.

\

distance 1 between “close” points




History:

The Riemann metric structure was explored (in the mathematical
context of coherent states) by Provost and Vallee (1980) who noted
in passing that there was also an antisymmetric part that might also
be worth studying .....(now known as Berry curvature (!)) Not
much tangible physics has emerged from the metric, until recently
what appears to be developing into a fundamental characterization
of localization lengths in band insulators has been formulated
(Marzani and Vanderbilt, (1997) Resta and Sorella (1999), Souza )

The Berry curvature, following from the Berry phase (1984), the
TKNN (1984) treatment of the QHE, followed by Simon’s (1984)
mathematical explanation continues to play a major role in modern
physics.



Application to Bloch states
wR,i(k) _ eik-(R—I—m)ui(k)

amplitude for a particle to be on i’th site at
position & + 7;in unit cell R. Note that the

Bloch factor depends on the assumed changing the set
. I I 11 . ich h
relative location of site i in the unit cell. " ™"

quantum metric

Manifold is the Brillouin zone k£ mod G.

Berry connection is

:—ZZU v (k)

mean posmon of particle relatlve to unit

cell’ 19 = iV — A%(K)
[,’qa7 ,’qb] — Zfab(k) non-commuting

coordinates!

¢




® What physical properties are influenced by
the “quantum geometry” of the Bloch states
at the Fermi level?

NOT static ground state properties; only
properties that involve acceleration of
particles at the Fermi surface by applied
uniform electric fields, chemical potential
and thermal gradients, etc.

unaccelerated particles are not influenced by
these effects, but they can have a profound
effect on transport.




Hall effect in ferromagnetic metals:
E.’IJ = /O.’I:y Jy Pry = }%OBZ isotropic (cubic) case

Hall effect in ferromagnetic metals with B parallel

to a magnetization in the z-direction, and isotropy
in the x-y plane:

Py — R M~* + RyB~

The anomalous extra term is constant when HZ iS
large enough to eliminate domain structures.

What non-Lorentz force is providing the sideways
deflection of the current! Is it intrinsic, or due to

scattering of electrons by impurities or local non-
uniformities in the magnetization!?




Dissipationless Anomalous Hall Current in the Ferromagnetic Spinel CuCr,;Se,_,Br,

Wei-Li Lee!, Satoshi Watauchi?t, V. L. Miller?, R. J. Cava®?, and N. P. Ong!3*
! Department of Physics, ?Department of Chemistry,
3 Princeton Materials Institute, Princeton University, New Jersey 08544, U.S.A.
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Karplus and Luttinger (1954): proposed an intrinsic
bandstructure explanation, involving Bloch states, spin-orbit
coupling and the imbalance between majority and minority
Spin carriers.

A key ingredient of KL is an extra “anomalous velocity” of
the electrons in addition to the usual group velocity.

More recently, the KL “anomalous velocity” was
reinterpreted in modern language as a “Berry phase” effect.

In fact, while the KL formula looks like a band-structure
effect, | have now found it is a new fundamental Fermi liquid
theory feature (possibly combined with a quantum Hall
effect.)




various explanations of the
anomalous Hall effect

® Intrinsic dissipationless antisymmetric part of the
conductivity tensor of the ideal periodic material (Karplus-
Luttinger term)

Magnetic “skew” and “sidejump” scattering from impurities
(or inhomogeneous textures of the ferromagetic order

parameter), so amplitudes for spin-orbit scattering to “left”
and “right” (determined relative to vrX S) are inequivalent

(violate so-called “detailed balance” )

In different regimes of temperature and purity, either of
these mechanisms may dominate. In many systems, the
controversial Karplus-Luttinger mechanism dominates.




Physical origin of Berry curvature
in Ferromagnetic bands

In a naive Stoner-type theory (neglecting spin-orbit
coupling) of ferromagnetic metals, the bands are
“exchange-split” into bands of “majority” and
“minority” spin carriers.

In this picture, the majority and minority spin Fermi
surfaces are independent, and can intersect:
j T
tand + Fermi even though weak, SOC
surfaces intersect / dominates near “avoided
‘ intersections” of the Fermi
surface, where it causes
rapid variation of
quasiparticle spin with kr

without spin-orbit coupling




Berry curvature due to spin rotations:

® The Berry phase accumulated as a spin-S rotates
is S times the solid angle enclosed by the path of

its direction {2 on the unit sphere.

c¢ Y

® (Here“g"’ is position on the Fermi surface, S= %2)




Semiclassical dynamics of Bloch electrons

Motion of the center of a wavepacket of band-n electrons centered at k in
reciprocal space and r in real space: (Sundaram and Niu 1999)

- write magnetic flux density
dr

as an antisymmetric tensor
eb, +elyp—

7 Fop(r) = €ape BS(7)
wen (k) + hF° (k)

d,
dt

Karplus and Luttinger 1954

Note the “anomalous velocity” term!
(in addition to the group velocity)

The Berry curvature acts in k-space like 2 magnetic flux density acts in real
space.

Covariant notation k ¥ is used here to emphasize the duality between k-

space and r-space, and expose metric dependence or independence (a €{x,y,z }).




® A useful way to write the semiclassical dynamics:
GachC(T)

/
(T il )i () = (i)

—1

A ko, kb [ka,T?] ) ( Vo H(r, k) )

% k] [, Y]
commutators of variables

(symplectic form, Poisson brackets) H(T k) — 5n(k) + V(’T‘)

V¢H(r, k)

determinant (Jacobian) of the symplectic form :

det ’ . ‘ — 1 eabcfab(k) <GBC(’P)> modifies phase space

h volume integral
(will use later)




Current flow as a Bloch wavepacket is accelerated

_ X

regular flow
k+dk, t+dt

N N,

_>
“anomalous’”’ flow

® |f the Bloch vector k (and thus the periodic factor in the Bloch state) is
changing with time, the current is the sum of a group-velocity term
(motion of the envelope of the wave packet of Bloch states) and an
“anomalous® term (motion of the k-dependent charge distribution
inside the unit cell)

If both inversion and time-reversal symmetry are present, the
charge distribution in the unit cell remains inversion symmetric as k
changes, and the anomalous velocity term vanishes.




The DC conductivity tensor can be divided into a symmetric Ohmic
(dissipative) part and an antisymmetric non-dissipative Hall part:

In the limit T —0, there are a number of exact statements that can
be made about the DC Hall conductivity of a translationally-invariant
system.

For non-interacting Bloch electrons, the Kubo formula
gives an intrinsic Hall conductivity (in both 2D and 3D)

This is given in terms of the total Berry curvature of
occupied states with band index n and Bloch vector k.




If the Fermi energy is in a gap, so every band is either
empty or full, this is a topological invariant:
(integer quantized Hall effect)

2
1

oY = %Q—V v = an integer(2D) TKNN formula
7

_62 1

; (2ﬂ)2eachc K = a reciprocal vector G (3D)

In 3D G = vG(, where GGy indexes a family of lattice planes with a 2D QHE.

Implication: If in 2D, v is NOT an integer, the non-integer
part MUST BE A FERMI SURFACE PROPERTY'!

In 3D, any part of K modulo a reciprocal vector also
must be a Fermi surface property!




3D zero-field Quantized Hall Effect

® Families of lattice planes in a 3D periodic structure are indexed by a

primitive reciprocal lattice vector G° . Each plane is a 2D periodic
system that could exhibit a 2D QHE with integer “filling factor” v. This

adds up to a 3D Hall conductivity with “Hall vector’ K= VG° = G, a
reciprocal vector (in general, non-primitive).

Such a system will have a gap at the Fermi level, with a number of
completely-filled Bloch state bands. The “Hall vector” in this case is a
sum of topological invariants of the non-degenerate filled bands (or
groups of bands linked by degeneracies).

/
Gy = Z G (sum over filled bands)
n

1
i N — >k fgb(k) (band n “Chern vector”)

T JBZ

a 3x3 antisymmetric matrix can always be brought [ r %:
to “symplectic diagonal form” 0 0




2D case: “Bohm-Aharonov in k-space”

TY = e? 1 2 X n
oY = h (2n)? /d k (Vi x A(k))n(k)
e’ 1

Ty _ .
o n e P A(k) - dk

2 Berry
e d
O_acy — F
27

® The Berry phase for moving a quasiparticle around the
Fermi surface is only defined modulo 27:

® Only the non-quantized part of the Hall conductivity is
defined by the Fermi surface!




® even the quantized part of Hall conductance
is determined at the Fermi energy (in edge
states necessarily present when there are
fully-occupied bands with non-trivial

topology)

All transport occurs AT the Fermi level, not
in “states deep below the Fermi energy”.
(transport is NOT diamagnetism!)




2D zero-field Quantized
Hall Effect

FDMH, Phys. Rev. Lett. 61,2015 (1988).

® 2D quantized Hall effect: @Y = ve?/h. In the
FIG. 1. The honeycomb-net model (“2D graphite”) showing

absence of interactions between the Partldes’ nearest-neighbor bonds (solid lines) and second-neighbor bonds
V must be an integer’, Ther‘e are no current- (dashed lines). Open and solid points, respectively, mark the A
. . . . . and B sublattice sites. The Wigner-Seitz unit cell is con-
carrying states at the Ferml Ievel In the Interior veniently centered on the point of sixfold rotation symmetry
of a QHE system (a" such states are localized (marked “#*”’) and is then bounded by the hexagon of nearest-
. neighbor bonds. Arrows on second-neighbor bonds mark the

on Its edgel. directions of positive phase hopping in the state with broken

time-reversal invariance.

The 2D integer QHE does NOT require
Landau levels, and can occur if time-reversal
symmetry is broken even if there is no net
magnetic flux through the unit cell of a periodic
system. (This was first demonstrated in an
explicit “graphene” model shown at the right.).

3V3]

M o
r, O

-3V3 v=0
Electronic states are “simple” Bloch states! - 0 m o
(real ﬁrst-neighbor hOPPlng tp Complex Second- FIG. 2. Phase diagram of the spinless electron model with

|t2/t1] < %. Zero-field quantum Hall effect phases (v=*1,
. . . . ] where 6™ =ve?/h) occur if | M/t;| <3+/3|sing|. This figure
nelgh bor hOPPlng tzek'p, alternatlng onsite assumes that ¢ is positive; if it is negative, v changes sign. At
. the phase boundaries separating the anomalous and normal
Potentla.l M) (v=0) semiconductor phases, the low-energy excitations of the
model simulate undoubled massless chiral relativistic fermions.
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2D “graphene” bandstructure

distinct “Dirac points”

(at corners of hexagonal

EK ET
e

Dirac
L —>
points

density of states
(massless)

Brillouin zone)

massive case
(bulk insulator) (bulk metal)

Breaking either
inversion (I) or
time-reversal (T)
symmetry opens a
“mass gap” at
Dirac points.)

e

e
la

massive case

k-space

Break onlyT: m4 = mp

same sign Berry curvature
near A and B points

Break only I: ma = -mp

opposite sign Berry curvature
near A and B points




® [ntrinsic (Karplus Luttinger) Hall conductivity
interpolates between quantized Hall
conductance from edge states

o quantlzed (0)
" non- quantized (AHE)

' quantlzed (1)
. non-quantized (AHE)

quantlzed (0)

N X4

cﬁz/w




Graphene model with second neighbor
hopping is very useful!

Quantum Hall effect with simple Bloch states

Used for anomalous Hall effect studies
(Nagaosa), add disorder etc.

used for testing/developing fundamental band-

stucture formulas for orbital magnetization
(Vanderbilt)

Quantum Spin Hall effect (Kane and Mele)

Analog system for photonic edge states
(Haldane and Raghu)




® graphene edge states (zigzag edge)

broken T




non-quantized part of 3D case can also be

expressed as a Fermi surface integral
¢ There is a separate contribution to the Hall

conductivity from each distinct Fermi surface
manifold.

® |ntersections with the Brillouin-zone boundary need to
be taken into account.

“Anomalous Hall vector”: 1 , dg,
K =) Ky(modulo G)  Kao=- /d J’:kF+ZGi?€ dA
i=1 ¢

:277

x

integral of Fermi vector Berry phase around
weighted by Berry FS intersection with
curvature on FS BZ boundary

This is ambiguous up to a reciprocal vector,
which is a non-FLT quantized Hall edge-state
contribution




First Principles Calculation of Anomalous Hall Conductivity in Ferromagnetic bcc Fe

Yugui Yao!?3, L. Kleinman®, A. H. MacDonald!, Jairo Sinova*!,
T. Jungwirth®!, Ding-sheng Wang3, Enge Wang?3, Qian Niu!
! Department of Physics, University of Texas, Austin, Texas 78712
2 International Center for Quantum Structure, Chinese Academy of Sciences, Beijing 100080, China
3 Institute of Physics, Chinese Academy of Sciences, Beijing 100080, China
4 Department of Physics, Texas AE&M University, College Station, TX 77843-4242 and

cond-mat/0307337
Phys. Rev. Lett. 92, 037204 (2004)

Only when the Fermi surface lies in a spin-
orbit induced gap is there a large contribution. This can
be seen in Fig. 3 where the Berry curvature along lines in
k-space is compared with energy bands near Er and in
Fig. 4 where it is compared with the intersection of the
Fermi surface with the central (010) plane in the Brillouin
zone.

T 1 1 ~ 11 1 1 1 11 1 ~ . 1 .

This calculation sampled ALL states below the
Fermi level (unnecessary work!) but shows
how avoided Fermi surface intersections

provide the dominant contributions to the KL

formula.
r(000)

FIG. 4: (010) plane Fermi-surface (solid lines) and Berry cur-
vature —2%(k) (color map). —2, is in atomic units.




® The new Fermi-surface Berry curvature

formula suggests a different - intrinsic - way
to think about Fermi surface geometry in
Fermi liquid theory.....




Fermi surface of a noble metal (silver):

conventional view as a surface in
the Brillouin zone, periodically

repeated in k-space

De Haas-Van Alpen effect allows extremal
cross-sections to be experimentally
determined

Abstract view of the same surface
(and orbits) as a compact manifold
of quasiparticle states

(with genus g = 4,

“open-orbit dimension” d& = 3).

)

(Dimension of Bravais lattice of reciprocal
lattice vectors G corresponding to k-space

orbits on the manifold.
\_

displacements associated with periodic open

~N

J




Ingredients of Fermi-liquid theory on a Fermi-surface manifold

K-space geometry
)

Kinematic parameters
k-space metric /) inelastic

C F
kr (8) Fermi vector U, (8) = 0, kr - O kp ¢(s) | mean free path

- direction of
nF(S) Fermi velocity

renormalization

Z(S) factor

Hilbert-space geometry

Hilbert-space metric

Berry gauge fields:

Z(2) + SO(3) s =2

u(l) gs =1
Fermi surface f
spin degeneracy

CIUEISIDEII"tICle energy parameters quasiparticle coordinate:
\

manifold coordinate
(d=2) (s# u=1,2)

[f (s, f”(s 8)) ”F(S)\ Fermi speed \C‘S Q,)\

Landau functions

quasiparticle
magnetic moment (Spin coherent- state)
}

coupling pairs of quasiparticle states direction {2,i = 1,2,3




Quasiparticles “live” only on the Fermi surface.

® This leads to a 5-dimensional symplectic
(phase space) structure:

® 3 real space + 2 k-space

® 2 pairs + | “chiral” unpaired real space
direction at each point on the Fermi-
surface manifold

® the unpaired direction is the local Fermi
velocity direction.




Physical significance of “Hilbert space geometry”

if both spatial inversion
and time-reversal symmetry
are present’

Hilbert-space metric

Berry gauge fields:
Z(2) +SO(3) gs =2

U(l) gs =1 ( otherwise™ )

" assumes spin-orbit coupling

® The Hilbert-space metric and the Berry gauge fields modify the
ballistic behavior of quasiparticles which are accelerated by quasi-
uniform electromagnetic fields, chemical potential and thermal
gradients, strain fields, etc.

Hilbert space geometric effects are completely omitted in a
single-band approximation that also neglects spin-orbit coupling
(like a one-band Hubbard model).




“intrinsic”’ picture of Fermi surface as
an abstract 2-manifold

“homology group” has a basis of G (=genus) pairs of non-
trivial paths (that don’t cut the manifold in half). Only
members of the same pair intersect. Open orbits (along
which krincreases by a reciprocal lattice vector G ) are

non-trivial.




two different ways to view a genus-2
Fermi surface of “open-orbit dimension” dg=2




Standard “schema” (homology group) for Fermi surface manifolds:

k-space images d©=0 dc=|

—

a 2-manifold of

genus g has g conjugate

pairs of elementary

non-trivial closed

paths (homology

group generators) |
\*_\\«\z

normal case: | |

the first d© pairs of generators

couple a closed-orbit “zone

boundary” with an “open orbit”

d© =0,1,2, or 3 is the dimension of the Bravais lattice of
reciprocal vectors generated by “open orbits”. (If chiral

quasi- | D Fermi surfaces are present, d® =0,1,or 2)

-,
/»\“.’ :‘ S )
, ‘)Yry p
-
B
—

chiral (quasi-1d) case:
the first pair of generators
are both “open orbits” AND
“zone boundaries.”




® separate dissipationless Hall currents (with their own adiabatic
conservation laws) on each distinct manifold (generalizes separate
conservation law of each chiral Fermi point in ID to 3D) .A
separate chemical potential can be established on each manifold.

Fermi surface with non-zero Chern numbers are connected by
“wormholes” (Dirac degeneracy points that connect bands; see also
discussions of “Fermi points” by Volovik). Charge can be
transferred through the “wormhole”, so such connected Fermi
surfaces must have the same chemical potential.

Streda formula:(charge density induced by magnetic field is also
controlled by the Hall vector K)):




Streda formula

® the Hall conductance (linear response of transverse electric
current density to electric field) also describes linear response of
electron density n to magnetic flux density

on e K

OB |, r—g  h2m

® Xiao, Shi and Niu (2005) note that

Fermi
occupation
factor

e3¢ e

n = /Clgk 1+ GQbCbeC n(k)




® Fermi surface sheets with non-zero chern
number (total Fermi surface Chern number
must vanish, but individual pieces can have
non-zero Chern number)

Ch&m NULMLLQ,(/
C =+

Worm helel




® As in one dimension, each distinct piece of
the Fermi surface has its own “adiabatic
conservation law” in the low-T limit, in the
absence of large-momentum-transfer
scattering processes.

Pieces of FS with non-zero Chern number

only have such a conservation law as a group
with zero total Chern number: charge can
be “pumped” between them through the
“wormhole” that connects them!




Application of formula to e
a composite fermion is modeled
Composite fermion Fer’mi as an electron laterally displaced

from the center of the m-vortex

surface at = 1/m that is bound to it.

Berry phase for moving Flux enclosed by path
composite quasiparticle =  of displaced electron
around Fermi-surface around vortex:

ey €1 independent of
VAHE T Fermi surface shape!




® The Fermi surface formulas for the non-quantized
parts of the Hall conductivity are purely
“geometrical”’ (referencing both k-space and Hilbert
space geometry)

Such expressions are so elegant that they “must” be
more general than free-electron band theory
results!

® This is true: they are like the Luttinger Fermi
surface volume result, and can be derived in the
interacting system using Vard identities.




An exact formula for the T=0 DC Hall conductivity:

® While the Kubo formula gives the conductivity tensor as a current-
current correlation function,a Ward-Takahashi identity allows the
w—0, T—0 limit of the (volume-averaged) antisymmetric (Hall) part of
the conductivity tensor to be expressed completely in terms of
the single-electron propagator!

The formula is a simple generalization and rearrangement of a 2+1D
QED3 formula obtained by Ishikawa and Matsuyama (z. phys c 33,41 (1986), Nucl.
Phys. B 280,523 (1987)), and later used in their analysis of possible finite-size

Gij(k,w) = —%'f dt e (T {cki(t), cf;(0)})  {cki, ;b = Onnrdi;

exact (interacting) T=0 propagator (PBC, discretized k)
2 _abc . .

: € ¢ antisymmetric part

1 Wy, T) = — K 4 P
w,’}IEO ot (@, T) h (2m)2° ©  of conductivity tensor

K — lim Eabc/ dSk/ _ezwnTr ((Vb d (IHG))(GV G—l))
B * Ow

n—>0+

agrees with Kubo for free electrons, but is quite generally EXACT at T=0 for
interacting Bloch electrons with local current conservation (gauge invariance).




, O

K, = lim d3k/ Y iy ((Vk—
BZ — 00 Ow

77—>O+ 27T

(In G))(GVCG_1)>

® Simple manipulations now recover the result
unchanged from the free-electron case.

The fundamental Luttinger (1961) theorem
relating the non-quantized part of the
electron density to the Fermi surface
volume now has a “partner”. (in fact, its
derivative w.r.t. B)




