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LECTURE 1: INTRODUCTION and
EFFECTIVE HAMILTONIANS



1.1: INTRODUCTORY REMARKS
and 

MAIN THEMES 

To set the scene for this course one needs to clarify some of the important 
distinguishing features of large-scale quantum phenomena in magnetic systems. 
One crucial feature differentiates magnetic systems from superfluids or 
superconductors – spin current, unlike mass or charge current, is not conserved. 
This makes it harder to see quantum effects in transport phenomena than in 
superfluids (see however the lectures of Haldane, MacDonald, and Zhang). 
However magnetic systems provide new quantum effects, absent in superfluids, 
connected with spin phase- these are central to many of the lectures in this school. 
In this course we are interested particularly in subtle dynamical phenomena 
involving the quantum phases of many spins, & one has to be very careful about 
applying traditional ideas like linear response to analyse these. 

There is now a wealth of interesting experiments in this field, to be discussed in 
the 2nd and 3rd lectures (see also the lectures of Aeppli, Barbara, Christou, & 
Osheroff).  One of the key theoretical questions is how one can force magnetic 
systems to display large-scale quantum phenomena in the face of strong phase 
decoherence. This necessitates a proper theoretical understanding of 
decoherence, which is far less trivial than one would guess from much of the 
literature. 



SOME of the IMPORTANT QUESTIONS

1. LARGE-SCALE QUANTUM PHENOMENA in MAGNETIC SYSTEMS: 
interference, entanglement, coherence in the dynamics of spin, spin current, 

solitons, etc., in phenomena involving tunneling spins, spin networks, etc. 

2.  LOW -T EFFECTIVE HAMILTONIANS:   Fundamental understanding of relevant 
interactions in complex quantum systems – particularly at very low E and/or T, & 

where multi-spin interactions are involved.

3. DECOHERENCE:  Fundamental understanding of mechanisms of decoherence & 
how this translates into disentanglement dynamics. Touches upon basic issues in 

non-equilibrium physics, in stat mech, and in the interpretation of QM. Low-T spin 
dynamics in quantum regime, dynamics of nets, etc. A general field theoretical 
framework for decoherence?  

4. SOLID-STATE Q. INFORMATION PROCESSING:   A general understanding 
of “QUIP”, in terms of models of spin nets and/or Quantum walks.  Relevance of 

errors & error correction. Decoherence & QUIP. QUIP in magnetic systems?

5. EXPERIMENTS on COHERENCE, ENTANGLEMENT, & DECOHERENCE:   
Experiments & predictions in magnetic systems (wires, molecules, quantum spin 

glasses, other spin networks, plus SQUIDs & ion traps. What do they/can they show?

6. MATERIALS & APPLICATIONS:   What kinds of material should we be looking at, 
and how to make ‘designer quantum devices’? How can we suppress decoherence, 

what things can be built and how? 



LARGE – SCALE QUANTUM PHENOMENA
We are all accustomed to the idea of macroscopic quantum phenomena in superfluids and 

superconductors- things like superflow, the Meissner and Hess-Fairbank effects, the Josephson 
effects, etc.- and most dramatically, macroscopic quantum tunneling and coherence in SQUIDs. 
But can one envisage large-scale quantum phenomena in any other system?

NB: the initial discovery of these 
phenomena severely challenged 
theory. We now think we understand 
them using effective Hamiltonians & 
order parameters.



A BASIC PROBLEM in the FIELD

The standard apparatus of STATISTICAL MECHANICS,  RENORMALISATION GROUP, 
and EFFECTIVE HAMILTONIANS (along with things like linear response theory, 1- and 
2-particle correlation functions, critical points, etc.) works very well for static 
phenomena, and for systems which are near equilibrium and only weakly perturbed. 

It is NOT adequate when we have to deal with

(1) The dynamics of quantum phases – particularly when we are dealing with 
multi-particle entanglement phenomena. In this case very small interactions 
can play a crucial role, as can initial conditions, boundary conditions, etc.  
The separation of energy scales inherent in RG may be neither useful nor even 
applicable. We shall see this explicitly in some of the models.

(2) Systems far from equilibrium (or where equilibrium is irrelevant to the 
dynamics). As one lowers the temperature of a system, and/or progressively 
decouples it from its surroundings, it becomes ever harder to keep it in 
equilibrium with any bath – often we DON’T WANT TO. Moreover the bath itself 
is subject to manipulation, and is often time-dependent in non-trivial ways.    

So – we need to keep a sharp eye on 
(a) very low energy excitations & weak couplings
(b) the detailed quantum dynamics of the bath
(c) multi-particle (or multi-spin) phases.



Question: WHAT is  “DECOHERENCE” ?

E

When some quantum system with coordinate Q interacts
with any other system (with coordinate x) , the result is 
typically that they form a combined state in which there is
some entanglement between the two systems.     
Example: In a 2-slit expt., the particle coordinate Q couples to 
photon coordinates, so that we have the following possibility:

Ψo(Q)   Πq φq
in [a1 Ψ1(Q) Πq φq

(1) +     a2 Ψ2(Q) Πq φq
(2) ]

But now suppose we do not have any knowledge of, or control over, the photon states- we m
average over these states, in a way consistent with the experimental constraints. In the extre
case this means that we lose all information about the PHASES of the coefficients a1 & a2 (a
particular the relative phase between them). This process is called DECOHERENCE

NB 1: In this interaction between the system and its “Environment” E (which is in effect perf
measurement on the particle state), there is no requirement for energy to be exchanged 
between the system and the environment- only a communication of phase information.

NB 2: Nor is it the case that the destruction of the phase interference between the 2 paths m
associated with a noise coming from the environment- what matters is that the state of the 
environment be CHANGED according to the what is the state of the system. In fact, noise is n
necessary nor sufficient for decoherence, except under rather special circumstances.



WARNING:  3rd PARTY DECOHERENCE

Ex:  Buckyball decoherence Consider the 2-slit expt with 
buckyballs. The COM  

coordinate Q  of the buckyball does not couple directly to the vibrational modes 
{qk } of the buckyball- by definition. However  BOTH  couple to the slits in the 
system, in a distinguishable way.  

Note: the state of the 2 slits, described by a coordinate X, is irrelevant- it does 
not need to change at all.  We can think of it as a scattering potential, caused 
by a system with infinite mass (although recall Bohr’s response to Einstein, 
which includes the recoil of the 2 slit system).  It is a PASSIVE 3rd party.

This is fairly simple- it is decoherence in the dynamics of 
system A (coordinate Q) caused by indirect entanglement
with an environment E- the entanglement is achieved via a
3rd party B (coordinate X).  

ACTIVE 3rd PARTY: Here the system state correlates with the 3rd party, which then goes on to change the 
environment to correlate with Q.  We can also think of the 3rd party X as PREPARING the states of both system 
and environment. Alternatively we can think of the system and the environment as independently measuring the 
state of  X.  In either case we see that system and environment end up being 
correlated/entangled.

Note the final state of  X  is not necessarily relevant- it can be changed in an 
arbitrary way after the 2nd interaction of  X.  Thus X  need not be part of the 
environment. Note we could also have more than one intermediary- ie., X, Y, 
etc.- with correlations/entanglement are transmitted along a chain (& they 
can wiped out before the process is finished). 



Wernsdorfer et al, PRL 82, 3903 
(1999);  and

PRL 84, 2965 (2000); and 
Science 284, 133 (1999)

R. Giraud et al., PRL 87, 057203 (2001)

H.M. Ronnow et al., Science 308, 389 (2005)

SOME  
EXPTS

Expts on
the quantum 
phase 
transition 
in LiHoF4

RIGHT: Expts on
Tunneling magn. 
molecules & Ho 
ions 

LEFT: ESR on Mn
dimer system
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Mn-12 tunneling 
molecules

S Hill et al, Science 302, 
1015 (2003) 

A. Morello et al., PRL 93, 197202 (2004) 



EXPERIMENTS in Superconducting Qubits

τφ
−1  ∼  ∆ο g(∆,T) coth (∆/2kT)

(1) The oscillator bath (electrons, photons, phonons) decoherence 
rate:

(Caldeira-Leggett). This is often many orders of magnitude 
smaller than the experimental decoherence rates.

(2) The spin bath decoherence will be caused by a combination 
of charge & spin (nuclear & paramagnetic) defects- in 
junction, SQUID, and substrate.  

The basic problem with any theory-experiment 
comparison here is that most of the 2-level systems are basically just junk (coming from impurities 
and defects), whose characteristics are hard to quantify. Currently 

8 groups have seen coherent 
oscillations in superconducting 
qubits, and 2 have seen 
entanglement between 
qubit pairs.  

1/τφ = ∆ο (Eo/8∆0)2

RW Simmonds et al., PRL 93, 077003 (2004)I Chiorescu et al., Science 299, 1869 (2003)



1.2: GENERAL REMARKS 
on

EFFECTIVE HAMILTONIANS
In the usual discussions of effective Hamiltonians, one discusses a hierarchy of 
energy scales, and proceeds to ‘integrate out’ the high-energy modes down to 
the energy scale of interest, in order to derive an effective Hamiltonian. This is 
done either perturbatively, using renormalisation group theory (or some 
equivalent), or by separating out ‘fast’ and ‘slow’ modes (using, eg., a Born-
Oppenheimer procedure). The assumption is that such a ‘renormalisation’
procedure does not miss out any of the physics (a highly questionable 
assumption in general). 

One easily enumerates the energy scales in magnetic systems, & derive effective 
Hamiltonians using standard methods (see, eg., lectures of Aharony & Sawatzky) 
if one is trying to derive phase diagrams and other macroscopic equilibrium 
properties. However for the dynamics it has serious shortcomings, because very 
low-energy excitations play a crucial role, & because at low T the systems are 
usually very far from equilibrium. The key low-energy excitations in magnetic (& 
other solid state) systems are localised – defects, and localised spin excitations 
(paramagnetic, nuclear, etc), and these typically behave as a bath of two-level 
systems (the ‘spin bath’). The usual ideas of linear response and fluctuation –
dissipation theorems are often very badly wrong.  

Of great current interest is the study of effective Hamiltonians describing ‘spin 
nets’ of ‘qubits’ interacting with spin and oscillator baths. More exotic models 
are also of interest, particularly those describing magnetic solitons, or those 
relevant to quantum computation, or to topological quantum fluids.



Scale out
High-E 
modes

Orthodox view 
of Heff

Flow of Hamiltonian & Hilbert space with UV cutoff

Ec

The RG mantra:   
RG flow & fixed points
low-energy Heff
universality classes

Ωo

Heff (Ec )  Heff (Ωo)

|ψi>  Hij(Ec)  <ψj|      |φα>  Hαβ(Ωo) <φβ|



(Ec)

(Ωo)

MORE ORTHODOXY

Then, we suppose, as one goes to low 
energies we approach the ‘real vacuum’; the approach to the 
fixed point tells us about the excitations about  this vacuum. 
This is of course a little simplistic- not only do the effective 
vacuum and the excitations change with the energy scale 
(often discontinuously, at phase transitions), but the 
effective Hamiltonian is in any case almost never one which 
completely describes the full N-particle states.

Continuing in the orthodox vein, one 
supposes that for a given system, there 
will be a sequence of Hilbert spaces, 
over which the effective Hamiltonian 
and  all the other relevant physical 
operators (NB: these are effective 
operators) are defined. 

Nevertheless, most believe that the basic 
structure is correct - that the effective 
Hamiltonian (& note that ALL 
Hamiltonians or Actions are 
effective) captures all the basic physics



MICROSCOPIC ENERGY SCALES 
in MAGNETS

The standard electronic coupling energies 
are (shown here for Transition metals):

Band kinetic & interactions:    t, U
Crystal field:                              DCF
Exchange, superexchange       J
Spin-orbit:                                  lso
Magnetic anisotropy                 KZ
inter-spin dipole coupling         VD 
p/m impurities (not shown)     J, TK

which for large spin systems lead to

Anisotropy barriers:                EB ~ EKZ
small oscillation energies      EG ~ KZ
Spin tunneling amplitude           ∆0

Also have couplings to various “thermal 
baths”, with energy scales:

Debye frequency:                      θD
Hyperfine couplings                  Aik
Total spin bath energy          E0 ~ N1/2ωk
Inter-nuclear couplings             Vkk’

NOTE: all of these are parameters in effect
Hamiltonians for magnets at low T.



ENERGY SCALES 
in SUPERCONDUCTORS

Again one has a broad hierarchy of energy 
scales (here shown for conventional s/c):

electronic energy scales:     U, εF, (or t)
phonon energies:                    θD
Gap/condensation energy      ∆BCS
p/m impurities (not shown)    J, TK
Coupling of ψ(r) to spins:       ωk
Total coupling to spin bath:   E0 ~ N1/2ωk

A superconducting device has other 
energy scales – eg., in a SQUID:

Josephson plasma energy     Ω0
J

Tunneling splitting                 ∆0

These are of course not all the energies 
that can be relevant in a superconductor. 
However we note that in general magnetic 
systems have a more complex hierarchy 
of interactions than a superconductor.



REDUCTION to a LOW-ENERGY OSCILLATOR BATH FORM

Heff

Classical DynamicsQuantum Dynamics

Suppose we want to describe the dynamics of some quantum system in the presence of decoherence. 
As pointed out by Feynman and Vernon, if the coupling to all the enevironmental modes is WEAK, we 
can map the environment to an ‘oscillator bath, giving an effective Hamiltonian like:  

Feynman & Vernon, Ann. 
Phys. 24, 118 (1963)

Caldeira & Leggett, Ann. 
Phys. 149, 374 (1983)

AJ Leggett et al, Rev Mod 
Phys 59, 1 (1987

A much more radical argument was given by Caldeira and Leggett- that for the purposes of 
the predictions of QM,  one can pass between the classical and quantum dynamics of a quan
system in contact with the environment via Heff. Then, it is argued, one can connect the class
dissipative dynamics directly to the low-energy quantum dynamics, even in the regime where
quantum system is showing phenomena like tunneling, interference, coherence, 
or entanglement; and even where it is MACROSCOPIC.

This is a remarkable claim because it is very well-known that the QM wave-
function is far richer than the classical state- and contains far more information.     



CONDITIONS for DERIVATION of OSCILLATOR BATH MODELS

(1) PERTURBATION THEORY
Assume environmental states and energies 
The system-environment coupling is 

Starting from some system interacting with an environment, we want an effective 
low-energy Hamiltonian of form

Weak coupling:  where

In this weak coupling limit we get oscillator bath with 
and couplings

(2) BORN-OPPENHEIMER (Adiabatic) APPROXIMATION
Suppose now the couplings are not weak, but the system dynamics is SLOW, ie., Q
changes with a characteristic low frequency scale Eo . We define slowly-varying 
environmental functions as follows:     

Quasi-adiabatic eigenstates: Quasi-adiabatic energies:
‘Slow’ means

Then define a gauge potential 

We can now map to an oscillator bath if 
Here the bath oscillators have energies

The oscillator bath models
are good for describing
delocalised modes; then

Fq(Q) ~ O(1/N1/2)
(normalisation factor)

and couplings 



WHAT ARE THE LOW-
ENERGY EXCITATIONS IN 

A SOLID ? 

DELOCALISED
Phonons, photons, magnons, electrons, ………These
always dominate at high energy/high T

LOCALISED
Defects, 
Dislocations,
Paramagnetic

impurities,
Nuclear Spins,
……. These 
always 
dominate at 
low T

.
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At right- artist’s view
of energy distribution 
at low T in a solid- at 
low T most energy is in 
localised states.

INSET: heat relaxation 
in bulk Cu at low T



How do REAL Solids (%99.9999) behave at low Energy?

Results for Capacitance (Above) &
Sound velocity and dielectric absorption
(Below) for pure SiO2 , at very low T

In almost all real solids, a combination 
of frustrating interactions, residual 
long-range interactions, and boundaries 
leads to a very complex hierarchy of 
states. These often have great difficulty 
communicating with each other, so that 
the long-time relaxation properties and 
memory/aging effects are quite 
interesting- for the system to relax, a 

large number of objects (atoms, 
spins, etc.) must simultaneously 

reorganise themselves . 
This happens even in 
pure systems  

A model commonly used to 
describe the low-energy 
excitations (which is 
certainly appropriate for 
many of them) is the 
‘interacting TLS model’, with 
effective Hamiltonian:

ABOVE: structure of 
low-energy eigenstates 
for interacting TLS model, 
before relaxation



QUANTUM ENVIRONMENTS of LOCALISED MODES
Consider now the set of localised modes that 
exist in all solids (and all condensed matter 
systems except the He liquids). As we 
saw before, a simple description of 
these on their own is given by the 
‘bare spin bath Hamiltonian’

where the ‘spins’ represent a set of 
discrete modes (ie., having a restricted 
Hilbert space). These must couple to 
the central system with a coupling of 
general form: 

We are thus led to a general 
description of a quantum 
system coupled to a 
‘spin bath’, of the form 
shown at right. This is 
not the most general possible 
Hamiltonian, because the bath 
modes may have more than 2 
relevant levels. 



Feynman & Vernon, Ann. 
Phys. 24, 118 (1963)

PW Anderson et al, PR B1,
1522, 4464 (1970)

Caldeira & Leggett, Ann. 
Phys. 149, 374 (1983)

AJ Leggett et al, Rev Mod 
Phys 59, 1 (1987)

U. Weiss, “Quantum 
Dissipative Systems”

(World Scientific, 1999) 

A qubit coupled to a bath of 
delocalised excitations: the 
SPIN-BOSON Model

Suppose we have a system whose low-energy dynamics truncates to that
of a 2-level system τ. In general it will also couple to DELOCALISED modes
around (or even in) it. A central feature of many-body theory (and indeed 
quantum field theory in general) is that 

(i) under normal circumstances the coupling to each mode is WEAK (in fact ∼ Ο (1/Ν1/2)), where 
N is the number of relevant modes, just BECAUSE the modes are delocalised; and

(ii) that then we map these low energy “environmental modes” to a set of non-interacting 
Oscillators, with canonical coordinates {xq,pq} and frequencies {ωq}. 

It then follows that we can write the effective Hamiltonian for 
this coupled system in the ‘SPIN-BOSON’ form:

H (Ωο)  =  {[∆οτx + εοτz]                                                     qubit
+  1/2 Σq (pq

2/mq + mqωq
2xq

2)                        oscillator
+   Σq [ cqτz + (λqτ+ + H.c.)] xq  } interaction

Where Ωο is a UV cutoff, and the {cq, λq} ~ N-1/2.



A A qubitqubit coupled to a bath ofcoupled to a bath of
localisedlocalised excitations: the excitations: the 

CENTRALCENTRAL SPINSPIN ModelModel

P.C.E. Stamp,  PRL 61, 2905
(1988)

AO Caldeira et al.,  PR B48,
13974 (1993)  

NV Prokof’ev, PCE Stamp, J 
Phys CM5, L663 (1993)

NV Prokof’ev, PCE Stamp,
Rep Prog Phys 63, 669 (2000) Now consider the coupling of our 2-level system to LOCALIZED modes.These have a 

Hilbert space of  finite dimension, in the energy range of interest- in fact, often each 
localised excitation has a Hilbert space dimension 2. Our central Qubit is thus coupling to a set of effective spins; 
ie., to a  “SPIN BATH”. Unlike the case of the oscillators, we cannot assume these couplings are weak.

For simplicity assume here the bath spins are a set {σk} of 2-level systems, which interact with 
each other only very weakly (because they are localised). We then get a low-energy effective 
Hamiltonian in which the central qubit couples to all of these. Since the spectral weight of the
oscillator bath excitations vanishes at low energy, the spin bath always dominates at low 
energies! The Hamiltonian is:

H (Ωο)   =   { [∆τ+ exp(-i Σk αk.σk)  +  H.c.]  +  εοτz               (qubit) 
+ τz ωk.σk +  hk.σk                    (bath spins)

+   inter-spin interactions 

Now the couplings ωk , hk to the bath spins (the
1st between bath spin & qubit, the 2nd to external 
fields) are often very STRONG (much larger than 
the inter-bath spin interactions or even than ∆).



Heuristic Derivation of
“CENTRAL SPIN”

Effective hamiltonian
This is done using instanton methods-but can be 
explained in pictures. To be definite do this for a 
SQUID and a “spin bath”.
(i) Start with the k-th bath spin, and define the 

vector field

 γk(τ)  =  hk mk + ωk lk(τ)

which varies as shown, during the transitions of the SQUID qubit. The ‘stationary states’ of this 
define our qubit basis states, and the fields acting on them (including any longitudinal bias εο).

(ii) Define the “transfer matrix”

where the scalar φk & the vector  αk are both complex. If we incorporate the scalar phase into a 

renormalised amplitude ∆ then we get the non-diagonal ‘qubit flip’ term. 

(iii) Add the bath 

inter-spin interactions 



PARTICLE coupled to a BATH

X

V(x)

In many problems the central system reduces 
to a ‘particle’ (ie., a single degree of freedom) 
moving in some potential. The general 
Hamiltonian is still

And all the interest is in varying the kind of 
bath we have, and the different sorts of 
potential. Examples are legion.

The INTERACTING ‘SPIN NET’

By this we mean a set of spins/qubits interacting 
Via a set of CONTROLLABLE couplings; they also 
interact with spin & oscillator baths. A typical 
example is the ‘DIPOLAR SPIN NET’:  

H  =  Σj (∆j τj
x + εj τj

z)   +   Σij Vij
zz τi

z τj
z

+   HSB(Ik)   +    Hosc(xq)     
+   interactions

For spin systems interacting with each other via 
dipolar forces, and individually with a nuclear bath, 
this leads to the picture at right.  



Remarks on NETWORKS- the QUANTUM WALK

Computer scientists have been interested in RANDOM WALKS 
on various mathematical GRAPHS, for many years. These 
allow a general analysis of decision trees, search algorithms, 
and indeed general computer programmes (a Turing machine 
can be viewed as a walk).  One of the most important 
applications of this has been to error correction- which is 
central to modern software.

Starting with papers by Aharonov et al (1994), & Farhi & Gutmann (1998), the same kind 
of analysis has been applied to QUANTUM COMPUTATION.  It is easy to show that many 
quantum computations can be modeled as QUANTUM WALKs on some graph.  The problem 
then becomes one of QUANTUM DIFFUSION on this graph, and one easily finds either 
power-law or exponential speed-up, depending on the graph. Great hopes have been 
pinned on this new development- it allows very general analyses, and offers hope of new 
kinds of algorithm, and new kinds of quantum error correction- and new ‘circuit designs’.

Thus we are interested in simple walks described by 
Hamiltonians like

which can be mapped to a variety of gate Hamiltonians, 
spin Hamiltonians, and interacting qubit networks. Most 
of all we want to understand how decoherence affects 
the quantum walk dynamics; ie., we couple oscillator 
and spin baths to the walker. 



Decoherence in Topological Quantum Fluids 

Certain kind of spin net have very interesting topological 
properties, and unconventional excitations exist in them. 
They are of central interest for strongly-correlated 
electronic systems (FQHE, 1-d junctions, 2-d spin liquids, 
etc.) & in topological quantum computation.

We learn a great deal about these by studying a 
2-d lattice ‘dissipative WAH’ model, with  

The underlying symmetry 
in the 2d parameter space 
is SL(2,Z), the same as that 
of an interacting set of 
vortices and charges.  This 
is the same symmetry as 
that possessed by a large 
class of string theories. 

Here V(x) is periodic, and A(x) gives a uniform flux per 
plaquette. This model, & the simpler Schmid model (where 
flux = 0), have crucial connections with string theory, & 
have recently been re-evaluated with surprising results.



THAT WAS JUST THE BEGINNING……..


