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3.1: INTRODUCTION to QUANTUM VORTICES

Here a quick survey of the many different kinds of quantum ‘string’ excitation
exist, ie., 1-dimensional topological excitations of some quantum field. The
low-T laboratory is often the best place to study these, and many quite
iInteresting ideas about the role of stringy excitations in elementary particle
physics and cosmology have come from such studies.

Finally it is noted how the fundamental question of how quantum vortices
MOVE (ie., their equation of motion) is still unanswered. This is despite some
40 years of debate.



VORTICES in SUPERCONDUCTORS

Superconductors show the Meissner effect (expulsion of flux), but
Type-11 superconductors, flux penetrates through quantized vortices, W

flux @, =h/e. The flux is confined by screening currents to a length sca
A (penetration depth). In thin films (thickness &), the screening currents
spread to a much larger length A = X%/{

Magnetic lines of force

Outside the superconductor, the flux
balloons out into space, and can be
photographed using Aharonov-Bohm
phase effects.

In an applied field the vortices
Supercondustor in a type-Il superconductor form a
lattice, which feels a Lorentz force
in a field, but which is plnned by
impurities, defects,
etc..

Lorentz force




VORTICES in superfluid “He
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In superfluid 3He a huge variety of o PSS
vortices can be seen- their propeties are 0
observed using sensitive NMR measurements, |

sometimes in rotating cryostats. The coherence length is long (15 nm at
T=0) and many of the core textures are not even singular (and dependin
on which phase one is in there will be many different possible vortex — @
phases). The cores are thus full of bound or resonant quasiparticle states.
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Vortices in Superfluid SHe-A
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VORTICES In
Neutron Stars

These can only be seen
very indirectly, using the
So-called “glitch’
phenomenon. There are
many gaps in our
understanding, because of

incomplete knowledge of the nuclear

Type I 5.C.
“Mixed State”

equation of state at these densities
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“STRINGS” & the UNIVERSE
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WHAT is the EQUATION of MOTION of a QUANTUM VORTEX?

Vortex dynamics in neutral superfluids (both bosonic, like 4He, or fermionic, like He) has
been discussed for over 50 years. In classical hydrodynamics, a Magnus force exists between the
vortex and the superfluid, transverse to their relative motion. The quantum Magnus force Fj;
is proportional to the vector cross product p,k X (v, — v,), where the vector K gives the vortex
circulation, ps(T) is the superfluid density, and v,, v, are the vortex and superfluid velocities; this
force comes from a Berry phase in the many-body wave-function [6]. There are also forces on the
vortex coming from its interaction with normal fluid quasiparticles- in 1964 lordanskii [7] derived
a transverse force Ff o< k x (v, — vy), where vy is the normal fluid velocity, and there is also a
longitudinal dissipative force Fll o< (v,—vy). Similar forces have been discussed for superconducting
vortices on earth and in neutron stars, and for cosmic strings.

Although there is little argument about the Magnus force, some of the other forces are highly
controversial- arguments over their magnitude have continued for 40 years, and the very existence of
the Tordanski force has been denied (again, on the basis of a Berry phase argument), causing a lively
debate. The problem is further complicated by questions about the effective mass of a vortex, for
which estimates vary enormously. Experiments have not resolved these questions- individual vortices
are almost impossible to observe in neutral superfluids (unless one decorates them with electrons,

which completely alters their structure), and in superconductors, vortices appear in lattices, and
are often subject to pinning forces from defects and impurities. It is quite extraordinary that so

fundamental a question as the basic dynamics of a quantum vortex is still unanswered.
One can ask similar (and even more difficult) questions about domain walls.

However, superfluids are not the only systems we can look at.....



3.2: QUANTUM DYNAMICS
of a
MAGNETIC QUANTUM VORTEX

Here we look at the problem of a magnetic vortex, where (i) one can get
a much better theoretical handle on the fundamental question posed in
the last section, and (ii) where experiments should be a lot easier. The
answer turns out to be surprising - the magnon environment gives a
non-local dissipation which causes strong long-time memory effects.
Thus the real dynamics of the vortex is much more complex than was
previously thought.
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Quantum Vortex in 2D Easy-plane Ferromagnet

L. Thompson, PCE Stamp, to be published

L Thompson, MSc thesis (UBC)
Lattice Hamiltonian H =— Y JS;-8; +ZK

<2,9>
erJ (
Continuum Limit H = / ﬁS) + KS?
In Lagrangian: wp = S/—cosé)gb (Berry phase)
N=2 ho t /ﬂ
S .._.\'.'/._» S VORTEX PROFILE
. & S
L Du(r) = g€ +0
2
MAGNON SPECTRUM cos 0, (r) — p{ 1—c (—) ,  r—0;
w = ckQ Co/ T exp(—5-), 7 — 00
Q* = k* + k?
Core Radius J/2K
kK2 = 2K /J

Spin Wave velocity ¢ = S.Ja?



VORTEX DYNAMICS

Density matrix propagator  p(Q1, Q2;t) = K(Q1,Q2;Q1, Q5;t, ") p(Q1, Q%;t, 1)
Qo Qb o o
K(Qa, Qh:Q1, Q.1 = / Dq / Dq e /MSoldl = Sola) Flq o]
1 1

— 1
Influence Functional F = exp (%‘I) = h—zr)

For the Magnetic vortex we find

F = exp— / ek / / dtds (il X(1)] — flY (1))
(

Och(t_s)f kI X(s)] = ag(t — s)f k[Y(s)])

Effective interaction k(t—s) ( —iwp (t—s) 2 cos wi(t — s) )

227TQ’X Dk Sk X
a? kQr,

Effective coupling Jx [X]



KINETIC/BERRY PHASE TERMS
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Influence Functional: Phase terms

T
1 . D
Total Phase o = /0 dt§ﬂxﬂj(X@v(t)Xj(t) - Yi(t)Y;(¢))

+‘I)H +Oa + Dy

T t
(1) Longitudinal Phase terms b = / dt/ dS(’}ff(AXX)Xi(s) - X (t)
0 0

Axx = |X;(t) — X;(s)], etc.
,-\r,rj (t _ S, A) — S Jﬂ-qzq‘}/\kdk COs Wo (t S)JO(kA)

| 2 Q2r2
Iy S?Jmqiq; coswo(t — s)Jo(kA)
YAt —s,A) = ijk’dk Q%2

ﬁ)f (t - S, A) - *ﬁfﬁ(t - S, A)



(2) ‘Mixed’ memory term: ®p = / dt/ dsvi (Axx)Xi(s )(X( ) - €:5)

)-€;;) + Y2 and XY terms

(3) Transverse Damping term & |

/ dt/ dS'M (Axx)Xi(s )(X (s)-€1ij)

ehj) + Y2 and XY terms

It immediately becomes clear that the real dynamics of a vortex, magnetic or
otherwise, has both reactive and dissipative terms that are more complex than
those that have been discussed so far.

We note that there is definitely a transverse dissipative force having the
symmetry of the lordanskii term! If we have more than one vortex these have
non-local contributions.

There are however other terms which come in, not discussed ever before for
vortices in superfluids or superconductors- these should however exist in these
systems as well....



SHAPE of a MOVING VORTEX

The profile of the vortex slowly distorts as it
moves more quickly; the in-plane spins are
forced slightly out of the plane, even some
distance away from the vortex core. This
distortion is very important - not only does
it increase the energy of the vortex (leading
to a kinetic energy term, and defining the
effective mass of the vortex), but it also
creates an extra scattering potential for the
spin waves in the system, contributing to the
forces acting on the vortex.




Influence Functional: Damping/Q Noise terms

T pt
Multi-vortex damping/noise term: 1 = // dtqu(Aij(tS)Xi(t).xj(s)jo(kAXin)
0J0
FA (- 9) (Xalt) - 635)(X5(9) - &35)

—(X;(t) x €;5) - (X;(s) X éij)).]g(kAXin)) + etc.

hmSq;q; coth 2ess
with propagator: A;;(t —s) = 1o /dk 2?2

‘ Wy coswr(t — s
2a2 Q3r? k k( )

This gives a “quantum noise” term on the right hand-side of a Quantum
Langevin equation. However the noise is not only non-Markovian (highly
coloured in fact) but also non-local.

CONCLUSIONS
(1) There is no reason whatsoever to exclude transverse dissipative forces. In fact
they are even more complex than previously understood
(2) The equations of motion for an assembly of vortices involve all sorts of forces
(non-local in time and space) that have not previously been studied.



EXPERIMENTS on VORTICES in MAGNETS?

Example of Time-resolved Imaging
In magnetic disc (courtesy M Freeman)
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3.3: QUANTUM DYNAMICS of DOMAIN WALLS

The interesting thing about a domain wall is that the really thick & soft
(ie., flexible) walls are the lightest ones, and therefore the ones most
likely to show large-scale quantum behaviour. Naive estimates then
indicate that really very large walls, containing ~ 1012 spins, should have
large quantum fluctuations and show, eg., tunneling behaviour. Walls
themselves can have interesting quantum numbers, like chirality, and also
have interesting internal ordering and modes and internal modes.

However one finds that the effect of decoherence can be rather drastic.
For example, both phonons and transverse spin bath modes quickly Kill off
chirality fluctuations. In spite of this, detailed theoretical work does predict
Tunneling of very large domain walls, and some evidence for this has
appeared in experiments on magnetic wires (a great deal more needs to be
done). This tunneling is on a large scale, similar to that found in SQUIDs.
However spin bath effects on magnetic tunneling tend to be far more serious
than that in SQUIDs (curiously, spin bath effects on COHERENCE in SQUIDs
are very large, as already predicted a very long time ago).



l
Consider the Hamiltonian %=5 Jdr [J(VM)z_KiI(M1)2+K_L(M3)2_%Q(Hdm+He) |

Where in the flat wall approximation K, =K, , ‘HloMS/Z

We then have the wall profile %= C tanh <x3;Q(f)>
B
3 with X= %1 (chirality)

a8 (1 B Q%r)) coch (xs - Q(t})
2 =2 8¢3 As and C=zx1 (“charge”)

o Q) (o (X3= Q)
200 sech( 7, )
X3

One then has a wall thickness Agz={(J/K,)'?

(in lattice units)
and a wall surface energy 00=4(JK|4)1/2

. , : K, 1"
Now let us assume slow wall velocities Q(7) << ¢y , where cU=A;"’ (JK )'* H ] +—~L—} — 1}

is the ‘Walker velocity'. 0 K,
Then the wall behaves as a particle, with effective Hamiltonian H,=1M, Q?.
2 2
The effective massis M, = ,S”‘M"U,,[ : " } per unit area.
PAIK )T L+ K /K =1

- PCE Stamp, PRL 66, 2802 (1991)
- G Tatara H Fukuyama, PRL 72,
One often assumes K. ~#oM3/2> K| so that Co=HoYeAMo/2 772 (1994)

) ] . . - M Dube PCE Stamp
2 )
The effective mass is then M, =28, /u,y;4 Per unitarea J Low Temp Phys 110, 779 (1998)




RELEVANT TERMS in the HAMILTONIAN

Assume the lattice form L =SZ%.'COSG_;(I)+LS¢
j

—Hy —Hem — Himp— Hyer

(1) Electronic Spin terms Huy =% (_Z)ijsi'sj+ %KZSfo+Hdip
I J
i 1
Often go to the continuum form %=5 Jdr [J(VM)z—K1|(M1)2+KL(M3)2—%2(Hdm'l'He) ‘M
where in flat wall approximation: K, =K, , ""ﬂoMS/z

h wx,
2¢(w)

1/2
(2) Photon-spin interactions H,, =fd3rz ] [éii- M (r, 1)1

kA

X [an—af—n] .

(3) Spin-phonon interactions Ly, = —jd3r A Uy (r)(rig(x) iy (r) — iy my)
+ Ryietmn Uy(r) Upg (2 )1, (x) 10, (1) — 10, 1)) U ={0r 1ty + 0,uy)/2

(4) Static impurity/defect pinning potential ¥{(Q) = — ¥V, sech*(Q/A5)

(5) Dynamic impurities (Nuclear spins, paramagnetic impurities)

N
H=H,+ Y wgs; L+3Y Y vt
k=1 k K



WALL TUNNELING PROBLEM

The naive Hamiltonian is
H,=31M,0%+ V(Q)—-28,1oMH,.Q
ViQ)y=—V¥, SeCh?'( Q/15)

Escaping ‘particle’
v(Q)

V
One easily finds a ‘coercive field’ o H \/ 3 AS, M,

e=1-H,/H,

é Jeli2
2

Now assume we are close to the coercive field. Define
Then the potential is P(¢) ~ (hy, ugH,) Noe** with escape point Q=
This wall contains a total number of spins n,=iS, /a*

30 5c)

172
Qe Boenn
nn h

Then the naive tunneling rate is given by T, _[

172
with exponent: 130(5) -_wﬁ w? (MoH,)'?e* < N, . g’
h 5 ? MO
: 1 8
The exponent can also be written as  — Bo(e) =15 — M, Q,0;
: 3 \/5 -
with frequency Qg =¥ - (#o)’g)z (MoH,)&'? The crossover to tunneling occurs

at a temperature  kgTo~ Q,/2n



PUTTING IN SOME NUMBERS

Iron Garnet {YIG) and nickel. YIG is an insulator with a bce cubic struc-
ture, a saturation magnetisation poM;=024T and with exchange and
anisotropy energies J=1x 107" J/m and K, =580 J/m". The width of the
domain wall is 1 =860 A, with a mass per unit area 2 x 10~ kg/m?. Nickel
is a conductor, again with a cubic structure. The saturation magnetisation
HoMy=0.6T, with exchange and anisotropy J=3x10"!'J/m and K, =
4500 J/m>, giving a domain width A=500 A and a mass 6 x 107 !9 kg/m?2

Now let N, =106

Assuming ¢= 1032 and H,./M,=0.01, we get B,/h~ 20,
Q,~6x10%sec ™! so that " ~ 200 sec !,



BASIC FORM of COUPLINGS

M .
(1) OSCILLATOR BATH: LCL=7 Qz— Q) += ka(xk-%-wkxk)
This gives a term: _Z [ F{(Q, Q) Xy + G (Q, Q) Xy | + ®(Q, Q)
1 ruT yr k
AS=7 dr| dt ot —HQ(T)— Q7))
2 Jp 0
I ( - _"'l'"T d J em{r i H J( )7E Ci S
with a(t—1') = o Zj w wJ(w) 0Tt and coupling w) =7 Y — (o — wy)
(2) SPIN BATH: u(Q)
HSB= H{)(Ps Q) + HB({Gk} ) + Hint(Ps Qs Gk} )
. Q
We have the standard bath Hamiltonian “"'\\
Hy({o ) =Y h -0, +31> Y Vil.oral
k k kK

The interaction takes the form:

Hin(P, Q0,1 ) =) (Fi(P, Q) ai + 3(F (P, Q) oy +F, (P, Q) ;"))

k
Typically we introduce an effective potential U(Q) =3, Fi(Q) o}

which fluctuates over a distribution:  W(U)~(2rE2)~ 2 exp[ — U*/2E2]



WALL-MAGNON INTERACTIONS

We assume a ‘collective coordinate’ decoupling of the wall profile from the spin
waves, ie., a separation M(r)=My(r, @)+ 6M(r)

The effective Lagrangian takes the form, in terms of Holstein-Primakoff bosons:

Lmag=fd3r leg(Vb)z—-—Ao 1 —sech? {-] ]btb

1/2 . .
-—ihyK[é%-{] sech [5—] [tanh [i —Av|(bt-b)bts
Is A A
oM (r)= —4y,b™(r) b(r)
These bosons are defined 2 2, .. 12
along the local axes defined M .(r)=(4y,M,) (I —ﬁob (r) bm) b(r)
by the wall profile: 5 2
OM _(r) = (4y,M,)'? b*(r) (1 —f bﬂr)b(r))
0
with M _(r)=0M,(r) £ oM (r)
The key point is that quadratic interactions S
with magnons cause no dissipationor e e
decoherence; one needs TRIPLETS of E - (6,454 )
magnons to do this. The triplets involve . P- (q11+ 222 +83|3,
combinations of wall & bulk magnons, & W — P, E
give a dissipation rate at low velocity of M e
SR
~_ Aw KT | —agkT
n(T) - W NE 3 Yo e +
16m<y-r” | Ag et




WALL-PHONON INTERACTIONS

M Dube, PCE Stamp, J Low Temp Phys 110, 779 (1998)

Free phonons %X, 7) =3 p,u; +3Cya Uy Uiy with U, =(8,u,+ 8,u,)/2
Interaction: . — _J’d?‘r A g Uy (0)(rig(x) vty (x) — i)

117 /ive 3
+ Rt Uy (1) Upg (1)1, () i, (1) — 112 #1%) Here C~10"J/m

—Splu] —5;[h, u]
e*&ﬁfﬁll =€—Sﬂ[m] j D[ll] e —coly ! u
{ D[u] e~ Solv

These contribute to an effective action

One-phonon couplings Two-phonon couplings

. i l/T . . ] A l/T ii Y. T — il w. )T
SPluth]=s4,TY ¥ [ dren e sy —q) SELu ] = —Ry T2Y, T [ dr etk @ity vap
2 v g0 m' kk' "0
X [qa Ua( Qs i0,) + G4 1, (G, i0,)] X M —k =K' ) ko ta K, iw,) + kg u,(k, iw,)]
- X [ Ky tp (K, i0},) + kg up (K, i) ]
’ ~
, \
PR
, N
Matrix elements .#,(q) = | d e/ (1, (X) 1, (1) ~ 13 1) NN
1
| l’ We see that this problem is complex because we again have to
\, take account of non-linear terms in the coupling - in fact the
¥ calculations show that interactions with pairs of phonons (above)
7t and 4-phonon scattering processes (left) are crucial.
Lo The phonons also completely suppress CHIRALITY Fluctuations
7 .'I (thus these are suppressed even if we have no spin bath). For all

details see reference above.



EFFECT OF NUCLEAR SPINS & PARAMAGNETIC IMPURITIES

One deals with both of these in the same way. The key here is that this is the spin bath, &

SO it can cause a great deal of decoherence.

N
Let’s take the interaction with nuclear spins: H=H,+ Y @, L+3Y > Vi Ii14
k=1 k Kk

As we saw before, we should split this into longitudinal & transverse parts. With some
algebra we transform this to an interaction between nuclear spins & the domain wall

coordinate Hin(©Q, {Ik} )= ”Hint + J_I—Iint

N d3
where "Hipe= 3 wkf -y—ré(r——rk)((MW(r, Q) I —My-1,) + I oM (r))
k=1 g

N 1 X d3r B
Hi=5 ¥ o [ S50 =0 )M, (0} I + M _(v) IF)
2.2 Ve
We then find that one depends on the chirality, & the other on the topological charge
Longitudinal: I fy Bloch( 0 {lk})=w0M° i jd-"‘r or—ry)
Te k=1
X ((1 — C tanh (x; — Q>>+5m“,[r)> Iy
Ag
N _
Transverse: LH Pl g, {lk}}=w§jw° D jd‘”‘r d(r—rk)(x sech (x3) Q)(I,;“ +17)
g k=1 “B

+(om_(v) 1)} +om  (r) I, ))

The transverse spin bath fluctuations couple to the chirality - we already saw how
crucial this is in studying the spin net.
The longitudinal term oM. N Xam 0
gives our effective potential: uQ) = ‘; ¢y Id3r§[r~rk3<l —Ctanh( 3} )) Iy
-4 k=1 *8




MQT in Magnets: Theory vs. Experiment.

S0, can We get LLarge Scale Quantum Phenomena with these solitons?

Experiments in Ni wires
and in large particles
bore out the theory

Example:

Initial theory on deomain wallsishowed that any: QUANTUIVI
SOLITON n amagnet should shiew large-scale guantim
Propertiesi— provided the deceherence could laesuppressed.
Quaniitatvepredictions cotldlseimadernere-indicatnoftaat
Insomesituatensimagnenc domaipwalisicontaininoiup te
10 %spinsishotidieerabierto tunnel

FiH)

E {arb. units)
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|
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1

THEORY: P.C.E. Stamp, PRL 66, 2802 (1991)
M.Dube, P.C.E.Stamp, JLTP 110, 779 (1998)

EXPT:
K. Hong,N. Giordano, Europhys. Lett.36, 147 (1996)
W Wernsdorfer et al. PRL 78, 1791 (1997)
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Notice the problem - there is a very wide dispersion,
which is caused by the interaction with the spin bath
(which turns out to be a combination of paramgnetic
O impurties and nuclear spins).




Macroscopic Quantum Tunneling (MQT) in SQUIDs: Theory vs Expt.

It is interesting to compare with this previously studied phenomenon. It was shown by Leggett that
essentially all previous arguments against large-scale Quantum phenomena were flawed, because
(I matrix elements between macroscopic states can be controlled by micrescopic energies

(in) Because what really matters is the behaviour in time of:

Opp(t) = <W(R;r 1y )|e H (R 1s,-)> (transition matrix)

and that 1 particular, “IMacroescopic Quantum Tunneling™ lhetween 2 different Elux states of a
SQUID:should e possible- a QUANTATIVE THEORETICAL PREDICTION was given.

Experimental confirmation

came Very guickly 7 sl T-ZZ:KA‘ x "
< 95mK - 260 ' a0 ]
T e o el A

Caldeira & Leggett: Ann. Phys. 149, 374 (194

50 52 54 56 ’é
201 UleA #ﬁﬁﬁ
VoI ST S B
1OI g et

—1

Voss & Webb: PRL 47, 265 (1981)
Clarke et al: Science 239, 992 (88)
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2

1

1000 x Ax
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The comparison between theory and experiment for these MQT experiments was very
good. The experiment ONLY took account of the oscillator bath environment,
parametrised by the electronic circuitry — such modes cause all the dissipation.

However this theory fails completely to deal with DECOHERENCE in SQUIDS.....



SQUID DECOHERENCE RATES

We can always derive an effective Hamiltonian of
spin bath form for a SQUID coupled to a spin bath. In
the weak decoherence regime we get
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The basic problem with any theory-experiment comparison here is that most of the 2-level system
are basically just junk (coming from impurities and defects), whose
characteristics are hard to
quantify. Currently ~10 grou
have seen coherent oscillatit
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Thus what is required is a parameter-free way of relating the theory to
experiment, in which the distribution of couplings is extracted from expt. &
used to predict other experimental properties. We do not yet have this.



3.4: DOMAIN WALLS in SOLID 3He

There is one domain wall that has rather
exceptional properties, at least

on paper. This is the domain wall in solid
3He, which has never been explored
experimentally. In fact solid 3He has a
number of extraordinary properties,
which we describe briefly below.



SHe SOLID: HAMILTONIAN and
EQUATIONS of MOTION

The basic structure of the underlying U,D, state has pairs of

FM- coupled planes which are antiferromagnetically coupled to

each other. This interesting combination of FM and AFM order
arises because of the competition

__ 1 m between different order FM and
H ﬁz‘ljfg Si*S; AFM exchange processes.
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We will be interested in the equations of motion in the inhomogeneous case, so one
generalises the OCF equations to get coupled equations for d(r,t) and S(r,t):

(i: JX(TOH_TQZXO_IS),
S=7SXH-Ad- D)(dX D)+ 37 c,(dxP,2d)+c,(d xP.%d)]

The first equation here has d(r,t) precessing in a combination of external field and the
‘field’ of S(r,t).The 2nd equation involves precession of S itself, and also a dipolar coupling
between I(r,t) and d(r,t); and gradient terms.

i A texture in d(r,t) for large H
A texture in d(r,t) for small H



The remaining material on He-3 was discussed on the blackboard

(For more on He-3 solid, see lectures of Osheroff)



