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The search for exotic phases

The phase diagrams of many strongly correlated systems (i.e. high
Tc materials) are not easily describable in the “usual” way:

Phases described by local order parameters.
Transitions described by symmetry breaking.

This led to proposal of phases with non-local, “exotic” ordering properties:

Spin liquids
long-range RVB (Anderson)
short-range RVB (Rokhsar, Kivelson, Sethna)
algebraic spin liquid (Affleck, Marston, Hermele et. al.)
many other varieties (Wen)

Stripe-like phases (Emery, Kivelson, Fradkin, and coworkers)
(high-order) spatially modulated structures in the
absence of long-range interactions or symmetry
breaking in the Hamiltonian.



Collaborators

Construction of spin liquid phase (cond-mat/0502146)
Roderich Moessner (ENS -- Paris)
Shivaji L. Sondhi (Princeton)

Construction of stripe-like phases (to appear 2006)
Stefanos Papanikolaou (UIUC)
Eduardo Fradkin (UIUC)



Part 1: What is an RVB liquid?

system: spins on a lattice

OO o= G===® means spins paired in a singlet
(G—)

I I I I 4 \/glence bond state ‘C>

(S—)

resonating valence bond (RVB) state: ‘RVB> = E‘c>
C

Applications: Quantum magnetism (Fazekas, Anderson 1972)
High Tc (Anderson 1987), Quantum computing (Kitaev)

Comment: restriction to nn singlets = short range RVB



RVB liquids: kinematics

Energetically competitive to Neel ordering.
Translational and rotational invariance.

No local order parameter (non-magnetic).
Global order: “topological order”.

Deconfined fractionalized excitations (spinons).

RVB liquids: dynamics

What kind of Hamiltonian has an RVB ground state?

We will construct a rotationally invariant spin Hamiltonian
that shows an RVB liquid state in its ground state phase
diagram.



Short range RVB and dimers

-- Rokhsar, Kivelson (1988): Quantum dimer model. Low energy theory
for short-range RVB (Rokhsar, Kivelson, Sethna 1987).

-- dimer coverings = orthonormal basis vectors of a dimer Hilbert space.
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QDM in d=2: Bipartite lattices

i.e. square, honeycomb
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1. Moessner, Sondhi, Chandra (2001): Plaquette phase for v<t
implying that the equal amplitude state occurs only at v=t.

2. Fradkin, Huse, Moessner, Oganesyan, and Sondhi. (2004): Small
perturbations of the basic QDM drive the system into Cantor deconfined

phases for v>t.



QDM in d=2: Non-bipartite lattices

i.e. triangular, pentagonal
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Moessner, Sondhi (2001)



Relating QDM phases to quantum spin models

Outline of strategy

spinon states

A Step 3: Fix approximations by
decoration procedure.

Step 1: choose H, that selects valence bond manifold.
(Chayes, Chayes, Kivelson 1989)

other valence bond states

degeneracy with H,

valence bond states RVB ground state
(highly degenerate) (topological degeneracy)



1. Choosing H,: Klein models

Ho = EPN(Z') ©
=N ()
i
A . . Q
PN(Z.) projects the cluster of i and
its (z-1) neighbors onto its highest e.g. z=4

total spin state. (e.g. S=2)

Note: If spiniforms a singlet with one of its neighbors, then
the state will have zero projection. Valence bond coverings
of the lattice are zero energy ground states of HO
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Valence bonds vs. dimers

1. Linear independence: geometry dependent.

2. Non-orthogonality: overlap issues.
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2. Perturb and get H 4+ by expanding in x

OH=J)s.- Ej + VE((El $8,)(85 7 8,) + (8- 55)(8, - §4))
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3. Decoration procedure

Add even
number N
of sites in
between.
(N=4in
figure)

OH =J El. ' Ej + VE((§1 ' Eal)(§3 ' §a3) + (51 ' Ebl)(§2 ' §b2))

(ij) P



QDM physics in spin system

2N
(Heﬁ”)aﬁ =—1R,; +vn, 0. + O(vx™ + tx*")

Reproduce the physics of the QDM to arbitrary accuracy.
Relatively small value of N will produce phases with the
desired qualitative behavior.

Conclusion: We have constructed an SU(2) realization
of bipartite QDM physics in d=2, which includes Cantor
deconfinement, plaquette phases, etc. Can apply the
same construction to triangular lattice QDM

to realize its phases including the RVB liquid phase!




Excitations

* Moessner et. al. (2001): Collective dimer modes are
gapped on the triangular lattice.

« Shastry and Sutherland (1981): Spinons are the
natural excitations of the 1d chains. Spinons
localized on the decorated edges should be gapped
In the high decoration limit.

« Potential energy cost of violating Klein model defeats
hopping energy from having a spinon localized at
chain crossing. (present work).

The construction gives a stable (gapped)
RVB liquid phase!



Higher dimensional examples

Our construction is a general way to transcribe the
phases of a QDM in d dimensions into an SU(2)
invariant quantum spin model in d dimensions.

 Bipartite lattices in d=3 (cubic, diamond): Coulomb
phases, i.e. U(1) RVB liquid.

« Non-bipartite lattice in d=3 (FCC): Z, RVB liquid
phase.

* An interesting example: pyrochlore lattice. Can

construct two different models which show the two
different types of liquid behavior.



Part 2. What do | mean by “stripe”™?

Classical example: fluctuating domain walls (Pokrovsky/Talapov)
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At critical value of parameters:

In principle, scale of
modulation can be
large compared to
scale of interaction.




Types of spatial modulation
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Classical example: ANNNI MODEL

("% w22m Mt PHE 0T, j ‘(I

x=F x= -1 f1 )

Fisher and Selke (1980), P. Bak (1982)

Question: Can we realize very high order spatially modulated
structures in a quantum model without breaking lattice
or spin symmetries and in the absence of long range interactions?



Basic strategy 1: Reduce problem to dimers
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bipartite lattices in 2d: square, honeycomb

Field theoretic arguments suggest that stripe-like staircase
structures can be realized in quantum dimer models

Fradkin, Huse, Moessner, Oganesyan, and Sondhi. (2004)

Obtain an SU(2) invariant spin model by
similar procedure as | just described.



The [1n] states (simplest tilted states)

—

AN

-
R

—

4

-
R

Staggered states are like domain walls separating

columnar regions.



Basic strategy 2: Construct dimer model

1. Construct a diagonal parent Hamiltonian with a large
ground state degeneracy at a special point. Design it
to favor quasi-1D domain wall-type states:

mimi=l EE=EE =0l f=l=l=l Bl Note:

=E-B-RE E=d E-n IE-A=Eme E- -

mE=i=l EE=E1 =01 F=E=E=] El= (a) staggering comes
=H=H=§ NE=HN E=SN §=E=E= N in two orientations
== =l ===yt = (b)direction of
:::l':ll:ll:::ll: staggered vs.

o B l: - :l: :l: e l: = columnar is opposite

(c) staggered regions
one column wide

2. Make the domain walls fluctuate via an off-diagonal
resonance term (i.e. Pokrovsky-Talapov)



Parent Hamiltonian
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Ground state phase diagram of H,

columnar
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Perturbation
Vo= S| L) [+ 02 )0 [+he

Non-diagonal resonance term causes staggered
strips to fluctuate which stabilizes staggering relative to
columnar strips.

Second order in perturbation theory:
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Calculate the correction to each of the quasi-1D states.



Action of perturbation
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Ground state phase diagram to O(t?)
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Fourth order perturbation theory
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Ground state phase diagram to O(t*)
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Ground state phase diagram to O(t2N)
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1.

Conclusions:

Explicit demonstrations that spin
liquids and high-order striped states
can, in principle, exist in systems with
only short-range interactions and spin
rotation and lattice symmetries.

The value of dimer models as a
means of answering these sorts of
questions was (hopefully) conveyed.



