
From exotic phases to
microscopic Hamiltonians via

quantum dimer models

Kumar S. Raman
UIUC

PITP/Les Houches Summer School on Quantum Magnetism;
Les Houches, France, June 6-23, 2006



The search for exotic phases
The phase diagrams of many strongly correlated systems (i.e. high

Tc materials) are not easily describable in the “usual” way:
Phases described by local order parameters.
Transitions described by symmetry breaking.

This led to proposal of phases with non-local, “exotic” ordering properties:

Spin liquids
long-range RVB (Anderson)
short-range RVB (Rokhsar, Kivelson, Sethna)
algebraic spin liquid (Affleck, Marston, Hermele et. al.)
many other varieties (Wen)

Stripe-like phases (Emery, Kivelson, Fradkin, and coworkers)
(high-order) spatially modulated structures in the
absence of long-range interactions or symmetry
breaking in the Hamiltonian.



Collaborators

Construction of spin liquid phase (cond-mat/0502146)
Roderich Moessner (ENS -- Paris)
Shivaji L. Sondhi (Princeton)

Construction of stripe-like phases (to appear 2006)
Stefanos Papanikolaou (UIUC)
Eduardo Fradkin (UIUC)



Part 1:  What is an RVB liquid?

valence bond state

system:  spins on a lattice

 means spins paired in a singlet
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"resonating valence bond (RVB) state:

Applications:  Quantum magnetism (Fazekas, Anderson 1972)
High Tc (Anderson 1987), Quantum computing (Kitaev)

Comment:  restriction to nn singlets = short range RVB



RVB liquids: kinematics
• Energetically competitive to Neel ordering.
• Translational and rotational invariance.
• No local order parameter (non-magnetic).
• Global order: “topological order”.
• Deconfined fractionalized excitations (spinons).

    RVB liquids: dynamics

What kind of Hamiltonian has an RVB ground state?

We will construct a rotationally invariant spin Hamiltonian
that shows an RVB liquid state in its ground state phase
diagram.



Short range RVB and dimers
-- Rokhsar, Kivelson (1988):  Quantum dimer model.  Low energy theory

for short-range RVB (Rokhsar, Kivelson, Sethna 1987).

-- dimer coverings = orthonormal basis vectors of a dimer Hilbert space.



QDM in d=2:  Bipartite lattices

1. Moessner, Sondhi, Chandra (2001):  Plaquette phase for v<t
       implying that the equal amplitude state occurs only at v=t.

2. Fradkin, Huse, Moessner, Oganesyan, and Sondhi. (2004):  Small 
perturbations of the basic QDM drive the system into Cantor deconfined 
phases for v>t.  

i.e. square, honeycomb



QDM in d=2: Non-bipartite lattices

staggeredcolumnar RVB

! 

12x 12

12/3 v/t0

Moessner, Sondhi (2001)

i.e. triangular, pentagonal



Outline of strategy

Step 1: choose H0 that selects valence bond manifold. 
       (Chayes, Chayes, Kivelson 1989)

valence bond states
(highly degenerate)

spinon states

 Step 2 : break 
degeneracy with H1

RVB ground state
(topological degeneracy) 

other valence bond states

Step 3:  Fix approximations by
decoration procedure.

Relating QDM phases to quantum spin models



1.  Choosing H0:  Klein models

! ! 

H
o

= ˆ P 
N ( i)

i"#

$
i

e.g.  z=4

! 

ˆ P 
N ( i)

projects the cluster of i and
its (z-1) neighbors onto its highest
total spin state.  (e.g. S=2)

Note:  If spin i forms a singlet with one of its neighbors, then
the state will have zero projection.  Valence bond coverings
of the lattice are zero energy ground states of 
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Valence bonds vs. dimers

VB state a
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1. Linear independence:  geometry dependent.

2.  Non-orthogonality:  overlap issues.



2.  Perturb and get Heff by expanding in x
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3.  Decoration procedure
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QDM physics in spin system
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Reproduce the physics of the QDM to arbitrary accuracy.
Relatively small value of N will produce phases with the 
desired qualitative behavior. 

Conclusion:  We have constructed an SU(2) realization
of bipartite QDM physics in d=2, which includes Cantor
deconfinement, plaquette phases, etc.  Can apply the 
same construction to triangular lattice QDM
to realize its phases including the RVB liquid phase!



Excitations
• Moessner et. al. (2001):  Collective dimer modes are

gapped on the triangular lattice.
• Shastry and Sutherland (1981):  Spinons are the

natural excitations of the 1d chains.  Spinons
localized on the decorated edges should be gapped
in the high decoration limit.

• Potential energy cost of violating Klein model defeats
hopping energy from having a spinon localized at
chain crossing. (present work).

The construction gives a stable (gapped) 
RVB liquid phase!



Higher dimensional examples

• Bipartite lattices in d=3 (cubic, diamond):  Coulomb
phases, i.e. U(1) RVB liquid.

• Non-bipartite lattice in d=3 (FCC): Z2 RVB liquid
phase.

• An interesting example:  pyrochlore lattice.  Can
construct two different models which show the two
different types of liquid behavior.

Our construction is a general way to transcribe the 
phases of a QDM in d dimensions into an SU(2)
invariant quantum spin model in d dimensions.



Part 2:  What do I mean by “stripe”?
Classical example: fluctuating domain walls (Pokrovsky/Talapov)

At critical value of parameters:

In principle, scale of
modulation can be 
large compared to 
scale of interaction.



Types of spatial modulation

P. Bak  (1982)

floating

complete
devil’s
staircase

harmless staircase

incomplete 
devil’s 
staircase



Classical example: ANNNI MODEL

Fisher and Selke (1980), P. Bak (1982)

Question:  Can we realize very high order spatially modulated 
structures in a quantum model without breaking lattice 
or spin symmetries and in the absence of long range interactions?



Basic strategy 1: Reduce problem to dimers

Fradkin, Huse, Moessner, Oganesyan, and Sondhi. (2004)

Field theoretic arguments suggest that stripe-like staircase
structures can be realized in quantum dimer models

FLAT STEEP

Obtain an SU(2) invariant spin model by 
similar procedure as I just described.

bipartite lattices in 2d: square, honeycomb



The [1n] states (simplest tilted states)

[11] [12]

[13] [14]

Staggered states are like domain walls separating
columnar regions. 



Basic strategy 2: Construct dimer model

1. Construct a diagonal parent Hamiltonian with a large 
ground state degeneracy at a special point.  Design it
to favor quasi-1D domain wall-type states:

2. Make the domain walls fluctuate via an off-diagonal
resonance term (i.e. Pokrovsky-Talapov) 

Note: 
(a) staggering comes 

in two orientations
(b) direction of 

staggered vs. 
columnar is opposite

(c) staggered regions 
one column wide



Parent Hamiltonian

terms a to d 
give domain
wall type states.

terms p to s
have a
different
purpose.

Require:
a,b < c,d << p,q,r,s



Ground state phase diagram of H0



Perturbation

Non-diagonal resonance term causes staggered 
strips to fluctuate which stabilizes staggering relative to 
columnar strips.

Second order in perturbation theory:

Calculate the correction to each of the quasi-1D states.



Action of perturbation

initial excited



Ground state phase diagram to O(t2)



Fourth order perturbation theory

Terms p,q,r,s ensure the only important fourth order process is:



Ground state phase diagram to O(t4)



Ground state phase diagram to O(t2N)



Conclusions:

1. Explicit demonstrations that spin
liquids and high-order striped states
can, in principle, exist in systems with
only short-range interactions and spin
rotation and lattice symmetries.

2. The value of dimer models as a
means of answering these sorts of
questions was (hopefully) conveyed.


