## (How to have fun with) two-dimensional frustrated ferromagnets



nic shannon (Bristol, UK)

Les Houches 20/6/6

### thanks to...



Tsutomu Momoi RIKEN



Philippe Sindzingre Paris VI, Jussieu

## $\frac{M\ A\ X\ -\ P\ L\ A\ N\ C\ K\ -\ I\ N\ S\ T\ I\ T\ U\ T}{FUR\ CHEMISCHE\ PHYSIK\ FESTER\ STOFFE}$



ax-Planck-Institut für Physik komplexer Systeme thnitzer Str. 38 · D–01187 Dresden · Telefon +49(0)351 871-0 · eMail: info@mpipks-dresden.mpg.de









Institut du Développement et des Ressources en Informatique Scientifique

## spin-1/2 on a triangular lattice

- spin liquids and the RVB idea -

the eternal triangle



the eternal triangle



**frustration**, i.e. you can't please all of the spins, all of the time

the eternal triangle

Anderson's resonating valance bond (**RVB**) state





**frustration**, i.e. you can't please all of the spins, all of the time

the eternal triangle

Anderson's resonating valance bond (**RVB**) state



actual ground state of Heisenberg model on triangular lattice





**frustration**, i.e. you can't please all of the spins, all of the time

the eternal triangle

Anderson's resonating valance bond (**RVB**) state



actual ground state of Heisenberg model on triangular lattice





**frustration**, i.e. you can't please all of the spins, all of the time

for a review, see e.g. Misguich and Lhullier in "Quantum Spin Systems" (2004 Diep)

### in the beginning, God created He III...

the most perfect correlated Fermi system known to man

## in the beginning, God created He III...

the most perfect correlated Fermi system known to man

2D incarnation – He III on graphite



3rd layer – ignore 2nd layer – 2D FL/magnet 1st layer – paramagnetic solid

## in the beginning, God created He III...

the most perfect correlated Fermi system known to man

2D incarnation – He III on graphite



3rd layer - ignore

- 2nd layer 2D FL/magnet
- 1st layer paramagnetic solid

Fermi liquid in second layer becomes magnetic solid with increasing density :

high density solid is FM

something very special happens at low densities...



... in a 2D triangular lattice frustrated FM

K. Ishida et al., PRL 79, 3451 (1997)

... in a 2D triangular lattice frustrated FM

K. Ishida et al., PRL 79, 3451 (1997)



2nd layer magnetism controlled by competition between FM 3-spin exchange and AF 4-spin exchange

... in a 2D triangular lattice frustrated FM

K. Ishida et al., PRL 79, 3451 (1997)



2nd layer magnetism controlled by competition between FM 3-spin exchange and AF 4-spin exchange



no magnetic order down to 0.1 mK !!!

... in a 2D triangular lattice frustrated FM

K. Ishida et al., PRL 79, 3451 (1997)



2nd layer magnetism controlled by competition between FM 3-spin exchange and AF 4-spin exchange



no magnetic order down to 0.1 mK !!!

... in a 2D triangular lattice frustrated FM

K. Ishida et al., PRL 79, 3451 (1997)



2nd layer magnetism controlled by competition between FM 3-spin exchange and AF 4-spin exchange



no magnetic order down to 0.1 mK !!!

#### first example of a square lattice frustrated FM

E. Kaul et al., JMMM 272-276 (II), 922 (2004)

#### first example of a square lattice frustrated FM

E. Kaul et al., JMMM 272-276 (II), 922 (2004)

<u>Pb<sub>2</sub>VO(PO<sub>4</sub>)<sub>2</sub> : Structure</u>



spin-1/2 V<sub>4+</sub> in layered pyramids

#### first example of a square lattice frustrated FM

E. Kaul et al., JMMM 272-276 (II), 922 (2004)

<u>Pb<sub>2</sub>VO(PO<sub>4</sub>)<sub>2</sub> : Structure</u>



spin-1/2 V<sub>4+</sub> in layered pyramids



two different exchange paths – both n.n. and n.n.n. bonds –

#### first example of a square lattice frustrated FM

E. Kaul et al., JMMM 272-276 (II), 922 (2004)

#### <u>Pb<sub>2</sub>VO(PO<sub>4</sub>)<sub>2</sub> : Structure</u>



spin-1/2 V<sub>4+</sub> in layered pyramids



linear  $\chi$ -inverse  $\Rightarrow$  frustrated magnet



two different exchange paths – both n.n. and n.n.n. bonds –

#### first example of a square lattice frustrated FM

E. Kaul et al., JMMM 272-276 (II), 922 (2004)

#### <u>Pb<sub>2</sub>VO(PO<sub>4</sub>)<sub>2</sub> : Structure</u>



spin-1/2 V<sub>4+</sub> in layered pyramids



linear  $\chi$ -inverse  $\Rightarrow$  frustrated magnet



two different exchange paths – both n.n. and n.n.n. bonds –

#### first example of a square lattice frustrated FM

E. Kaul et al., JMMM 272-276 (II), 922 (2004)

#### <u>Pb<sub>2</sub>VO(PO<sub>4</sub>)<sub>2</sub> : Structure</u>



spin-1/2 V<sub>4+</sub> in layered pyramids



#### linear $\chi$ -inverse $\Rightarrow$ frustrated magnet



two different exchange paths – both n.n. and n.n.n. bonds –

ground state is (T,0) collinear AF with reduced moment





#### the "simplest" frustrated ferromagnet

extended FM Heisenberg model on square lattice

$$\mathcal{H} = 2J_1 \sum_{\langle ij \rangle_1} \mathbf{S}_i \mathbf{S}_j + 2J_2 \sum_{\langle ij \rangle_2} \mathbf{S}_i \mathbf{S}_j + K \sum_{\langle 1234 \rangle} P_{1234} + P_{1234}^{-1}$$

$$\mathcal{H} = 2J_1 \sum_{\langle ij \rangle_1} \mathbf{S}_i \mathbf{S}_j + 2J_2 \sum_{\langle ij \rangle_2} \mathbf{S}_i \mathbf{S}_j + K \sum_{\langle 1234 \rangle} P_{1234} + P_{1234}^{-1}$$



FM n.n. interaction J1 < 0

AF n.n.n. interaction J2 > 0

AF 4-spin cyclic exchange K > 0

$$\mathcal{H} = 2J_1 \sum_{\langle ij \rangle_1} \mathbf{S}_i \mathbf{S}_j + 2J_2 \sum_{\langle ij \rangle_2} \mathbf{S}_i \mathbf{S}_j + K \sum_{\langle 1234 \rangle} P_{1234} + P_{1234}^{-1}$$

$$\overset{\mathsf{H}}{\bullet} \mathbf{O} \qquad \overset{\mathsf{FM n.n.}}{\underset{\text{interaction}}{\mathsf{J1 < 0}}}$$

$$\overset{\mathsf{H}}{\bullet} \mathbf{O} \qquad \overset{\mathsf{FM n.n.}}{\underset{\text{interaction}}{\mathsf{J1 < 0}}}$$

$$\overset{\mathsf{AF n.n.n.}}{\underset{\text{interaction}}{\mathsf{J2 > 0}}}$$

$$\overset{\mathsf{K}}{\bullet} \mathbf{O} \qquad \overset{\mathsf{AF 4-spin}}{\underset{\text{cyclic}}{\mathsf{exchange}}}$$

**N.B.**  $P_{ijkl} + P_{ijkl}^{-1} = \vec{S}_i \cdot \vec{S}_j + \ldots + 4 \left( \vec{S}_i \cdot \vec{S}_j \right) \left( \vec{S}_k \cdot \vec{S}_l \right) + \ldots$ 

$$\mathcal{H} = 2J_1 \sum_{\langle ij \rangle_1} \mathbf{S}_i \mathbf{S}_j + 2J_2 \sum_{\langle ij \rangle_2} \mathbf{S}_i \mathbf{S}_j + K \sum_{\langle 1234 \rangle} P_{1234} + P_{1234}^{-1}$$

$$\mathbf{O} = \mathbf{O} = \mathbf{$$

**N.B.**  $P_{ijkl} + P_{ijkl}^{-1} = \vec{S}_i \cdot \vec{S}_j + \ldots + 4 \left( \vec{S}_i \cdot \vec{S}_j \right) \left( \vec{S}_k \cdot \vec{S}_l \right) + \ldots$ 

- and ferromagnetism -

- and ferromagnetism -



- and ferromagnetism -



- and ferromagnetism -



#### manganites

- (g=doping)
- phase separation

- and ferromagnetism -



#### **manganites** (g=doping)

- phase separation

weak itinerant
 ferromagnets
 (g=pressure)
- superconductivty

- and ferromagnetism -



manganites (g=doping) - phase separation

weak itinerant ferromagnets (g=pressure) - superconductivty

frustrated quantum spin systems (g=density, chemical pressure) – spin liquid ?!!!

#### how does the FM die ?

- nature of spin excitations at boundary with AF -

#### how does the FM die ? - nature of spin excitations at boundary with AF -

"one magnon" dispersion :

 $\omega(\mathbf{q}) = 8(|J_1| - 2K - J_2) - 4(|J_1| - 2K)[\cos q_x + \cos q_y] + 8J_2 \cos q_x \cos q_y$ 

#### how does the FM die ? - nature of spin excitations at boundary with AF -

"one magnon" dispersion :

$$\omega(\mathbf{q}) = 8(|J_1| - 2K - J_2) - 4(|J_1| - 2K)[\cos q_x + \cos q_y] + 8J_2 \cos q_x \cos q_y$$


### how does the FM die ? - nature of spin excitations at boundary with AF -

"one magnon" dispersion :

$$\omega(\mathbf{q}) = 8(|J_1| - 2K - J_2) - 4(|J_1| - 2K)[\cos q_x + \cos q_y] + 8J_2 \cos q_x \cos q_y$$



## how does the FM die ? - nature of spin excitations at boundary with AF -

"one magnon" dispersion :

$$\omega(\mathbf{q}) = 8(|J_1| - 2K - J_2) - 4(|J_1| - 2K)[\cos q_x + \cos q_y] + 8J_2 \cos q_x \cos q_y$$



limiting case #1 : J1=-1, J2 = 1/2, K=0



line zeros for 
$$qx = 0$$
,  $qy = 0$ 

### how does the FM die ? - nature of spin excitations at boundary with AF -

"one magnon" dispersion :

$$\omega(\mathbf{q}) = 8(|J_1| - 2K - J_2) - 4(|J_1| - 2K)[\cos q_x + \cos q_y] + 8J_2 \cos q_x \cos q_y$$



limiting case #1 : J1=-1, J2 = 1/2, K=0









entire dispersion vanishes !!!

line zeros for 
$$qx = 0$$
,  $qy = 0$ 

- two magnons are better than one -



## what kind of excitation works? - two magnons are better than one -

square lattice MSE model J1=-1, J2 = 0, K=1/2 simple trial wave function for two-magnon bound state :

$$\frac{1}{\sqrt{2}} \left\{ \left| \begin{array}{c} \uparrow & \uparrow \\ \downarrow & \downarrow \\ r \end{array} \right\rangle - \left| \begin{array}{c} \downarrow & \uparrow \\ \downarrow & \uparrow \\ r \end{array} \right\rangle \right\} \exp(i\mathbf{q}.\mathbf{r}/2)$$



## what kind of excitation works ? - two magnons are better than one -

 $\sqrt{}$ 

square lattice MSE model J1=-1, J2 = 0, K=1/2 simple trial wave function for two-magnon bound state :



individual magnons are localized but **pairs** of magnons can propagate coherently

$$\frac{1}{2} \left\{ \begin{vmatrix} \uparrow & \uparrow \\ \downarrow & \downarrow \\ r \end{vmatrix} - \begin{vmatrix} \downarrow & \uparrow \\ \downarrow & \uparrow \\ r \end{vmatrix} \right\} \exp(i\mathbf{q} \cdot \mathbf{r}/2)$$

$$d\text{-wave symmetry}$$

## what kind of excitation works ? - two magnons are better than one -

square lattice MSE model J1=-1, J2 = 0, K=1/2



individual magnons are localized but **pairs** of magnons can propagate coherently simple trial wave function for two-magnon bound state :

$$\frac{1}{2} \left\{ \left| \begin{array}{c} \uparrow & \uparrow \\ \downarrow & \downarrow \\ r \end{array} \right\rangle - \left| \begin{array}{c} \downarrow & \uparrow \\ \downarrow & \uparrow \\ r \end{array} \right\rangle \right\} \exp(i\mathbf{q}.\mathbf{r}/2)$$

d-wave symmetry

for special point J1=-1, J2 = 0, K=1/2 this wave function is an **exact eigenstate** 

- two magnons are better than one -

calculate energies of one-magnon band and two-magnon trial wave function in applied magnetic field and see which becomes negative first :

- two magnons are better than one -

calculate energies of one-magnon band and two-magnon trial wave function in applied magnetic field and see which becomes negative first :









what is the nature of this phase ?!!!

## a new idea – nematic order

- systems that don't know up from down -

nematic (quadropolar) order :





nematic (quadropolar) order :



#### site-wise nematic works for spin-1 :





nematic (quadropolar) order :



site-wise nematic works for spin-1 :





doesn't work for spin-1/2 :



nematic (quadropolar) order :



site-wise nematic works for spin-1 :



doesn't work for spin-1/2 :



for a spin-1 example see, e.g. : K. Harada and N. Kawashima, PRB 65, 052403(2002)

## so what ...?

- what do nematics and spin-1/2 FM's have in common ? -

# so what...?

- what do nematics and spin-1/2 FM's have in common ? -

what if we project spin-1/2's into a spin-1 space ?

## so what ...?

### - what do nematics and spin-1/2 FM's have in common ? -

what if we project spin-1/2's into a spin-1 space ?

consider the traceless second rank tensor :

$$\mathcal{O}^{\alpha\beta}(\boldsymbol{r}_i, \boldsymbol{r}_j) = \frac{1}{2} (S_i^{\alpha} S_j^{\beta} + S_i^{\beta} S_j^{\alpha}) - \frac{1}{3} \delta^{\alpha\beta} \langle \boldsymbol{S}_i \cdot \boldsymbol{S}_j \rangle$$

## so what ...?

### - what do nematics and spin-1/2 FM's have in common ? -

what if we project spin-1/2's into a spin-1 space ?

consider the traceless second rank tensor :

i.e. spin-1 object

## so what...?

### - what do nematics and spin-1/2 FM's have in common ? -

what if we project spin-1/2's into a spin-1 space ?

consider the traceless second rank tensor :

$$\mathcal{O}^{\alpha\beta}(\boldsymbol{r}_{i},\boldsymbol{r}_{j}) = \frac{1}{2}(S_{i}^{\alpha}S_{j}^{\beta} + S_{i}^{\beta}S_{j}^{\alpha}) - \frac{1}{3}\delta^{\alpha\beta}\langle\boldsymbol{S}_{i}\cdot\boldsymbol{S}_{j}\rangle$$
symmeterized product
of spin-1/2's
i.e. spin-1 object
removes trivial
self-correlation

## so what...?

### - what do nematics and spin-1/2 FM's have in common ? -

what if we project spin-1/2's into a spin-1 space ?

consider the traceless second rank tensor :

$$\mathcal{O}^{\alpha\beta}(\boldsymbol{r}_{i},\boldsymbol{r}_{j}) = \frac{1}{2}(S_{i}^{\alpha}S_{j}^{\beta} + S_{i}^{\beta}S_{j}^{\alpha}) - \frac{1}{3}\delta^{\alpha\beta}\langle\boldsymbol{S}_{i}\cdot\boldsymbol{S}_{j}\rangle$$
symmeterized product
of spin-1/2's
i.e. spin-1 object
removes trivial
self-correlation

relationship with wave function for two-magnon bound state through :

$$S_i^- S_j^- = \mathcal{O}^{xx} - \mathcal{O}^{yy} - 2i\mathcal{O}^{xy}$$

...i.e. bond nematic can form through bi-magnon condensation \*

# so what ...?

### - what do nematics and spin-1/2 FM's have in common ? -

what if we project spin-1/2's into a spin-1 space ?

consider the traceless second rank tensor :

relationship with wave function for two-magnon bound state through :

$$S_i^- S_j^- = \mathcal{O}^{xx} - \mathcal{O}^{yy} - 2i\mathcal{O}^{xy}$$

...i.e. bond nematic can form through bi-magnon condensation \*

- two-magnon instability in applied field -

- two-magnon instability in applied field -

first establish extent of FM



- two-magnon instability in applied field -

first establish extent of FM



- two-magnon instability in applied field -


#### can we see the nematic in numerics ?

- two-magnon instability in applied field -



#### can we see the nematic in numerics ?

- two-magnon instability in applied field -



### what about the ground state ?

- absence of Néel order in the FM J1-J2 model -

# - absence of Néel order in the FM J1-J2 model

SQR N=36 (6,0,0,6) J1=-1 J2=0.40



spectrum contains wrong set of low-lying states for a Néel order parameter

#### Gaps in even spin sectors scale to zero :



SQR N=36 (6,0,0,6) J1=-1 J2=0.40



Gaps in even spin sectors scale to zero :



#### Gaps in odd spin sectors do not :



- nematic correlation in ground state -

- nematic correlation in ground state -

$$C(i, j, k, l) = \sum_{\alpha \beta} \langle \mathcal{O}^{\alpha \beta}(\mathbf{r}_i, \mathbf{r}_j) \mathcal{O}^{\alpha \beta}(\mathbf{r}_k, \mathbf{r}_l) \rangle$$

- nematic correlation in ground state -

$$C(i, j, k, l) = \sum_{\alpha \beta} \langle \mathcal{O}^{\alpha \beta}(\mathbf{r}_i, \mathbf{r}_j) \mathcal{O}^{\alpha \beta}(\mathbf{r}_k, \mathbf{r}_l) \rangle$$



- nematic correlation in ground state -

$$C(i, j, k, l) = \sum_{\alpha \beta} \langle \mathcal{O}^{\alpha \beta}(\mathbf{r}_i, \mathbf{r}_j) \mathcal{O}^{\alpha \beta}(\mathbf{r}_k, \mathbf{r}_l) \rangle$$



- nematic correlation in ground state -

nematic correlation function :

$$C(i, j, k, l) = \sum_{\alpha\beta} \langle \mathcal{O}^{\alpha\beta}(\mathbf{r}_i, \mathbf{r}_j) \mathcal{O}^{\alpha\beta}(\mathbf{r}_k, \mathbf{r}_l) \rangle$$

#### strong "stripe" correlations



- nematic correlation in ground state -

nematic correlation function :

$$C(i, j, k, l) = \sum_{\alpha\beta} \langle \mathcal{O}^{\alpha\beta}(\mathbf{r}_i, \mathbf{r}_j) \mathcal{O}^{\alpha\beta}(\mathbf{r}_k, \mathbf{r}_l) \rangle$$

#### strong "stripe" correlations



"-"  $\Rightarrow$  d-wave sym

- nematic correlation in ground state -

nematic correlation function :

$$C(i, j, k, l) = \sum_{\alpha \beta} \langle \mathcal{O}^{\alpha \beta}(\mathbf{r}_i, \mathbf{r}_j) \mathcal{O}^{\alpha \beta}(\mathbf{r}_k, \mathbf{r}_l) \rangle$$

#### strong "stripe" correlations



- nematic correlation in ground state -

$$C(i, j, k, l) = \sum_{\alpha \beta} \langle \mathcal{O}^{\alpha \beta}(\mathbf{r}_i, \mathbf{r}_j) \mathcal{O}^{\alpha \beta}(\mathbf{r}_k, \mathbf{r}_l) \rangle$$



























- more quasi-2D vanadates ! -



#### new compound CaZnVO(PO4)2 looks promising...

## so what happens on a triangular lattice ?

- modeling solid 2D films of He III -

#### so what happens on a triangular lattice ? - modeling solid 2D films of He III -

$$\begin{array}{ll} \text{minimal model}: \quad \mathcal{H} = 2J_1 \sum_{\langle ij \rangle} \mathbf{S}_i \mathbf{S}_j + K \sum_{\langle 1234 \rangle} P_{1234} + P_{1234}^{-1} & \quad \mathsf{FM J1 < 0} \\ \text{AF K > 0} \end{array}$$









- could this be another **nematic** state ?












- going beyond nematic structure -



- structure is **period-3** not period-2 -

- going beyond nematic structure -



- structure is period-3 not period-2 -

- going beyond nematic structure -



- structure is **period-3** not period-2 -

- three-spin bound states at high magnetic field -





- three-spin bound states at high magnetic field -





- three-spin bound states at high magnetic field -





- three-spin bound states at high magnetic field -





- three-spin bound states at high magnetic field -





- three-spin bound states at high magnetic field -





- three-spin bound states at high magnetic field -





- three-spin bound states at high magnetic field -







- three-spin bound states at high magnetic field -

order parameter is rank 3 tensor :

 $\mathcal{R}e\left\{S_{i}^{-}S_{j}^{-}S_{k}^{-}\right\} = 2S_{i}^{x}S_{j}^{x}S_{k}^{x} - 2S_{i}^{x}S_{j}^{y}S_{k}^{y} - 2S_{i}^{y}S_{j}^{x}S_{k}^{y} - 2S_{i}^{y}S_{j}^{y}S_{k}^{x}$  $\mathcal{I}m\left\{S_{i}^{-}S_{j}^{-}S_{k}^{-}\right\} = 2S_{i}^{x}S_{j}^{x}S_{k}^{y} + 2S_{i}^{x}S_{j}^{y}S_{k}^{x} + 2S_{i}^{y}S_{j}^{x}S_{k}^{x} - 2S_{i}^{y}S_{j}^{y}S_{k}^{y}$ 

- three-spin bound states at high magnetic field -

order parameter is rank 3 tensor :

 $\mathcal{R}e\left\{S_{i}^{-}S_{j}^{-}S_{k}^{-}\right\} = 2S_{i}^{x}S_{j}^{x}S_{k}^{x} - 2S_{i}^{x}S_{j}^{y}S_{k}^{y} - 2S_{i}^{y}S_{j}^{x}S_{k}^{y} - 2S_{i}^{y}S_{j}^{y}S_{k}^{x} - 2S_{i}^{y}S_{j}^{y}S_{k}^{x} - 2S_{i}^{y}S_{j}^{y}S_{k}^{x} - 2S_{i}^{y}S_{j}^{y}S_{k}^{x} - 2S_{i}^{y}S_{j}^{y}S_{k}^{x} - 2S_{i}^{y}S_{j}^{y}S_{k}^{y} - 2S_{i}^{y}S_{j}^{y}S_{k}^{x} - 2S_{i}^{y}S_{j}^{y}S_{k}^{y} - 2S_{i}^{y}S_{j}^{y}S_{k}^{x} - 2S_{i}^{y}S_{j}^{y}S_{k}^{y} - 2S_{i}^{y}S_{j}^{y}S_$ 

matrix elements of order parameter are linear combinations of fully **symmetrized** spin operators on triangular plaquette

- three-spin bound states at high magnetic field -

order parameter is rank 3 tensor :

 $\mathcal{R}e\left\{S_{i}^{-}S_{j}^{-}S_{k}^{-}\right\} = 2S_{i}^{x}S_{j}^{x}S_{k}^{x} - 2S_{i}^{x}S_{j}^{y}S_{k}^{y} - 2S_{i}^{y}S_{j}^{x}S_{k}^{y} - 2S_{i}^{y}S_{j}^{y}S_{k}^{x} - 2S_{i}^{y}S_{j}^{y}S_{k}^{x} - 2S_{i}^{y}S_{j}^{y}S_{k}^{x} - 2S_{i}^{y}S_{j}^{y}S_{k}^{x} - 2S_{i}^{y}S_{j}^{y}S_{k}^{x} - 2S_{i}^{y}S_{j}^{y}S_{k}^{y} - 2S_{i}^{y}S_{j}^{y}S_{k}^{y} - 2S_{i}^{y}S_{j}^{y}S_{k}^{x} - 2S_{i}^{y}S_{j}^{y}S_{k}^{y} - 2S_{i}^{y}S_{j}^{y}S_$ 





matrix elements of order parameter are linear combinations of fully **symmetrized** spin operators on triangular plaquette

in applied magnetic field, order parameter is planar and maps onto itself under rotations through  $2\pi/3$ 

- three-spin bound states at high magnetic field -

order parameter is rank 3 tensor :

 $\mathcal{R}e\left\{S_{i}^{-}S_{j}^{-}S_{k}^{-}\right\} = 2S_{i}^{x}S_{j}^{x}S_{k}^{x} - 2S_{i}^{x}S_{j}^{y}S_{k}^{y} - 2S_{i}^{y}S_{j}^{x}S_{k}^{y} - 2S_{i}^{y}S_{j}^{y}S_{k}^{x} - 2S_{i}^{y}S_{j}^{y}S_{k}^{x} - 2S_{i}^{y}S_{j}^{y}S_{k}^{x} - 2S_{i}^{y}S_{j}^{y}S_{k}^{x} - 2S_{i}^{y}S_{j}^{y}S_{k}^{x} - 2S_{i}^{y}S_{j}^{y}S_{k}^{y} - 2S_{i}^{y}S_{j}^{y}S_{k}^{x} - 2S_{i}^{y}S_{j}^{y}S_{k}^{y} - 2S_{i}^{y}S_{j}^{y}S_$ 



- $\operatorname{Re}\langle O \rangle > 0$ ,  $\operatorname{Im}\langle O \rangle = 0$
- $\operatorname{Re}\langle O \rangle = 0, \ \operatorname{Im}\langle O \rangle < 0$



matrix elements of order parameter are linear combinations of fully **symmetrized** spin operators on triangular plaquette

in applied magnetic field, order parameter is planar and maps onto itself under rotations through  $2\pi/3$ 

FM octopolar order naively has k^2 dispersion ⇒ **cV ∝ T** in 2D c.f HeIII on graphite

- new quantum phases for all the family -

- new quantum phases for all the family -



new **nematic** phase in square lattice frustrated ferromagnets (c.f. quasi-2D vanadates)

Shannon, Momoi + Sindzingre, PRL 2006

Shannon et al., EPJB 2004

- new quantum phases for all the family -



new **nematic** phase in square lattice frustrated ferromagnets (c.f. quasi-2D vanadates)

Shannon, Momoi + Sindzingre, PRL 2006

Shannon et al., EPJB 2004

new **triatic** phase in triangular lattice frustrated ferromagnets (c.f. He III)

Momoi, Sindzingre + Shannon, in preparation Momoi + Shannon, PTP 2005



- new quantum phases for all the family -



new **nematic** phase in square lattice frustrated ferromagnets (c.f. quasi-2D vanadates)

Shannon, Momoi + Sindzingre, PRL 2006

Shannon et al., EPJB 2004

new **triatic** phase in triangular lattice frustrated ferromagnets (c.f. He III)

Momoi, Sindzingre + Shannon, in preparation Momoi + Shannon, PTP 2005



frustrated ferromagnets are fun and there's lots still to learn

### that's all folks...

#### multiple spin exchange on the triangular lattice

