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“The emerging field of spintronics ...”

Spintronics – Spin Manipulation by means of the Electric Field

The Hamiltonian (Rashba Spin-Orbit interaction + usual electrostatic gates)

H =
p2

2m
+ λ(pyσx − pxσy) + V(x,y).

Relativistic correction ∼
 he
c2

(~E · [~p× ~σ]).
Many proposal are based on spatial variation of ~E (or λ), which is hard to achieve experimentally.

What may be simpler?

We are looking for the semiclassical solutions.
Which means a smooth external potential V(x,y).



How to do semiclassics in case of Spin-Orbit?

H =
p2

2m
+ λ(pyσx − pxσy) + V(x,y).

Littlejohn & Flynn
PRA 1991

What is semiclassics?

W K B
H =

p2

2m
+ V(x,y)

a Semiclassical wave function

ψ(x,y) =
√
ρ(x,y)eiS(x,y)/

 h

Hamilton-Jacobi and continuity
equations:

|∇S|2 = 2m(E−U),∇(ρ∇S) = 0.



How to do semiclassics in case of Spin-Orbit?

H =
p2

2m
+ λ(pyσx − pxσy) + V(x,y).

My semiclassics does not assume a large spin.
Usually one takes ~S =  h~σ/2-fixed,  h→ 0.
Here we are interested in the semiclassical de-
scription of two-component wave function.

Also λ is large enough to change the classical
trajectories.

Chiral states

E± =
(p±mλ)2

2m
,

ψ =
1√
2|p|

( √
py − ipx

±
√
py + ipx

)
.

What changes in case of smooth
potential V(x,y)?

Simply:

Heff =
(p±mλ)2

2m
+ V(r) ?



The ”Classical” dynamics is determined by the Effective Hamiltonian

Heff =
(p∓mλ)2

2m
+ V(x,y)

This is possible if and only if the ”Quantum” spin is automatically adjusted to
the direction perpendicular to the momentum (σx,σy) ∝ ±(−py,px).

The semiclassical wave function now takes a form

ψ =

√
ρ

2|p|

( √
py − ipx

±
√
py + ipx

)
eiS/

 h,

where the momentum ~p ≡ ∇S. Hamilton-Jacobi: Heff(~p) → Heff(∇S).
The continuity equation however

∇ · ρ~v = 0
now contains a velocity ~v =

~p

m
∓ λ~p

p
.

(
~v =

∂E

∂~p

)
Direct calculation of Hψ shows that this is indeed the solution.

Out of plain polarization ψ†σzψ 6= 0 appears as a quantum correction

(Spin-Hall effect). ψ†σzψ =  h
±p−mλ

mλp4
(pypi∂ipx − pxpi∂ipy)ρ+  h

py∂xρ− px∂yρ

p2
.



A simple example: Potential depending only on x, V = V(x).
y-momentum is conserved py = const.
y-velocity is not vy 6= const.
ψ ∝ eipyy/ h.

The ”semiclassical” density is

|ψ1|
2 + |ψ2|

2 ∼
1

|vx|
, vx =

px

m
∓ λpx

p
,

and the momentum px = px(x) may be found from

E =
(p∓mλ)2

2m
+ V(x) , p =

√
p2
x + p2

y.

The wave function now takes a form

ψ =
1√

2px(p∓mλ)

( √
py − ipx

±
√
py + ipx

)
eipyy/ h+i

∫
pxdx/ h.
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Immediate consequence:
Scattering by a smooth barrier V = V(x). For py 6= 0 the barrier is open
for transmission in the lower band and closed for transmission in the upper
band. The spin of transmitted electrons is polarized in plane and perpendic-
ular to current.
Number of solutions for px in a given subband may be 0, 2 or 4.

E =
(
√
p2
x + p2

y ∓mλ)2

2m
+ V(x)
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Immediate consequence:
Scattering by a smooth barrier V = V(x). For py 6= 0 the barrier is open
for transmission in the lower band and closed for transmission in the upper
band. The spin of transmitted electrons is polarized in plane and perpendic-
ular to current.
Number of solutions for px in a given subband may be 0, 2 or 4.
Nothing unusual happens in case of normal to the barrier trajectory py ≡ 0.
Both bands are equally transmitting. (Kramers doublets?)



Sharvin Conductance V = V(x)
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 [e

2 /h
]

2 µ / mλ2

J

<σy> <σ
y>

Without Spin-Orbit interaction conduc-
tance increases like

√
µ. The massive

degeneracy of the lowest energy elec-
tron state in case of Rashba spin orbit
leads to step-like rise of the conduc-
tance at the pinch-off.

Conductance of a long barrier (length L)

G =
e2

h

L

π h

(√
2µm+mλ

)
for µ <

mλ2

2
,

and

G =
e

h

L

π h
2
√

2µm for µ >
mλ2

2
.

Here µ is the chemical potential. The top of the barrier corresponds to µ = 0.



Sharvin Conductance V = V(x)
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2
,

and

G =
e

h

L

π h
2
√
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2
.

Here µ is the chemical potential. The top of the barrier corresponds to µ = 0.

〈σy〉 = 〈ψ†σyvxψ〉/〈ψ†vxψ〉 = min(1,
√
mλ2/2µ)



QPC
Classical motion at the saddle point. The effective Hamiltonian

Heff =
(|p| −mλ)2

2m
−
mΩ2x2

2
+
mω2y2

2
.

Classical equations of motion now have a form

ẋ =
px

m
− λ

px

p
, ẏ =

py

m
− λ

py

p
, ṗx = mΩ2x , ṗy = −mω2y.

The kinetic energy has a degenerate minimum at the circle |p| = mλ. It is convenient therefore to shift the momentum

px = cosαmλ+ Px , py = sinαmλ+ Py,

and write the linearized equations of motion

ẋ

cosα
=

ẏ

sinα
=

[
cosα

Px

m
+ sinα

Py

m

]
,
Ṗx

m
= Ω2x ,

Ṗy

m
= −ω2y .

The equation for the momentum along “dangerous” direction P has a simple form

P ≡ cosαPx + sinαPy , P̈ + (−Ω2 cosα2 +ω2 sinα2)P = 0 .
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ẋ

cosα
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ẏ
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=

[
cosα

Px

m
+ sinα

Py

m

]
,
Ṗx

m
= Ω2x ,

Ṗy

m
= −ω2y .

The equation for the momentum along “dangerous” direction P has a simple form

P ≡ cosαPx + sinαPy , P̈ + (−Ω2 cosα2 +ω2 sinα2)P = 0 .

Because of the massive degeneracy of the
ground state, trajectories within the angle

| tanα| <
Ω

ω

are transmitted even at the pinch off.
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Conductance of the QPC
The main result

G = sinα
e2

h

8λ
√

2mµ

hω
.

y

x

a

b c

Valid for µ� mλ2.
Crosses over to

G = 2
e2

h

µ

 hω
, for µ > mλ2.



Conductance of the QPC
The main result

G = sinα
e2

h

8λ
√

2mµ

hω
.
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x
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Conclusions

100% polarized current
(=nonequilibrium spin-density).
No need in:
– Direct measurement of spin.
– Spatial modulation of Spin-Orbit

interaction.
– Electron beam Collimation.



Conductance of the QPC
The main result

G = sinα
e2

h

8λ
√

2mµ

hω
.
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Conclusions?
Some Numbers

Taking for InAs kF = 2.5 × 108m−1,

λ h = 2 × 10−11eVm and m∗ = 0.04m0

we get  hλkF = 5meV, EF = 60meV and

m∗λ2/2 = 0.1meV = 1.2K. We may in-

troduce a length associated with spin-orbit

lR =  h/m∗λ = 100nm. A barrier with

L � lR, or QPC with  hω � m∗λ2/2

may be used to achieve the spin-polarized

transmission.



Conductance of the QPC
The main result

G = sinα
e2

h

8λ
√

2mµ

hω
.
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Conclusions?

Work in progress
Edge Spin-Hall effect 〈σz〉

[H,σy] = −2iλpyσz.

Work in progress in progress
Resonances, Rashba-Antidot?


