Transport on network-like structures
— from light harvesting to boson sampling
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. no Interference with balls

e balls are granular
e summing up probabilities

. Interference with water waves

e continuous intensity
distribution

e Summing up amplitudes (has
phase = mountains and valleys)

[Feynman, Lecture Notes of Physics]



Wave-Particle-Dualism

e Particle does not have position and velocity!
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[Feynman, Lecture Notes of Physics]

e Eins und Eins gibt Keins! — “The Moon isn’t there if we don’t watch

(provided it’s only us to watch)!”
[B. d’Espagnat, 2002, see also FASZ 2nd March 2008]



Interference with ever larger objects

e

Fig. 1 A football (in the
United States, a soccerball)
on Texas grass. The Cg
molecule featured in this
letter is suggested to have
the truncated icosahedral
structure formed by
replacing each vertex on the
seams of such a ball by a
carbon atom.

[Hornberger et al., Physics World 2005]



Quantum coherence in “vegetables” — a provocation!

FMO photosynthetic complex (green sulfur bacteria) 2D spectroscopy
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light harvesting antenna complexes (e.g., “FMO”) funnel excitations
from receptor to reaction center with > 95 % quantum efficiency

at ambient temperature [Engel et al. (2007); Collini et al. (2009), D.B. Turner et al (2011)]

in noisy, multi-hierarchical environment

Rephasing wavelength (nm)



There are many ways to Rome - e.g., purple bacteria

simon.scheuring @curle.fr

Scheuring et al,, EMBO J. 23 (2004) 4127

Hu et al,, Quart. Rev. Biophys. 35 (2002) 1



Observations/issues

observe interference when efficiently decouple/screen the “interfering”
degree of freedom (bucky balls)

coherences possibly “long-lived”, though certainly transient (e.g., at
ambient temperatures)

biology offers rather variable architectures; essentially always garnished
with “disorder”, along with some robust/coarse grained structural
features and redundancy

disorder i1s distinct from noise!



Menu

Statistically optimised transport in FMO

[some perspectives]

a different variant of “large” scale
quantum effects



Philosophy for “FMOQO”

here: “constrained” disorder — many copies, common
structural features on some scales, accidental variations on
other scales

well known: disorder induces dramatic changes of quantum transport
properties

control transport statistics by coarse grained constraints

statistics robust — by construction



Minimal model



Abstract network model of FMO

— FMO as a 3D random network of sites —
— coherent dynamics on finite, fully connected, random graph —

N G
o H = 27;753‘:1 vi,jag‘:)a(_)

e intersite coupling v; ; ~ rz-_;’

e excitation injected at “in”

e excitation delivered at “out”

e remaining sites randomly placed
within sphere

o efficient = large p,,;, after short
times



Transport efficiency

time evolution of on-site probabilities p; = |(i|U(t)|in)|?

time until 7 = /(20| Vin,out|)
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Transport efficiency vs. configuration

characteristic, LARGE QUANTUM fluctuations!
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random spatial conformations

— rare, optimal configurations — mostly localized transport <
— ??conceivable that evolution optimises coherent quantum transport?? <«



Optimal desigh — constraints and statistics



Model ingredients
e centro-symmetric Hamiltonian

H, HJ] = HJ, Jz',j :57L,N—j—|—1

e /1 has “dominant doublet”, i.e.

an incident of optimal dynamics
eigenvectors |+) with
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Design principles control distribution of transfer efficiencies

dramatic efficiency enhancement . ..
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. . if centrosymmetric with dominant doublet!! [waischaers et al., 2013



Does this model fit available experimental data?

genetic optimisation (blue) of dipole orientations
starting from published structure data (red) [tronrud et al, 2009; Schmidt am Busch et al., 2011] . . .
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. . . to be compared to benchmark ensemble (crosses)
seeded with random dipole orientations [walschaers et al., 2013]
[¢ — deviation from centro-symmetry; o — dominant doublet strength]



What's missing for a better understanding



Even cleaner experiments

[Gessner et al, 2014]

2D spectroscopy with single-site addressability — as in ion traps

well-defined initial conditions, read-out, coupling-in/-out, statistics



E.g., coherent vs. incoherent transport
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[Gessner et al, 2014]

dephasing-induced population of otherwise “dark” w,-state

unambiguous signature in zero-frequency 2D signal



Clarify hierarchy of superstructures

LHI (blue)-LHII (red) distribution in photosynthetic membrane of Rhodospirillum
photometricum
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[Scheuring & Sturgis, 2005]

Membrane structure under low- (left) and high-light (right) conditions

How (if at all) are quantum and classical processes matched for functionality?



Another way of making things “large”

More than one excitation — complexity from
many-particle interferences rather than from “network”
structure



Two photons, one (balanced) beam splitter

one photon in each mode a and b — distinguishability controlled by path delay x

coincident detection in output modes c
. and d

Ir" \ e coincidence probability if
C distinguishable: P(2;1,1) =1/2

int
lo e coincidence probability if

Detection indistinguishable: P(2;1,1) =0

if indistinguishable: destructive
' interference of two two-particle
‘j‘-f trajectories

[Shi & Alley (1986, 1988); Hong, Ou & Mandel (1987)]

What happens “in between”?



Experimental test
middle of plot: fully indistinguishable — edges: fully distinguishable
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The more two-particle which-way information, the less interference
— as for single-particle scenario! [ra et al, 2013]



More than two is different!

two photons per input mode (four-photon interference)



Non-monotonic quantum-to-classical transition of P(4;2,2)
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Gaining which-path information (increasing z)
generically leads to a non-monotonic quantum-to-classical transition!
consequence for many-particle decoherence theory?
[Tichy et al., 2011; Ra et al., 2013]



Generalized problem:
mapping n-boson input state on n-boson output state
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UpiUsoUs s Uy iUy 3042 Ui 2Us 3Uq
o=(1,2,3) o=(1,3,2) o=(2,3,1)
coherent sum of up to n! amplitudes — computationally “hard” — “boson sampling”

[Tichy et al, 2010 ff., Aaronson & Arkhipov, 2011]



Hence, remains an open question. . .

?which size? ?which temperature?
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Open issues & requirements

Make sure we employ the same terms for the same concepts, in
substance — e.g. what do we mean by coherence or large
scales/macroscopic? Use Ockham’s razor!

Are large scale quantum effects those in the semiclassical domain
(e.g., Gutzwiller)?

The specificity of a complex quantum system is inscribed in
characteristic fluctuations, rather than in mean values — hence, need
experimental record of statistics.

Does it pass the ping-pong test?
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