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Abstract

A novel theory of primary olfactory reception is described. It proposes that olfactory receptors respond not to the
shape of the molecules but to their vibrations. It differs from previous vibrational theories (Dyson, Wright) in
providing a detailed and plausible mechanism for biological transduction of molecular vibrations: inelastic electron
tunnelling. Elements of the tunnelling spectroscope are identified in putative olfactory receptors and their associated
G-protein. Means of calculating electron tunnelling spectra of odorant molecules are described. Several examples are
given of correlations between tunnelling spectrum and odour in structurally unrelated molecules. As predicted,
molecules of very similar shape but differing in vibrations smell different. The most striking instance is that of pure
acetophenone and its fully deuterated analogue acetophenone-dg, which smell different despite being identical in
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Could Humans Recognize Odor by Phonon Assisted Tunneling?

Jennifer C. Brookes,™ Filio Hartoutsiou,T A.P. Horsﬁeld,jIE and A. M. Stoneham®

Department of Physics and Astronomy, University College London, Gower Street, London WCIE 6BT, United Kingdom
(Received 10 July 2006; published 16 January 2007)

Our sense of smell relies on sensitive, selective atomic-scale processes that occur when a scent
molecule meets specific receptors in the nose. The physical mechanisms of detection are unclear: odorant
shape and size are important, but experiment shows them insufficient. One novel proposal suggests
receptors are actuated by inelastic electron tunneling from a donor to an acceptor mediated by the odorant,
and provides critical discrimination. We test the physical viability of this mechanism using a simple but
general model. With parameter values appropriate for biomolecular systems, we find the proposal
consistent both with the underlying physics and with observed features of smell. This mechanism suggests
a distinct paradigm for selective molecular interactions at receptors (the swipe card model): recognition
and actuation involve size and shape, but also exploit other processes.
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A common explanation of molecular recognition by the olfactory
system posits that receptors recognize the structure or shape of the
odorant molecule. We performed a rigorous test of shape recogni-
tion by replacing hydrogen with deuterium in odorants and asking
whether Drosophila melanogaster can distinguish these identically
shaped isotopes. We report that flies not only differentiate be-
tween isotopic odorants, but can be conditioned to selectively
avoid the common or the deuterated isotope. Furthermore, flies
trained to discriminate against the normal or deuterated isotopes
of acompound, selectively avoid the corresponding isotope of a dif-
ferent odorant. Finally, flies trained to avoid a deuterated com-
pound exhibit selective aversion to an unrelated molecule with
a vibrational mode in the energy range of the carbon-deuterium
stretch. These findings are inconsistent with a shape-only model for
smell, and instead support the existence of a molecular vibration-
sensing component to olfactory reception.

Ifactory systems perform remarkable feats of molecular

recognition, but although much is known about the neuro-
physiology of olfaction (1-5), how olfactory receptors “read”
molecular structure remains unknown. Parts of odorant mole-
cules (odotopes) have been proposed to engage particular
receptors in a “lock-and-key” manner and this molecular shape
recognition mechanism is thought sufficient for odor discrimina-
tion (2). An alternative hypothesis (6) posits that molecular
vibrations of all atoms, or of particular functional groups of
odorant molecules, contribute to odor recognition, and odorants

with similar vibrational spectra should elicit similar olfactory
reenon<es (7Y Moleciilee 1in which detiteriiim renlacesd nonev-

odor character could be distinct and identifiable, irrespective of
the structure and chemical properties of the odorant molecules
that carry it. Significantly, we used Drosophila as unbiased and
objective subjects to address this issue. They possess a relatively
well understood olfactory system (10-13), exhibit keen olfactory
discrimination (14-16), and can be conditioned to selectively
avoid or seek odors with the use of established methodology (17,
18). We ask whether Drosophila can detect deuterium as a dis-
tinguishing molecular feature in odorant isotopes and a salient
cue for conditioning. The results of these experiments provide
support for the notion that flies can smell molecular vibrations.

Results

Spontaneous Differential Responses to Deuterated Odorants. Al-
though deuteration does not appreciably change molecular
shape, atom size, or bond length or stiffness, it doubles hydrogen
mass, thus affecting the overall vibrational modes of an odorant.
Therefore, if recognition of molecular shape alone was the sole
determinant for odor character (2, 3), then flies should not re-
spond differentially to deuterated [d, where d) denotes re-
placement of x nonexchangeable hydrogens with deuterium
atoms| and nondeuterated/normal (i.e., H-) odorants. To ad-
dress this hypothesis, we took advantage of the commercial
availability of acetophenone (ACP) carrying three, five, or eight
deuterium atoms (dz, ds, and dg) in place of the respective
hydrogens in the normal molecule (h-ACP). Equal amounts (75
uL) of each odorant were diluted to 1 mL in isopropyl myristate
and we quantified (Fig. 14) the response of groups of flies to

3 each odorant versus unscented air traversing the arms of a stan-
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Molecular Vibration-Sensing Component in Human
Olfaction
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Abstract

Whether olfaction recognizes odorants by their shape, their molecular vibrations, or both remains an open and controversial
question. A convenient way to address it is to test for odor character differences between deuterated and undeuterated
odorant isotopomers, since these have identical ground-state conformations but different vibrational modes. In a previous
paper (Franco et al. (2011) Proc Natl Acad Sci USA 108:9, 3797-802) we showed that fruit flies can recognize the presence of
deuterium in odorants by a vibrational mechanism. Here we address the question of whether humans too can distinguish
deuterated and undeuterated odorants. A previous report (Keller and Vosshall (2004) Nat Neurosci 7:4, 337-8) indicated that
naive subjects are incapable of distinguishing acetophenone and d-8 acetophenone. Here we confirm and extend those
results to trained subjects and gas-chromatography [GC]-pure odorants. However, we also show that subjects easily
distinguish deuterated and undeuterated musk odorants purified to GC-pure standard. These results are consistent with
a vibrational component in human olfaction.
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electrons In olfaction

effect of octanol on spin signal of Drosophila
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how general are they ?
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the cell membrane

extracellular
water

lipid '} approx 7 nm

intracellular
water

pdb of bilayer courtesy of Peter Tieleman’s
Biocomputing Group, U Calgary



or maybe proteins ?
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what the Meyer-Overton graph means

0.1
. the concentration of anesthetic at the
. active site[s] sufficient for narcosis is
. hyperbola constant regardless of the anesthetic

Xy = constant
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- all anesthetics are equally potent

0.001 —




how Is that possible 7

00 &

Xe Fe CHClz halothane cyclopropane urethane

thiopental etomidate alfaxalone



theories of anesthesia: 1on channels

Sodium currents of the squid axon

{500 uA cm 2

before 5 mM Chloroform

J. Physiol. (1983), 341, pp. 429-439

> 5M In membrane !

lon channel block Denis Haydon 1930-1988



theories of anesthesia: gas hydrates

methane hydrate Linus Pauling 1901-1994



theories of anesthesia: enzyme inhibition

Credit: University of Rhode Island

firefly luciferase Nick Franks
(& Bill Lieb)



theories of anesthesia: receptors

the GABA-A receptor the GABA-A receptor
+ Bromoform

Source: RSCB ID: 2VL0 and 3ZKR
Spurny, R. et al. (2013) J.Biol.Chem. 288: 8355



meta-theories of anesthesia

OLFACTION*
BY
L. J. MULLINS

Few physiological processes remain today as elusive of analysis
and as obscure in mechanism as those involved in olfaction. Such a
situation is not the result of any dearth of experimental investigations
nor because of any reluctance on the part of physiologists to speculate
concerning such mechanisms. Rather, we may suspect that our lack of a
working hypothesis is to be traced to certain broad gaps in our knowledge
of nervous excitation at both the physicochemical and the physiological
level. The discussion that follows is not intended to do more than
examine the areas of both physics and physiology to which we must look
for explanations, and to consider the nature of the difficulties that arise
in any attempt at a precise’formulation of a theory of olfaction.

Recent reviews that very adequately summarize present-day knowl-
edge of the histology of olfactory cells, the types of phenomena that
have been obsetved, as well as the various theories of olfaction, are
available and may be consulted for various details not presented here.!”*
The olfactory cell is a primary neuron in contrast with the many special-
ized types of receptors that respond selectively to various physical
stimuli. There are about 10 to 20 million such receptors in man? dis-
tributed over 5 cm? of surface in the upper respiratory passages. This
olfactory epithelium, as well as the rest of the nasal surface, also con-
tains bare nerve fibers from the trigeminal nerve and these are generally
considered as receptors which signal, by pain, the presence of many

types of chemical compounds. The sensitive endings of the olfactory
cell are a series of fine hairs (6 to 8 per cell in man, 10 to 14 in the

rabbit) with dimensions about 2 x 0.1 microns. The endings of the olfactory
cell are covered with a thin film of fluid, secreted by glands in the epithe-
lium, Presumably this fluid is an ultrafiltrate of blood plasma. The fact
that the nerve fibers emerging from olfactory receptors are short and non-
myelinated has discouraged any serious attempt to investigate the phe-
nomena of olfaction by conventional electrophysiological methods. While
it seems likely that, in the near future, technical improvements in neuro-
physiological technique will be such that direct recording in mammals will
be possible, certain theoretical considerations, to be presented later, make
the interpretation of such direct recording difficult.** One is faced,

*Aided by = grant (B-139) from the National Institute for Neurological Diseases and
Blindness, United Statez Public Health Service, Betheada, Md,

s2Doctor Lloyd Beidler has advised me that he has been able to obtain direct record-
ing {in animals,
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I. INTRODUCTION

In 1920, Miller (42) offered an explanation of how the addition of 2 per cent
sodium chloride to aqueous solutions of phenol increased the toxicity of the
phenol for bacteria. His explanation was that the sodium chloride raised the
chemical potential of the phenol in solution and hence, effectively, the escaping
tendency of phenol toward bacteria. Unfortunately there was no generalization
of this suggestion to include phenomena other than toxicity, and it remained for
Ferguson (16) to show that the use of thermodynamic indices (chemical poten-
tial; activity) was helpful in predicting the aqueous concentrations of various
substances that were necessary for toxicity and for narcosis. As will be seen
later, the suggestion of Ferguson did not contribute any new information to the
understanding of narcosis, but it did free the discussion of such phenomena from
the artificiality of the Meyer-Overton hypothesis by showing that the partition
coefficient, the vapor pressure of narcotics in solution, and various solubility
relationships of narcotics are all derivable in principle from the thermodynamic
activity. There is no argument that the concept of partition coefficients is im-

' This study has been aided by a grant from the Research Laboratories of Eli Lilly and
Company
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Lorin Mullins 1917-1993

Lorin died after a short illness at his
retrement home In Chestertown on
April 14 [...]. He was working on a new
theory of Anesthesia.



What is the nature of gravity?
It clashes with quantum theory. It doesn't fit in the Standard Model.

Nobody has spotted the particle that is responsible for it. Newton's
apple contained a whole can of worms.

How do general anesthetics work?
Scientists are chipping away at the drugs' effects on individual

neurons, but understanding how they render us unconscious will be a
tougher nut to crack.

Is ours the only universe?

| A number of quantum theorists and cosmologists are trying to figure
L« WHAT DON'T WE KNOW? out whether our universe is part of a bigger “multiverse.” But others
'[ | suspect that this hard-to-test idea may be a question for philosophers.

,’\
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P tu
How do prion diseases work?
Even if one accepts that prions are just misfolded proteins, many

mysteries remain. How can they go from the gut to the brain, and how
do they kill cells once there, for example.
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Imaging Xe with a Low-Temperature Scanning Tunneling Microscope

D. M. Eigler, P. S. Weiss, ® and E. K. Schweizer ’
IBM Research Division, Almaden Research Center, 650 Harry Road, San Jose, California 95120

N. D. Lang

IBM Research Division, Thomas J. Watson Research Center, Yorktown Heights, New York 10598
(Received 19 October 1990)

‘We have obtained images of individual Xe atoms absorbed on a Ni(110) surface using a low-
temperature scanning tunneling microscope (STM). The atom-on-jellium model has been used to calcu-
late the apparent height of a Xe atom as imaged with the STM and the result is found to be in good
agreement with experiment. We conclude that the Xe 6s resonance, although lying close to the vacuum
level, is the origin of the Fermi-level local state density which renders Xe “visible” in the STM.

Experiment
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FIG. 2. The Fermi-level conduction-electron density along a
normal to the surface through the nucleus of a Xe atom ad- FIG. 3. A comparison of theoretical and experimental nor-
sorbed at a distance of 5 bohrs from a metal modeled as r, =2 mal tip displacement (A) vs lateral tip displacement (A) curve
jellium (solid curve). The bare-metal density (dashed curve) is for Xe adsorbed on a metal surface. The experimental curve is
shown in order to emphasize the form and extent of the con- derived by taking a slice out of the data presented in Fig. 1.
duction-electron density redistribution. The conduction elec- The theoretical curve is calculated using the atom-on-jellium
trons extend further out into the vacuum at the Xe atom. model of Lang (Refs. 2 and 3) as described in the text.
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electron spin resonance [ESR] setup
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two types of ESR measurement
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jellium (solid curve). The bare-metal density (dashed curve) is for Xe adsorbed on a metal surface. The experimental curve is
shown in order to emphasize the form and extent of the con- derived by taking a slice out of the data presented in Fig. 1.
duction-electron density redistribution. The conduction elec- The theoretical curve is calculated using the atom-on-jellium
trons extend further out into the vacuum at the Xe atom. model of Lang (Refs. 2 and 3) as described in the text.
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CHz-terminated 5-gly alpha helix
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*Highest Occupied Molecular Orbital
PBE-DZP minimization, B3LYP single point



effect of anesthetics on helix HOMO

vacuum Xe N>O SFe CHCls CzHs

&

JA’




effect of anesthetics on helix HOMO

ether propofol urethane barbital etomidate alfaxalone

-
X N

Y

~ ' \

L i

8
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IN conclusion

* general anesthetics cause a change In electron spin
* which Is sometimes absent or different in resistant mutants
* they all perturb the electronic structure of proteins






Landauer Limit: KT (n2 or ~ 18 meV at 300K
ATP hydrolysis energy:. ~ 600 meV ~ 33 times LL

Anesthetic-sensitive energy consumption of 1 g of brain~ 10 mW or

~ 1017 bits/s

108 neurons/g, so per neuron

10° bits/sec as opposed to current 103
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