

A question

Which fundamental computational structures exist in Hilbert space?

Computational structures in Hilbert space

Computational structures in Hilbert space

Two criteria:

- Must specify an input structure, an output structure, and a function computed.
- Must be genuinely quantum.

Mermin's KS proof computes!

* Use GHZ state as computational resource* Compute OR-gate

- Classical processing all *linear*, computed OR-gate *non-linear*.
- \Rightarrow Classical control computer promoted to classical universality.
- J. Anders and D. Browne, PRL 102, 050502 (2009).

Recent work

Philippe

Guerin,

Vienna

Silicon valey

Dan Browne, Cihan Okay, Imperial College

UWO

Juan Bermejo Vega, Berlin

- Nicolas Delfosse, Philippe Allard Guerin, Jacob Bian, Robert Raussendorf, Wigner function negativity and contextuality in guantum computation on *rebits*, Phys. Rev. X 5, 021003 (2015)
- Robert Raussendorf, Dan E. Browne, Nicolas Delfosse, Cihan Okay, Juan Bermejo-Vega, Contextuality as a resource for gubit guantum computation, arXiv:1511.08506
- R. Raussendorf, Cohomological framework for contextual quantum computations. arXiv:1602.04155

One result

Proposition. Consider a measurement-based quantum computation \mathcal{M} and a classical computation \mathcal{C} , evaluating the same Boolean function $o: \mathbb{Z}_2^m \to \mathbb{Z}_2$. The classical computational cost C_{class} of \mathcal{C} is bounded by the maximum violation Δ of the logical non-contextuality inequality for \mathcal{M} ,

$$C_{\mathsf{class}} \leq \Delta.$$

Substantial amount of contextuality required for speedup

One result

Proposition. Consider a measurement-based quantum computation \mathcal{M} and a classical computation \mathcal{C} , evaluating the same Boolean function $o: \mathbb{Z}_2^m \to \mathbb{Z}_2$. The classical computational cost C_{class} of \mathcal{C} is bounded by the maximum violation of the logical non-contextuality inequality for \mathcal{M} ,

$$C_{\mathsf{class}} \leq \Delta.$$

Substantial amount of contextuality required for speedup

Contextuality of QM

What is a non-contextual hidden-variable model?

Noncontextuality: Given observables A,B,C: [A,B] = [A,C] = 0: λ_A is *independent* of whether A is measured jointly with B or C.

Theorem [Kochen, Specker]: For dim $(\mathcal{H}) \ge 3$, quantum-mechanics cannot be reproduced by a non-contextual hidden-variable model.

Quantum computation by measurement

- Information written onto a cluster state, processed and read out by one-qubit measurements only.
- The resulting computational scheme is *universal*.

Theorem 1: Every MBQC which deterministically evaluates a non-linear Boolean function is contextual.

Remark: This can be extended to probabilistic computations.

But what does that mean? A Boolean function is a classical thing.

Does the contextuality in the MBQC have any bearing on other means of evaluating a Boolean function?

=> Violation of a non-contextuality inequality bounds classical computational cost.

R. Raussendorf, PRA (2013).

What is a non-contextuality inequality?

- Consider an observable $A = \sum_{i}^{N} P_{i}$.
- P_i are projectors. Classically, they correspond to statements that cannot be simultaneously true.
- Expectation for A in a non-contextual HVM:

 $\langle A \rangle_{HVM} \le N - \Delta$

• Quantum mechanical expectation

 $\langle \psi | A | \psi \rangle \le N.$

Maximum can be reached.

Our result

• Expectation for A in a non-contextual HVM/ in QM:

$$\langle A \rangle_{HVM} \le N - \Delta, \ \langle \psi | A | \psi \rangle \le N.$$

 We show: For every MBQC computing a function *o* we can find an operator *A* such that △ bounds the computational cost for classically computing *o*.

Which computational structures exist in Hilbert space?

Cohomology is part of the answer.