The Kerr Solution

Roy Patrick Kerr
Canterbury Prof, University of Canterbury, Christchurch
Yevgeny Lifschitz Prof. ICRAnet, Pescara

Gravity, Past, Present and Future Conference
PiTP, University of British Columbia - 5 Sept 2017
The Kerr Metric

\[ds^2 = ds_0^2 + 2mr/(r^2 + a^2 \cos^2 \theta)k^2, \quad k = -d(t + r) + a \sin \theta d\phi \]

\[ds_0^2 = (r^2 + a^2 \cos^2 \theta)(d\theta^2 + \sin^2 \theta d\phi^2) + (dt - dr + a \sin^2 \theta d\phi)k \]

gives the Kerr-Schild form of the metric,

\[(r + ia)e^{i\phi} \sin \theta = x + iy, \quad r \cos \theta = z, \]

where the surfaces of constant \(r \) are confocal ellipsoids of revolution,

\[\frac{x^2 + y^2}{r^2 + a^2} + \frac{z^2}{r^2} = 1. \]
The Angular Momentum of Central Body

The metric was expanded in powers of R^{-1}, where $R = x^2 + y^2 + z^2$ is the usual Euclidean distance from the origin, the center of the source,

$$ds^2 = dx^2 + dy^2 + dz^2 - dt^2 + \frac{2m}{R}(dt + dR)^2$$
$$\quad - \frac{4ma}{R^3}(x dy - y dx)(dt + dR) + O(R^{-3})$$

If $x^\mu \rightarrow x^\mu + a^\mu$ is an infinitesimal transformation, then $ds^2 \rightarrow ds^2 + 2da_\mu dx^\mu$,

$$a_\mu dx^\mu = -\frac{ma}{R^2}(x dy - y dx) \quad \Rightarrow \quad 2da_\mu dx^\mu = -\frac{4ma}{R^3}(x dy - y dx)dR,$$

$$ds^2 = dx^2 + dy^2 + dz^2 - dt^2 + \frac{2m}{R}(dt + dR)^2$$
$$\quad - \frac{4ma}{R^3}(x dy - y dx)dt + O(R^{-3}).$$

It is rotating! The mass $= m$, Angular Momentum $= ma$.
All cross terms between \(\{dr, d\theta\} \) and \(\{dt, d\phi\} \) can be eliminated

\[
dt' = dt + A dr + B d\theta, \quad d\phi' = d\phi + C dr + D d\theta.
\]

where the coefficients can be found algebraically.

\[
dt \rightarrow dt + \frac{2mr}{\Delta} dr \quad d\phi \rightarrow -d\phi + \frac{a}{\Delta} dr, \quad \Delta = r^2 - 2mr + a^2.
\]

The right hand sides of the first two equations are clearly perfect differentials. This **Boyer-Lindquist form** is the most widely used form of the metric,

\[
ds^2 = \frac{\Theta}{\Delta} dr^2 + \Theta d\theta^2 - \frac{\Delta}{\Theta} [dt - a \sin^2 \theta d\phi]^2 + \frac{\sin^2 \theta}{\Theta} [(r^2 + a^2) d\phi - a dt]^2,
\]

where \(\Theta = r^2 + a^2 \cos^2 \theta, \quad \Delta = r^2 - 2mr + a^2 \)

The two event horizons are the surfaces \(r = r_{\pm} \) where \(r_{\pm} \) are the roots of \(\Delta = 0, \)

\[
\Delta = r^2 - 2mr + a^2 = (r - r_+)(r - r_-).
\]
Event Horizons for Kerr Black Hole

By Fulvio Melia

Inner Horizon

Outer Horizon

Singular Ring

By Fulvio Melia