Infrared Quantum Gravity

1) Effective field theory — UV vs IR
- non-analytic, non-local

2) Some low energy theorems of quantum gravity
- soft theorems at one loop
- non-geodesic motion/ EP violation

3) Beyond scattering amplitudes
- non-linear non-local effective actions
- hint of singularity avoidance

4) Some future Issues
- IR singularities
- cumulative effects — the far IR
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Quantum GR at low energies is an “effective field theory”

Effective field theory is a (now) standard technique:
- calculate quantum effects at a given energy scale
-shifts focus from U.V. to |.R.
-handles main obstacle
— guantum effects involve all scales

Much active focus on UV physics of gravity
- unknown and interesting new physics at Planck scale
- but physics Is expt. science — prospects for resolution at Planck scale?
- IR effects are small
- but IR 1s where quantum gravity is reliable
- goal is explore quantum effects in GR

Many good quantum calculations do not use phrase EFT, but EFT
helps explain why they are good.



L_ocal vs Nonlocal in Effective Field Theory

EFT separates known from unknown (or irrelevant) physics

High energy effects are local
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Low energy = nonocal

Known aspects — massless (or light) degrees of freedom
- couplings near zero energy



Procedures:

1) General local Lagrangian, ordered by energy expansion
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2) Apply quantum field theory — perturbation theory
Feynman-DeWitt
3) Renormalize Lagrangian
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4) What are the guantum predictions?

non-analytic In momentum space
Amp ~q°In(-q*) , +-¢’
nonlocal in coordinate space

“Low energy theorems”
- Independent of UV completion
- depend only on IR structure



Nature of the expansion:

Power counting theorem (A = 0 ) for quantum effects:
- one loop — extra E% ~0°
- two loop - E*~0*
Vary from process to process

Amplitudes // \

Amp; ~ Am-p? [1 + a;Gmy/ —q% + b;Gq* 111—2 + a(p)Gg* + ]
[

Local terms

Action One loop divergences
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Effective Field Theory in Action:
Chiral Perturbation Theory

-QCD at very low energies —pions and photons

Non-linear lagrangian required by symmetry:

T
L= FTr(DUD' U + LTr(DUD TN + ... | U= ewnliz]
Very well studied: Theory and phenomenology
- energy expansion, loops, symmetry breaking,
experimental constraints, connection to QCD.
~y — OO
Sample calculation: I 7]« oneloop
-no direct couplings at low energy 5 I, ]
— pure loops = :‘\ two loops
-essentially parameter free at low energy g
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Some low energy theorems of quantum gravity

Quantum loop effects independent of any UV theory
- assumption is GR at low energy
- leading couplings and gravitons

1) Gravitational scattering of masses
- universal/ soft theorem at one loop

2) Graviton-gravition scattering
- IR singularities

3) Light bending at one loop
- non-universal behavior / EP violation
- motion not on null geodesics



Corrections to Newtonian Potential

Here discuss scattering
potential of two heavy
masses — S matrix element.
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Potential found using from
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Classical potential has been well studied _
Iwasaki

Gupta-Radford
Hiida-Okamura

JFD 1994

JFD, Holstein,
Bjerrum-Bohr 2002
Khriplovich and Kirilin
Other references later



What to expect:

General expansion: . U o
- M M+ ,, .
Vir)=— M {1 + aG( J: m) + b Cjﬁ;} + cG* Mmd*(r)
T rce rec
. / Quantum \
: hort
Classmztall expansion expansion rSano !
parameter parameter J

Relation to momentum space:

d’*q igqr 11

J @n)F C Ja T dwr

] 3
fn i T
J 2n) q| A2y

d.’i r ) -1
: (275’3 9T In(q’) = 23
M 1 o2 GMm [ WV=TE ' Ve, 2 v 2
OMENtUm spaceé  v(q*) = —5— |1+ d'G(M + m)\/—¢* + V'Ghq” In(—q¢°) + /Gq
amplitudes: 1 e P

Classical gquantum short

/' / / range

Non-analytic analytic



The calculation:
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Results:

Pull out non-analytic terms:
-for example the vertex corrections:
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Comments

1) Both classical and guantum emerge from a one loop calculation!
- classical first done by Gupta and Radford (1980)

1) Unmeasurably small correction:
- best perturbation theory known(!)

3) Quantum loop well behaved - no conflict of GR and QM

4) Other calculations
(Radikowski, Duff, JFD; Muzinich and Vokos; Hamber and Liu;

Akhundov, Bellucci, and Sheikh ; Khriplovich and Kirilin)
-other potentials or mistakes



Aside: Classical Physics from Quantum Loops:

JFD, Holstein
2004 PRL

Field theory folk lore:
Loop expansion IS an expansion in #
“Proofs” in field theory books

This is not really true.
- numerous counter examples — such as the gravitational potential

- can remove a power of 7% via kinematic dependence

m2 m

V=~ n/=k2

- classical behavior seen when massless particles are involved




On-shell technigues and loops from unitarity

_ JFD, Bjerrum-Bohr
- On-shell amplitudes only Vanhove

-No ghosts needed — axial gauge
- Both unitarity cuts and dispersion relation method i
- Gravity Is square of gauge theory
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Confirm results (and gauge invariance)



One loop universality/soft theorem

Low
Gell-Mann
Goldberger

Tree level soft theorems évre;;‘fefg

- Compton amplitudes and gravitational Jackiw
Compton amplitudes are universal at leading order
- Conservation of charge/energy and ang. mom.

One loop soft theorem
- E&M and gravitational potentials
- formed by square of Compton amplitudes
- quantum term down from classical by v-a*
- first found in direct calculations by Holstein and Ross




Graviton —graviton scattering

Fundamental quantum gravity process

Lowest order amplitude:
. s Cooke;
AT ) - = Behrends Gastmans
Lo Grisaru et al

One loop:
Incredibly difficult using field theory
Dunbar and Norridge —string based methods! (just tool, not full string theory)
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Infrared safe:

The 1/e is from infrared

-soft graviton radiation

-made finite in usual way

1/e -> In(1/resolution) (gives scale to loops)
-Ccross section finite
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Beautiful result:
-low energy theorem of quantum gravity

JFD +
Torma



Bjerrum-Bohr, JFD, Holstein

Light bending at one loop Plante, Vanhove
- Again using unitarity methods o~ ~f wamf \//
- Gravity Compton as |
square of EM Compton P «\m/ww /&\

- Compare massless spin 0 and photon -
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Semiclassical method for calculating bending angle

I, is IR cutoff
can turn into
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Recently reproduced using eikonal amplitude oAy
- saddle point approximation _
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Massless particles deviate from null geodesics
- Irreducible tidal effects from loops
- also non-universal — violation of some forms of EP

- perhaps energy dependence



Other phenomena?

Change in light bending is far too small to see

Are any other situations promising?
- want lots of gravitational field
- photon ring at Event Horizon Telescope?
- energy dependence of redshift, lensing?

What could an ambitious experiment achieve?
Any tricks?

Mende



Aside: OQuantum corrections do not organize into running G(E)

Basic reason: Loops generate effects at order R? , not renormalizing G

Indicators:
1) Kinematic G g*not even sign definite in Lorentzian signatures
2) Process dependence — no universal definition possible
2

Amp; ~ Am.pgo} 14 a,Gmy/—¢ + b;G¢*In % + C'.i(,u)qu + ...
1L

True even with cutoff or momentum shells:
G A*disappears from physical processes

- not indicator of true energy dependence Anber, Donoghue

Toms

Many “running coupling” papers are wrong
Relationship to Asymptotic Safety is subtle (discussion?)



Beyond scattering amplitudes

Gravity much more than scattering
- but QFT techniques less developed

Non-local effective actions:
- most work done by Barvinsky, Vilkovisky and collab.

- covariant Others:
- expansion in curvature Starobinsky
Hartle, Hu

Note: This is a different expansion from EFT derivative expansion

Syrav = / /=g {x + SR+ R o Ru R+ } EFT

. , o1 1
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Example: Non local action for massless OED:
/\ |

Vacuum polarization contains divergences but also log g2
Integrate out massless matter field and write effective action:

1 1 9, —
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Displays running of charge 127

Really implies a non-local effective action:
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Connection: Running and non-local effects




Perturbation with gravity JFD, El-Menoufi

Non-local effective action for gravitational coupling
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Stress tensor is then non-local Can be causal
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Also would lead to EP violating light-bending
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Full expansion in the curvature:
Most interesting are the 1/0 terms

Panom.[g:fﬂ = [(E.iif\/ﬁ {n'lechp iR—l_ ningFADCpJ ]

But loglJ (with covariant Box) proves most problematic
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dangerous
Is this a useful path for phenomenology?

Not the usual energy expansion




Interpreting In V7

V# involves propagation in full background spacetime
Also need tractable approximation
Non-local representation

5= [ e JawRE) [ d/sw) ol log (%) 4 R(y)

where states are normalized
5O ( — )

1/2
(\/g(y) \/g(:c))
We use locally flat approximation
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Results seem insensitive to long-time tail where this is incorrect
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Non-local action for gravity - 2"9 order in curvature:

(RuwasR*™ " — AR, R*" + RR) is a total derivative

(Rupaslog (O) R — 4R, log (O) R* + Rlog (O) R)  is not

Calculationally simplest basis.
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Sor = [d*i-.r\/g_;: (&.R log ( o ) R+ BR,, log (—2) R* 4+ ~Ry,05log (—2) RHve ﬂ)
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Conceptually better basis.
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Last term has no scale dependence
Second term (Weyl tensor) vanishes in FLRW
First term vanishes for conformal fields



Renormalize R2 parameters and generate non-local terms:

Barvinsky, Vilkovisky, Avrimidi
Perturbative running is contained in the R? terms

S, = /dix.‘/ﬁ [c1 () R? + ca(p) R, MY

+ [aRlog (V2 /1*)R + BC,,ap log(V? /u?)CHYP
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Again running can all be packaged in non-local terms:
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Scalar [5(6€ — 1)° ) 2 [5(66—-1)°] 3 | —1
Fermion —5 8 7 0 18 [—11
Vector —50 176 |—26 0 36 | —62
Graviton 430 —1444| 424 90 126 298

Coeflicients of different fields.

All numbers should be divided by 115207




Non-local FLRW equations: Quantum memory
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and the time-dependent weight:
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For scalars:




Collapsing universe — singularity avoidance
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FIG. 12: Collapsing radiation-filled universe with gravitons only considered.

No free parameters in this result



With all the standard model fields:

a'(f)
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FIG. 11: Collapsing dust-filled universe with the Standard Model particles and a conformally coupled Higgs. The result is
purely non-local and hence independent of any scale pug.



Collapsing phase — singularity avoidance
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Physics does scale like My/VN
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Some future issues

1) Resolution of IR divergences
- Passarino-Veltman - bubbles, triangles and boxes
- how are these resolved in gravitational settings?

2) Gravity effects build up
- small effects can become large
- any summation of quantum effects?

3) Extreme infrared
- differences from other EFTs
- patching together EFTs?



IR divergences In flat space:

Passarino-Veltman decomposition (boxes, triangles, bubbles)
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We know how to resolve these in scattering

But in curved space??
- IS there a PV reduction?
- what resolves IR?




Extreme Infrared:

Consider horizons:
- locally safe — we could be passing a BH horizon right now
- local neighborhood should make a fine EFT
- can be small curvature - no curvature singularity
- locally flat coordinates in free fall through horizon

- but cannot pass information to spatial infinity
- EFT cannot be continued to very long distances (!)

- also, when far away, horizon appears source of thermal radiation
- Incoherent, non-unitary

simple EFT has some failure at long distance
- but long distance is where the EFT is supposed to work

- what is the parameter governing the problem?

Singularities could be even more problematic
- can you consider wavelengths past the nearest singularity?

Firewalls?



Diagnosis: Consider Riemann normal coordinates
Taylor expansion in a local neighborhood:

-~
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Even for small curvature,
there is a limit to a perturbative treatment of long distance:

h;.l.'rrr::.'ﬁ[ o :I.'Ilf”.”.-l: : << 1

Hawking-Penrose tell us that this is not just a bad choice of coordinates

But this is not the usual EFT expansion:

Ry?» R/ ¢?

- gets worse at long distance



Integrated curvature qualitatively explains extreme IR issues:
- curvature builds up between horizon and spatial infinity
- singularities due to evolution of any curvature to long enough distance

But how do we treat this in EFT?

Maybe singularities can be treated as gravitational sources
- excise a region around the singularity
- include a coupling to the boundary
- analogy Skyrmions in ChPTh

But distant horizons?
- perhaps non-perturbatively small??



Summary:

We understand some aspects of guantum general relativity
- focus on the IR
- modifications to classical GR

Challenge is moving on beyond scattering processes
Non-local effective action
- how useful is the curvature expansion?

- alternate covariant representations?

Need better understanding of IR limit of the theory



