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Five Parts: Confluence of Theories in the 80s-
90s in Gravity and Quantum with new issues

Part I: Alternative Quantum Theories. Diosi-Penrose Schemes: (nonrelativistic) Schroedinger
Newton/von-Neumann-Newton Eqgs: Noise term putin by hand. @ 80s Nice review by Bassi etal Rev Mod Phys

Part II: Gravitational Decoherence: A Master Equation derived from General Relativity (GR) +
Quantum Field theory (QFT) via quantum open systems (Q0OS) methods Recent Rise in attention

-- Peyresq Physics Meeting 16, Provence, France, June 23, 2011
-- Intrinsic Decoherence in Nature Galiano Island, Canada, May 22-25, 2013

e [AH1] “A Master Equation for Gravitational Decoherence:Probing the Textures of Spacetime”
CQG 30, 165007 (2013) || M. Blencowe, PRL 111, 021302 (2013)

Part III. Problems with the Newton-Schrodinger Equations [AH2] arXiv:1403.4921
New J. Physics 16 (2014) 085007 [Focus Issue on Gravitational Quantum Physics]; | “Newton-Schrodinger
Equations are not derivable from General Relatvity + Quantum Field Theory” arXiv:1402.3813

Part IV. Four Levels of Semiclassical Gravity. Mean-field 80s
Stochastic Gravity: Including Fluctuations 90s

e Review: B.L.Hu, “Gravitational Decoherence, Alternative Quantum Theories and Semiclassical Gravity”
invited talk at the Second International Conference on Emergent Quantum Mechanics, Austrian Academy of
Science, Vienna, October 3-6,2013 |]. Phys. Conf. Ser. arXiv:1402.6584

Part V. Quantum information in Q systems interacting with gravity < This talk


http://arxiv.org/abs/1403.4921
http://arxiv.org/abs/1402.3813

Three elements: Q| G
Quantum, Information and Gravity

* Quantum < Quantum Mechanics < Quantum Field Theory
Schroedinger Equation |

* Gravity € Newton Mechanics < General Relativity
GR+QFT= Semiclassical Gravity (SCG)

« Laboratory conditions: | Strong Field Conditions:
Weak field, nonrelativistic limit: | Early Universe, Black Holes

Newton Schrodinger Eq | Semiclassical Einstein Eq
(NSE) | (SCE)



Two layers of theoretical construct:

(1 small surprise, 1 observation)

1) Small Surprise?:

NSE for single or multiple particles is not
derivable from known physics

Newton-Schrodinger Eq <=/= Semiclassical
Einstein Eq of Semiclassical Gravity

(this nomenclature is preferred over Moller-Rosenfeld
Eqn)



Now bring in the most basic

element in quantum information

Take the issue of Quantum Entanglement

Examine the expectation value not wrt a vacuum
state (vev), but say a cat state:

| +- > = 1/V2 (|left> +- |right>) l.....0.....]|
-X +X
2) N0 Surprise:
One should know that SCG is not sufficient for QlI,
since it gives the mean value of the stress energy

tensor Tmn, which predicts wrongly that the cat is at
x=0.  No Superposition.



Need to include contributions from the fluctuations in
addition to the mean <Tmn> (from SCG)

Correlations of the stress energy tensor <TmnTrs>
IS needed to address issues in

guantum information with gravity (Relativistic RQl)

There is such a theory, Stochastic Semiclassical
Gravity (SSG), based solely on GR+QFT.

No new invention needed (or allowed).

Just need to work things out carefully with
experiments in mind. --- We are attempting this now:



Alternative Q Theories

L Diosi (84,87,89) R. Penrose, Phil. Trans. R. Soc. Lond. A
(1998) 356, 1927-1939 / GRG (96)

-Advocate gravity as the source of decoherence of quantum particles.
-Proposed different forms of Newton-Schrodinger Equation NSE
- But we find that NSE cannot be derived from QFT + GR

e GRWP: G.C. Ghirardi, R. Grassi, A. Rimini, Weber and Pearle

Phys. Rev. A42, 1057 (1990).; Pearle. Changing QM, We view this class of
theories as expressing a wish: That at a certain scale between the micro and
macro, the wave function collapses: “ localization”. Less concerned with Why

Both classes of theories are Phenomenological, not Fundamental.

o Viewing QM as Emergent: Proposals of sub-level theories
S. L. Adler’s book and recent papers, ‘t Hooft’s papers

Excellent Review by A. Bassi et al, Rev. Mod. Phys. 85, 471- 527 (2013)



Part|: Problems with the
Newton-Schrodinger Equations

 “Newton-Schrodinger Equations are not derivable from General

Relativity + Quantum Field Theory” arXiv:1402.3813



http://arxiv.org/abs/1402.3813

Newton-Schroedinger Equations

The NSE  governing the wave anction of a single par-
ticle 2(r,f) 15 of the form
ﬁz

i [0t = ——V % + m Vi [Y]1)
2m

Eq.(1), where Vp(r) 1s the (normalized) gravitational
(Newtonlan) potential given by

Vilr,t) = — f dr’ | (e’ )%/ |r — ).
[t satisfies the Polsson equati

ViVy = ArGu.

with the mass density g = m|(r, t)|*
being the nonrelativistic limit of energv density = = Tig.



Problems with NSE: (A) Nonlinearity

e In NSE the gravitational self-energy introduces a nonlinear
term in the Schr odinger equation

|[In Diosi’s theory, the gravitational self-energy introduces a
stochastic term in the master equation.]

e With GR+QFT in the weak field (WF) limit gravitational self-
energy only contributes to mass renormalization

- The Newtonian interaction term at the field level induces a
divergent self-energy contribution to the single-particle
Hamiltonian.

- [t does not induce nonlinear terms to the Schr odinger
equation for any number of particles.



Point (B). Wave Function in NSE not of one or
many particles, but a Collective Variable for a
system of N particles in the Hartree Approx.

B. The one-particle NS equation appears as the Hartree
approximation for N particle states as N — oc.
Consider the ansatz

U =[x} @ x)... @ |x)

for a N-particle system. At the lhmit ¥V — oc the gen-
eration of particle correlations in time 15 suppressed and
one gets an equation which reduces to the NS equation
for y [7, 5.

However. in the Hartree approximation. y(r) 18 not the
wave-function »(r) of a single particle, but a collective
variable that describes a system of N particles under a
mean teld approximation.
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We have taken Three Routes
to examine this issue

1) Weak Field (WF) nonrelativistic (NR) limit of
Semiclassical Einstein Equation (SCE)

from Relativistic Semiclassical Gravity

2) Work out a model from scratch. Perturbative

gravity + matter field 2 quantize - NR limit [in AH1]
B. L Hu and Charis Anastopoulos, Class. Quant Grav. 30, 165007 (2013)

3) Nonrelativistic limit of QED [details in AH2]

B. L Hu and Charis Anastopoulos “Problems of the Newton-Schrodinger
Equations” arXiv:1403.4921 New | Phys. Focus Issue on grav q physics



http://arxiv.org/abs/1403.4921

2nd Route: Perturbative gravity + matter
field = quantize = constraint 2> NR [imit

B. L Hu and Charis Anastopoulos, Class. Quant Grav. 30, 165007 (2013)



N quantum particles (described by a
scalar field) in a gravitational field

1. Hamiltonian for a massive scalar field interacting with a
gravitational field

2. 3+1 decomposition. Perturbation off a Minkowski space
background.

3. Gauge choice, transverse-traceless components: physical

degrees of freedom
[The effect of self-gravity is fully taken into account.]

4. Hamiltonian -- Quantization - Hamiltonian operator

5. Tracing out the gravitational field. Technically possible for
weak perturbuations = Master eq for reduced density matrix
of matter field [similar to QBM model]

6. Projecting to the one-particle subspace

7. Take the non-relativistic limit.



The Correct Schrodinger Equation obtained from
GR+QFT for the quantum field matter state |'¥> with
gravitational interaction is [shown in Route 2 and 3]

Treating the matter degrees of freedom in terms of quan-
tum fields (r) and '"(r), we obtain the Schrodinger
equation for the fields i0|W) /0t = H|W¥), with

2
. h“

- / At (1) V20 (x)
2m

—G //rfl“rfl“ 1*)( A)(I’)f

where” ¥ (r),” wf(r) are respectively the non-relativistic field
annihilation and creation operators

r—r'|.




This procedure is widely employed in condensed matter
systems, with a Coulomb potential for electrostatic interaction
replacing the Newtonian potential for gravitational interaction.

Note that this equation obtained from GR+QFT is very different
from the NSE when considering a single particle state.

For single-particle states the gravitational interaction leads only
to a mass renormalization term (similar to mass
renormalization in QED). | This is point A made above.]

Using the Hartree approximation to Eq. (4) leads to the same
result as the NR WF limit of SCE, not NSE. [Point B above.]



Part Il Semiclassical Gravity



Semiclassical Gravity: 4 levels

of theories describing quantum matter
interacting with classical gravity

Level 0: nonrelativistic (NR) particle motion in weak gravitational
field (WF): belong to this level

 Note: many versions of NSEq; most are used as vehicles for the expressions
of (not unreasonable) wishes. E.g., wave function collapse in coordinate basis
for macroscopic objects.

e Butgrav decoherence according to GR is in the energy, not coordinate basis, as
collapse models want it to be.

 Besides, NSEs are not the weak field (WF)-non relativistic (NR) limit of
GR+QFT (as shown in e.g, C. Anastopoulos and B L Hu, NJP 16 (2014) 085007

Level 1: First quantized matter field in classical background
geometry solved self-consistently: Einstein-Klein-Gordon Eq.



Level 2: Second quantized matter field: particle creation processes included.

A. Quantum field theory in curved spacetime
(test field in fixed background) 1970s

B. Relativistic Semiclassical Gravity
(backreaction of 2" quantized matter field included) 1980s

Semiclassical Einstein Equation sourced by the expectation values of
the stress energy tensor => Spacetime and quantum matter
dynamically determined self-consistently.

RSCG is a mean field theory [Hartle & Horowitz 80, large N;
Hu, Peyresq 98. Roura and Verdaguer (unpublished)]

[Validity of SCG considered in Flanagan & Wald, Phys. Rev. D 54, 6233 (1996);
Hu Roura and Verdaguer, Phys. Rev. D 70, 044002 (2004) Including the effects
of quantum matter fluctuations and induced metric fluctuations]

Level 3: Fluctuations of quantum matter field included : Goes beyond the
mean field theory of RSG. 1990s

Stochastic Semiclassical Gravity: Einstein-Langevin Equation.



Semiclassical Gravity

Semiclassical Einstein Equation (Moller-Rosenfeld):

it Fat

G;u-u (Qa,ﬁ) — ﬁ'<.Tj,LU>q+ K (Tpv) C

(=, is the Einstein tensor (plus covariant terms
assoclated with the renormalization of the quantum field)
r = 81y and G 1s Newton’s constant

Free massive scalar field , .
(d—m~—&R)p =0.

1, 1s the stress-energy tensor operator
o 2\
()4 denotes the expectation value



Semiclassical Einstein Equation
Is the only known valid equation for
quantum matter (QFT) interacting with
classical gravity (GR)

A natural extension of well known and tested theories:
e Quantum field theory in curved spacetime (e.g., Hawking effect)
e Semiclassical gravity (e.g., inflationary cosmology)

Relativistic semiclassical gravity (RSCG) is a fully covariant theory
based on GR+QFT with self-consistent backreaction of quantum
matter on a classical spacetime dynamics.

e [thas been applied to the backreaction of quantum matter field
processes in strong gravitational fields such as in the early
universe and black holes.

e Main advantage: Minimal speculative assumptions



The semaclassical Einstein equation 1s of the form

Gy =8rGV|T,, |W¥)
Eq.(2), where (1},,,) is the expectation value of the stress
energy density operator Tm,, with respect to some quan-
tum state |W) of the field.
In the weak field limit the spacetime metric has the form
ds? = (1 —2V)dt? — dr?, and the non-relativistic limit of
the SCE Eq becomes

V2V = 47G(2),

where £ = Tpp 1s the energy density operator.
This can be solved to yield

r—r|

V(r) = _G/drf@(r;)}f

Eq.(3). Note (£(r")) in general contains ultraviolet diver-
gences and need be regularized via known procedures.



Differences between NSE and
the NR limit of SCE:

Two key differences between the NR limit of SCE and
NSE are:
i) the energy density £(r) is an operator, not a c-number.
The Newtonian potential 1s not a dynamical object in
GR. but subject to constraint conditions.
ii) the state |W) of a field is a N-particle wave func-
tion. Quantum matter is coupled to classical gravity as a
mean-field theory, well defined only when NV 1s sufficiently
large.

The (misplaced) procedure leading one from SCE to
a NS equation is the treatment of m|i)(r,t)|* as a mass
density for a single particle, while in fact the mass den-
sity is a quantum operator é(r) = ¢ (r)¢(r) in the QFT
Hilbert space. Not treating these quantities as operators
bears the consequences A and B.



One particle. We first consider a single particle state

) = /dr@;ﬁ(r)@(r)m}, (9)

where ¢(r) is the single-particle wave-function. e. The expectation value {r,-‘)|;1mg(r}|qrh}
indeed coincides with m|¢(r)|*. However, the substitution of an operator with its mean
value 1s a good approximation enly if the system is presupposed to behave classically.
In the context of the SCE equation, such an approximation is meaningful onlyv at the
mean field description of a many particle svstem. When considering a single particle,
the mass-density ought to be treated as an operator in the evolution equations.

Two particles. Next, we consider a 2-particle state

o 1 , ) .
|1, ) = \—/Efdl‘1d1‘2@1(1‘1]ﬁt"?'z(rzj'l."’T[I‘l]?ﬁ-‘T(I‘EHD}-



Stochastic Gravity

Einstein- Langevin Equation (schematically):

A~

Gﬁ.f;(gﬁﬁ) = K (TC 4 Tas

L ﬂp)

177, 1s due to classical matter or fields

A

TSE* = <.TML">C1 T ;Lf

1, 1s a new stochastic term

related to the quantum fluctuations ot 1,



NOISE KERNEL

* Exp Value of 2-point correlations of stress tensor: bitensor

* Noise kernel measures quantum flucts of stress tensor

It can be represented by (shown via influence functional to be
equivalent to) a classical stochastic tensor source &, [g]

<§ab>s =0 <§ab (X)écd (y)>s — Nabcd (X1 Y)

« Symmetric, traceless (for conformal field), divergenceless



Einstein-Langevin Equation

o Consider a weak gravitational perturbation h off
a background g 2. =&\ + /.. The ELE is
given by (The ELE is Gauge invariant)

Gn‘f:r[g T h] T A(Q{'h T huh) _ GA{;!J T ﬁBn'h) [.Q T h]
—SHG“TmM+hD+§mMD.

= Nonlocal dissipation and colored noise
Nonlocality manifests with stochasticity
because the gravitational sector is an open system



Stochastic Semiclassical Gravity

Noise and fluctuations in quantum

field induced metric fluctuations
spacetime (foam) microstructure

described by Einstein-Langevin Eq.

B. L. Hu and E. Verdaguer, [Review]: Liv. Rev. Rel. 11 (2008) 3
----- [Monograph]: Semiclassical and Stochastic Gravity
(Cambridge University Press, in preparation)



Semiclassical Stochastic Gravity
for early universe and black holes

* For problems in the early universe and black holes,
one is interested in quantum processes related to
the vacuum, e.g., particle creation, vacuum
fluctuations, vacuum polarization (Hawking Effect).

* |n analogous laboratory settings, with moving
detectors mirrors,e.g. Unruh Effect, dynamical
Casimir Effect,

* Vacuum Expectation Values of Tmn or
Tmn Trs taken wrt a vacuum state.



Part IIl:  Now turn attention to
Quantum Information Issues in
gravitational quantum physics

e New emphasis: not vacuum state, but one
particle and n particle states: That’s OK

|Squeezed states can be handled. In fact,
cosmological expansion is squeezing.

But for quantum superposition states
e Bell states, etc. SCG cannot handle



e Consider a wave function composed of 2
Gaussian packets located at +x and —x

Hu Paz Zhang PRD 92
Paz Habib Zurek PRD 93

where
(x FLy)? ‘
W, (x)=Nexp |— 557 exp(LiPyx) ,
¢ I
N2_ 1 0
2 __ — _ 0 qap2
N = 5 2252 1 +exp 52 5P




Decoherence in QBM models:
1 HO System- nHO bath

S[x,q,,]=f0tds %—M()‘c 2—Qox2)+2-—m 1r—wiq?)
- > C,xq, | , (3)
n
W(x,t=0)=W,(x)+W,(x) ,
where
(x ¥ Lgy)*
W, ,(x)=Nexp |— 3 exp(+iPyx) ,
28
, N? 1 i
N°= 8 o2 1+exp _?"—6 Py




Pointer
Basis:
Interaction
Hamiltonian

left: xq
right: pp

t=0.001

FIG. 2. The time evolution of initial conditions 4 and A'.
The oscillations disappear faster in the first case since the envi-
ronment can distinguish between the two peaks. In the second
case, the interference is damped over a dynamical time scale.



Semiclassical theory can’t cope

e SCG being a mean field theory would
wrongly predict

peaking at the average value x=0 [Ford 82]

e Likewise it does not admit cat states.

It gives only the mean value (between
alive and dead - the drunken tipsy turvy cat in the
“twilight zone”), INOT -- the clear minded cat in

a coherent quantum superposition.



Look for the Gravitational
Quantum Cat from the
fluctuations of energy density, or
the correlator of the stress energy
tensor: the Noise Kernel

(Not the full Schrodinger cat - some quantum tributes of the cat)



2.1. Nonrelativistic N Particle System

Consider a scalar quantum field ¢(r) and its conjugate momentum 7(r)
of the creation and annihilation operators ay and E‘E.L

33!’1 . .
/ {ukcflk e r':.lira ik r}
1l-c
. rfg
|
._|.I'||

For a free field, the Hamiltonian operator is

~ d*k
H:/ — Wi,

where wy = VK2 4+ m?2.

In the non-relativistic regime we define the fields

: B /_\ Ph
v :[ PR r‘*"'ﬁ(r):/ e

and to leading order in |k|/m,

(:1(1) = \/;? [JA(I) + .‘AT(I‘)} _. w(r) = —i ? [.‘A(I) — T (r)

Wk

{—ﬂkﬁik'r + ﬁ.f{r?_ik'r} .

2




Mass density operator of a
non-relativistic N-Particle System

The Hamiltonian then becomes

~

H = '}’Ti-‘/dl"f&t(l‘jtj‘ﬂ-‘(l‘) — )i /‘dr?;'ﬂ-*f(r)vg?fﬁ(r), (11)
2m

We will denote the second term in Eq.(11) as Hy because it corresponds to the Hamiltonian for
N non-relativistic particles. The first term in Eq.(11) corresponds to Nm, for an N-particle
state. Hence, the number operator NV 1s

N = /Adl‘t.i:ﬁ(l‘jt;:-‘[:l‘) (12)

This suggests that mnf(l}y(r} can be identified as the mass-density operator f(r).
We include the effect of a confining potential V{(r) , by modifying the field Hamiltonian

H= 'ﬂ?--/dl‘?;FJt(l‘)t.i:’(l‘) + ‘/drfﬁ(r) [—ﬁvﬂ - V(r)} b(r). (13)



Mass Density Correlations

2.2, Mass-density correlations, noise kernel

In the non relativistic limit, the dominant component of the stress tensor 7, is the energy
density, which 1s dominated by the mass density, namely

T(r,t) = 8,0, u(r,t) (14)
Thus, it suffices to calculate the correlation functions of the Heisenberg-picture operator
f(r,t) = Ethlﬂ-(l‘}E_iﬁt. (15)
We assume an one-particle state
) = /dl‘@f’{l‘)ﬁ** (r)]0), (16)
where ¢(r) is the one-particle wave-function.
We find
((r, 1)) = (@lii(r, D) 6) = m* (x, D) (x, ) (17)
(ILf{l‘1 f-)ﬂ{]"!? TI)) = {.‘;a*{]"'." t}(‘f){]"!‘ f-;) (_;(l“ f-: I‘I? TI) {18)

where ¢(r,t) 1s the time-evolved single particle wave function and G(r,¢;r',#') is the one-

particle propagator,

G(r,t:r ) = ('|e”HE=0|p). (19)



Noise Kernel

For a free particle,
' 3/2 im(r — r')?
Gr,tixt) = (=) ex 20
b =\gm) P | g (20

We note that the two-point correlation function 1s complex valued. In general, 1t does
not define a stochastic process. However, the real part,

E(r,t;r' 1) = Re(pu(r, t)u(r', t')), (21)

known as the noise kernel, corresponds in some cases to the two-point correlation function
of a stochastic process.

Of importance 1s also the connected two-point correlation function for the mass densities

n(r, 6" ") = (u(r, p(’, ) — (plr, ) (u’, 1)) (22)



Smeared Mass-Density Function

e Inrealistic systems the mass density is not defined at a sharp spacetime point
but smeared over a finite spacetime region. In actual experiments, the
particles under consideration (atoms) have a finite size d and it is meaningless
to talk about mass densities at scales smaller than d, unless one has a detailed
knowledge of the particle's internal state.

e For this reason, rather than the exact mass density function, we consider a
smeared mass density function:

fig(r,t) = fd.r"f{r — (', 1), (23)

for some smearing function f(r) of dimension [length]™, centered around r = 0. The
smearing scale £ is defined by the condition ¢* = 1/ £(0).

We define the positive operator
P, = fdr‘rg(r — 1) ") (1], (24)

where g(r) := f(r)/f(0).



If the sampling function g is a characteristic function of some set (i.e., if g> = g), then pr
r2

is a projection operator. Here, we will consider Gaussian functions of the form g(r) = e 2%,

where s, 1s the width of the sampling. In this case, 1'51. 1s an approximate projector. The

corresponding smearing function 1s

1 _ r2
flr)= m€ 22 (25)

and corresponds to ¢ = v/27s,.
The correlation functions of the mass density become

m o, - ) [T
(ps(r, b)) = E(Gﬂﬂ,xl@} (26)
2
’ T o A . .
(s (v, s (0", 1)) = (&) Pee Prov| ), (27)

where P,; = eifl tf-:’re_éﬁr t is the Heisenberg-picture evolution of P..
The expectation value of the smeared mass density 1s proportional to the probability of
a position measurement at time ¢. The two pomnt correlation function 1s proportional to the

decoherence functional
D(r, t;1', ') := (¢|PeePorvr| ) (28)

for a pair of histories one corresponding to a position record r at time ¢ and the other to a

position record 1’ at time t’. As explained by the decoherent histories approach to quantum



Wigner function representation

e Forafree particle, we can express the correlation functions in
terms of the Wigner function W (r, p) of the initial state.

e For scales of observation much larger than /, we have

<ﬂ-3(1‘: f)) _ (2-":)3 [ de/{f’O(I‘ — %t p}
Joahy m’ 17 r+r1’ o (l‘ —I")(t—l—t!) r—r
<'|‘_L3(I':t).|‘.l-3(l t )> — (Qﬁ)g(f _tr)ino( 2 Q(f B f) ;:’nt _tr)

e For an initial state with vanishing mean momentum, we obtain a
stationary process.

(ps(r, 1)) = mlto(r)]*.

(pa(r, ) (v, 1)) = mg"*""’”%zégir — ).

Quantum feature: A classical charge
distribution would involve |y,(r) |*.



Key features of correlations
of quantum systems

Mass density fluctuations are

*Of the same order of magnitude with the mean mass density
This property seems to be generic in stress-energy fluctuations
(Kuo+Ford 93, Phillips+Hu 97,00).
eHighly non-Markovian. They are unlike any classical stochastic process.

Fluctuations of the mass density generate fluctuations

of the Newtonian force through Poisson’s equation.

e Temporal correlation functions of quantum systems are
highly contextual (Anastopoulos 04,05).

e A characteristic feature of quantum correlations exemplified by the
Leggett-Gard inequality (or temporal Bell inequalities).



Measured values of correlations

e By contextual, we mean that the measured values depend strongly on the
measurement context, i.e., on the specific set-up through which the correlations are
measured.

e To compare, all samplings of position correspond to probabilities that closely
approximate the ideal distribution |W(r)|?2.

e There are no ideal distributions for generic multi-time measurements. Probabilities
are highly sensitive to the details of the sampling.

e Hence, there is no intrinsic stochastic process that describes the mass density
fluctuations of a particle, but

e Any stochastic process that describes the experimental data depends on the specific
procedure through which the measurement is carried out.



Gravitational Cat State:
a consequence of the intrinsic conflicts of Q + G



Penrose (1996) “On gravity's role in quantum state reduction”.
Gen. Rel. Grav. 28, 581-600 | just read the letters in red below:]

Addresses the question of the stationarity of a quantum system
which consists of a linear superposition |y> = |o> + |[3> of two
well-defined states |oo > and |B >, each of which would be
stationary on its own, and where we assume that each of the
two individual states has the same energy E

<§‘|e’:*r:I
ot

9| 8) )
8_{_ |' i

= Fla), i

Just QM alone: If gravitation is ignored, then the quantum
superposition |y> = ala> +b |B> would also be stationary,

with the same energy E and this is the normal supposition.




With Gravity: However, when the gravitational fields of
the mass distributions of the states are taken into account,
we must ask what the Schroedinger operator g /ot
actually means in such a situation.

Let us consider that each of the stationary states |o. > and |3 >
takes into account whatever the correct quantum
description of its gravitational field might be, in
accordance with Einstein's theory.

Then, to a good degree of approximation, there will be a
classical spacetime associated with each of |o> and |3>,
and the operator 9/9¢ would correspond to the action
of the Killing vector representing the time displacement of
stationarity, in each case.

Stationary state makes demand of spacetime properties.
Clash between QM and GR



Now, the problem that arises here is that these two Killing vectors
are different from each other. They could hardly be the same, as
they refer to time symmetries of two different spacetimes.

It could only be appropriate to identify the two Killing vectors with
one another if it were appropriate to identify the two different
spacetimes with each other point-by-point.

But such an identification would be at variance with the principle of
general covariance, a principle which is fundamental to Einstein's
theory. According to standard quantum theory, unitary evolution
requires that there be a Schr odinger operator that applies to the
superposition just as it applies to each state individually; and its
action on that superposition is precisely the superposition of its
action on each state individually.

There is thus a certain tension between the fundamental principles
of these two great theories, and one needs to take a position on
how this tension is to be resolved.



Penrose’s position is (provisionally) to take the view that an
approximate pointwise identification may be made between the
two spacetimes, and that this corresponds to a slight error in the
identification of the Schr odinger operator for one spacetime
with that for the other. This error corresponds, in effect, to a
slight uncertainty in the energy of the superposition.

One can make a reasonable assessment as to what this energy
uncertainty E. might be, at least in the case when the
amplitudes a and b are about equal in magnitude.

This estimate (in the Newtonian approximation) turns out to be
the gravitational self-energy of the difference between the mass
distributions of the two superposed states. This energy
uncertainty E; is taken to be a fundamental aspect of such a
superposition and, in accordance with Heisenberg's uncertainty
principle, the reciprocal hbar/E; is taken to be a measure of the
lifetime of the superposition (as with an unstable particle).

The two decay modes of the superposition ‘\y> =a |o> +b |B>

would be the individual states |o. > and | >, with relative
probabilities  |a|? : |b]?.



Gravitational Cat State:

Direct bearing of Quantum Optomechanics
(read Markus A’s review, talk to Yanbei Chen and M Romero-lsart)

A particle of mass m in a confining potential with
! two minima. Assume that the distance L between the minima
S S (e is much larger than the width of the localization region.

The system can be approximated by a qubit
with defining states |+> and |->.

Hamiltonian H = v &, where v is the tunneling rate
between the two minima.

[ A > /
WY

-L/2 L/2

e The famous AtOMIc cat of Wineland et al (1996) had L = 80nm and m = 8 amu.

The cattiness record seems to come from the Ardnt 2012 diffraction experiment
with L =100nm and m =1300 amu. Bassi’s review has more recent data
Record for weakest force measured from CalTech ? (2014), ~ 4 x 10-23N. Yanbei

¢ Recent experiments on entanglement between massive objects: Ask Markus A.
Indirect (entanglement with third party measured); Direct (Calvendish expt)



Measurement by a classical probe

Consider a particle of mass m, near the particle of mass m that was prepared in a cat state.

We evaluate the » component of the Newtonian force exerted by the two-level system

e e on the test particle. Again denote a = +. If the system lies on the minimum of the potential
| at © =al/2, the force F,(a) exerted on the test particle in the x direction is

GmmgL
B0 = gt = e (62)

Assuming that the test mass is not allowed to move, the force F, takes only two values f;

and — fy. These values are correlated with the projectors f’m Eq. (48). Thus F, corresponds

\ 0/ to a self-adjoint operator P, = /'x du / "y /’“" dzly.2) ey
” F — _fOP-I- ‘|‘ fOP— = —foa'g” f’+ = /_I; dx /:L dy /ﬂ; dz|e,y, z)(x.y, 2. (63)

on the 2-state system'’s Hilbert space. Thus, the gravitational force behaves as a quantum
variable, its probabilities and correlations determined by quantum mechanics.



Measurement by a classical probe

Since Newton’s law is instantaneous, a force will be
recorded by the macroscopic probe at all times.
Thus we have a continuous-time measurement for a

____________________ e qubit.
Fy Typical time series of force measurements
¥ fO
\ \ .I t
P N
'/\ / f\:‘j _fO
- P,

12 L2

Essentially similar to the quantum jump expts of Dehmelt et al (86).

Calculate the correlation functions of the force from the quantum probabilities for a continuous-time measurement

<F{t)> — —foe_”‘ T = ! T is the temporal resolution of the
(F(tF(t)) = fee Tl 9 7 probe.

\ Non-Markovian, obtained for vT << 1.



Measurement by a quantum probe 1

detector

e Coupling through the Newtonian force to a quantum
harmonic oscillator constrained to move along the x-axis.

Now consider a quantum probe made of a harmonic oscillator of frequency w that is
constrained to move along the horizontal axis as in Fig. 1. The Hamiltonian of the harmonic
oscillator probe is

Hp =wa'a (68)
If the amplitude of the oscillations is much smaller than L, the length scale of the cat state,
the force acted upon the oscillator along the = direction is approximately constant and equal
to Eq. (62). This corresponds to an interaction Hamiltonian

2 A JO A A A
Hy = —fyb30 = ———2—63(a+a'), 69
I foos T 3(a+a') (69)

Thus, the total Hamiltonian of the two state system interacting with the oscillator probe

is
H:H5+HP+H;:i/&1+w&i&+g&3(&+&f), (70)
where the system Hamiltonian Hg is given by Eq. (56) specialized to y = 0, i.e., it is
equivalent to the Hamiltonian of a single-mode Jaynes-Cummings model with a coupling

constant Eq.(56) H §:= v(cos xoy + sin yos)

g=———J0 (71)

Equivalent to the Jaynes-Cummings (JC) model of quantum optics.



quantum probe 2

e e Ifthe oscillator is to act as a measurement, the coupling term

3 S should be strong, it cannot be treated as a small perturbation.

e Thus we cannot use the commonly employed Rotating Wave
Approximation.

’ e JCmodel was recently shown to be integrable (Braak 11), but
the solution is not helpful in finding time evolution.

\ Voo
\ ] ™ [
\ / )

N Consider adiabatic regime v=0 (vanishing tunneling). Then for the oscillator

42 12

|§[J(t)> — ef%;[wt—sin(wﬂ: C+|C(t)> ) (74}
e[ —¢(#) )

where the path

C(t) = _2(1 — e, Coherence state representation (75)

w
il o e Tlat . _ 9 _ __fo | 1 e Tt

describes an oscillation centered around (p = Jomes” The center of the oscillation
corresponds to position zy = mﬁtﬁ and momentum py = 0.

We obtain a superposition of two oscillations around different centers.
The centers are distinguished only if |<{,|-(,>| << 1, or

2
; 0
W << Jo mo.
)

probe initially in the vacuum and the cat particle in c, |+> +c_|->,



detector

quantum probe 3

Treat small values of v as perturbations of the adiabatic solution.

4.2.2.  Rabi oscillations A finite wvalue of v allows for transitions between the two
gravitational quantum states, which induce transitions among the phase space paths of the
oscillator. While the model is not exactly solvable, we can estimate the rate of such transitions
using perturbation theory with respect to the tunneling rate v. In Appendix B, we show that
to leading order in v, e—i#t — e—ilot(), where

A cos vt —isin r/tD(QQD)
O = ( —isinyED(—QCO) cos vt ' (79)

As an estimate of the transition between the two gravitational gquantum states, we
compute the amplitude (—(y, —|O;|(o, +), between the stationary states |(y, +) and | —(y, —).
We find

(—Co. —|O¢|Co, +) = —isin v, (80)
and thus the associated probability
p(t) = [(=Co. =[Oc[Go, +)[* = sin® v, (81)

exhibits Rabi-type oscillations, with frequency v.

Then we obtain Rabi oscillations of frequency v between the two centers (, and -,

Coherent state plane

\Ve—/ Rabi transition




Implications

Since the gravitational field is slaved to matter, the gravitational force is
represented by an operator on the Hilbert space of the matter field.

Thus, the standard operational procedures in QM can be invoked for

measuring a gravitational force.

Standard interpretation: weak field

eOnce we measure a force F on a test
particle of mass m, we can calculate the
field strength g = F/m.

eThe field strength corresponds to a
gravitational potential ¢.

eIn the weak field limit of GR, the
potential appears in the g,

component of the metric tensor.

But what does this mean?

From the vantage point of GR:
Spacetime & quantum matter intimately linked

Do quantum fluctuations of the force define
quantum fluctuations of the spacetime geometry?
[stochastic gravity addresses this issue]

Operational definitions of spacetime geometry
seem to agree on that.

[f this is true, the state we considered here is a
genuine gravcat, a quantum superposition of
two spacetime geometries.



Discussions

Does the gravitational force remain slaved We can only answer this questions by
to the mass density as classical GR dictates attempting to construct gravcats

, evenifthe latter behaves quantum ¢ other non-classical states for Macroscopic
mechanically? (it has fluctuations, itis systems. Optomechanical systems seems
subject to quantum measurements, etc.) to be the most promising route.

In principle, we can construct probes
that record quantum jumps of the
. i \ Does this idea even make sense?
gravitational force. Can we talk about q
jumps on the gravitational potential?
And then about jumps of (not just in) The conceptual tension between GR and QM

the induced quantum spacetime? / Such as spelled out by Penrose, already

Manifest in the Newtonian regime.

Invoking gravitational decoherence (grav
field as environment to quantum
systems) to kill gravcats may solve the
problem above, but the intrinsic tension
between GR +QM remains.

The interface between macroscopic guantum
phenomena and gravitational quantum physics
> is of fundamental significance from this
perspective.



In view of advances in AMO,CMP and Optomechanics
precision experiments in weak gravitational fields

-- Gravitational Quantum physics (e.g., focus issue in NJP)

it pays to reexamine the WF-NR limit of
1) semiclassical Einstein Equation, (in relation to NSEq etc)
2) Noise kernel, or stress energy density correlators (new)

Bringing gravity into consideration of issues in
quantum foundations such as the Born Rule; and
quantum information such as the Cat State with gravity

Can we infer attributes of spacetime fluctuations from
quantum experiments even at the level of Newtonian gravity
without appealing to new theories of QM or GR?



Conclusion: Investigation of Q Information issues of
gravitational systems using quantum probes

e Quantum Gravity (theories for the micro-scopic
structures of spacetime) is not needed.

e Focus on systems under laboratory conditions:
nonrelativistic systems, weak gravitational field.

o Semiclassical gravity is inadequate.

e Focus on fluctuations and correlations of mass
density: Stochastic Semiclassical Gravity



Thank YOU for your attention!

& the Organizers for their hard work!
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