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Quantum Superposition of Massive Objects

® Spatial superposition of a massive object

® How large can we make d and M?

® Why! - Fundamental interest: exploring/testing QM in new regimes
- Extremely sensitive to environment: very good sensor!
- Measuring gravity!?
- New techniques in quantum control
- Mesoscopic physics
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® Matter-wave interferometry
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- Large superpositions
- Easily probed by the interference pattern
- Challenge in increasing the mass:
| Mass (AMU):
@ 1930’ ~ 1
2
@ 1999 ~ 10
@ 2013 ad N_? N"""\f}"“F ™~ 10

¢ Arndt and Hornberger Nature Phys. 10,271 (2014).



Two strategies

® Quantum mechanical resonators
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Two strategies

® Quantum mechanical resonators

- Large mass

Mass (AMU):

2010 2011 2011

- Small superpositions:
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¢ Aspelmeyer, Kippenberg, Marquardt, Rev. Mod. Phys. 86, 1391 (2014)
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Levitation of nano/micro-spheres



Optical Levitation

* Diameter < A ~ 1 um
e N ~10° ~ 10”

¢ ORI, M.L.Juan, R. Quidant, J. l. Cirac NJP 12, 033015 (2010)
¢ D.E. Chang, et al. (Kimble and Zoller) PNAS 107, 1005 (2010)



Optical levitation of dielectric nanospheres

® Theory:

- Master equation for arbitrary sized dielectrics (all orders in perturbation theory)
p(t) =ilp(t), H| + ... ’

- Sources of decoherence (gas, black-body, elasticity, ...)

¢ ORI, A.C.Pflanzer, et al. PRA 83,013803 (2011)
¢ A. C. Pflanzer, ORI, and J. I. Cirac PRA 86, 013802 (2012)

® Protocols:

- Preparation of “small” quantum superpositions

§ ORI, M. L. Juan, R. Quidant, J. I. Cirac NJP 12, 033015 (2010)
§ ORI, A.C.Pflanzer, et al. PRA 83,013803 (201 1)
§ A. C. Pflanzer, ORI, and . I. Cirac PRA 88,033804 (2013)

- Preparation of large quantum superpositions

§ ORI, et al. PRL 107, 020405 (201 1)
§ ORI PRA 84,052121 (2011)




# Gieseler, Deutsch, Quidant, Novotny, PRL 109, 103603 (2012)



# Kiesel, Blaser, Delic, Grass, Kaltenbaek, Aspelmeyer, PNAS 110, 14180 (2013)
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Matter-Wave Interference with Levitated Nanospheres

week ending
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Are they big enough!




“Gravitational Regime” with Quantum Systems




Gravitational Regime

® Macroscopic quantum superpositions ) =




Gravitational Regime
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® Macroscopic quantum superpositions ) =

® Entering into the “gravitational regime” Gime scale T =h




Gravitational Regime

. . €6 o o . ') (. 2R
® Entering into the “gravitational regime Time scale 7 =h eiVE
= Two interpretations:
Gravitational energy vs Gravitationall- induced
kinetic energy of 2 masses decoherence
Superposition
lifetime

00
2R

¢ Penrose, Diosi 80’s



Gravitational Regime

2R
GM?

® Entering into the “gravitational regime” Gime scale T=h
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Gravitational Regime

® All-magnetic matter-wave interferometer on a chip
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Gravitational Regime

® All-magnetic matter-wave interferometer on a chip

= Combination of salient features:

|. Cryogenic temperatures No black-body decoherence!

Levitation and exponential
2. Static magnetic potentials speed-up of dynamics (no need
for space)!

Purification, quantum double-slit,

3. Coupling to quantum circuits
measurement!



Gravitational Regime

® All-magnetic matter-wave interferometer on a chip
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Magnetic levitation

® Magnetic coupling to a quantum circuit

* Diameter ~ 4 ym
e N~ 10™

¢ ORI, et al. PRL 109 147205 (2012).
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Decoherence

[ [
[
® Scattering of air molecules ¢ . é o
[

® Scattering, emission, and absorption of black- ‘/h”
body radiation (or any used light)

® Fluctuating forces (e.g. due to vibrations) ®

® Collapse models



Decoherence

® Decoherence due to scattering of air molecules 0
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Decoherence
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Decoherence

Experiment run should be done in less than 1 Second!



Decoherence

» L . 1. .
® Position localization master equation /= =, 0] — Az, [7, 7]

*=» Describes black-body and fluctuating ; _A(z—2")? ,
forces decoherence, and collapse models (@|p(t)|2) ~ e (]p(0)]z")



Decoherence

» L . 1. .
® Position localization master equation /= =, 0] — Az, [7, 7]

o o OO
® Gravitationally-induced decoherence [Ag = Sh 3




Decoherence

o T
® Gravitationally-induced decoherence [Ag = SH I3

Very weak compared to other collapse models!
But parameter free...

(G-induced with mass resolution\ ( CSL Model \
(Yanbei's talk) (Yanbei’'s and Angelo’s talk)
A~ = A i ; 1018 A 6 'Yg*SL
K G — G oD p G kACSL ~ AG x 10" X 10-16Hy




Position localization decoherence

o o OO
® Gravitationally-induced decoherence [Ag = Sh 3

Falsifying parameter-free gravitationally-induced decoherence



Position localization decoherence

A 1 2
® Coherence length (x/2]p| —x/2) = T P (‘g)

= For gaussian states and dynamics  &(t) = P(t)\/8Vx(?)



Decoherence

» L . 1. .
® Position localization master equation /= =, 0] — Az, [7, 7]

_ . GM?)
® Gravitationally-induced decoherence (AG = QHR?J
A 1 2
® Coherence length (x/2]p| —x/2) = T P (‘5—2)

= For gaussian states and dynamics  &(t) = P(t)\/8Vx(?)

® We require (AG > AQMJ
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Preparing a pure state

® Cooling the center-of-mass motion
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Preparing a pure state

® Cooling the center-of-mass motion

Microsphere trapped in an harmonic potential

Cooling by coupling to quantum circuit

Density matrix determined by variances

h
_ a2\ —
Vx—<a:>—2th(2n—|—1)
AM
V, = (p?) = —=L(2n + 1)
1
C = {&p +pz) =0



. Preparing a pure state

. Exponential speed-up

. Free expansion

. Double slit

. Rotation

. Exponential generation of fringes



Exponential speed-up

® Evolution in a repulsive quadratic potential
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® Evolution in a repulsive quadratic potential

Dynamics can be taking
into account decoherence
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® Evolution in a repulsive quadratic potential

Dynamics can be taking
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Exponential speed-up

® Evolution in a repulsive quadratic potential

Dynamics can be taking
into account decoherence

Momentum (and position) distribution grows
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Also coherence length
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Exponential speed-up

® Evolution in a repulsive quadratic potential

Dynamics can be taking
into account decoherence

Momentum (and position) distribution grows

A ) 1

'

Vp(t) =~ 62thVp(O)

Also coherence length

§(t) = P(t)v/8Va(t)

Interesting that for position localization
decoherence:

20,

A

£(t — 00) =




. Preparing a pure state

. Exponential speed-up

. Free expansion

. Double slit

. Rotation

. Exponential generation of fringes



Free expansion

® Evolution with free dynamics




Free expansion

® Evolution with free dynamics

Dynamics can be taking
into account decoherence




Free expansion

® Evolution with free dynamics

Dynamics can be
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Coherence lengths grows
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Free expansion

® Evolution with free dynamics

Dynamics can be taking
into account decoherence

Coherence lengths grows at a
speed
: 8Vp
Sfree — W
momentum the speed is
. 107
Etree R X 40 nm /s

- v/ M [amu]



. Preparing a pure state

. Exponential speed-up

. Free expansion

. Double slit

. Rotation

. Exponential generation of fringes



Double slit

® X squared measurement
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® X squared measurement
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Double slit

® X squared measurement

Interaction with a is

/ and

used to measure X2

: b d)? AL
M, = eidas(2)” {exp [ (& 22) (£ +5)
4o

403 }
' Advantage: double-slit

+ exp

Disadvantage: slit separation depends on outcome




. Preparing a pure state

. Exponential speed-up

. Free expansion

. Double slit

. Rotation

. Exponential generation of fringes

\



Rotation

® pi/4 rotation
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® pi/4 rotation

We have to for exponential time-
of-flight
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® pi/4 rotation

We have to for exponential time-
of-flight

We make a pi/4 rotation
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Rotation

® pi/4 rotation

We have to for exponential time-
of-flight

We make a pi/4 rotation

T
th:Z

After double slit against
decoherence




|. Preparing a pure state

2. Exponential speed-up

3. Free expansion

4. Double slit

5. Rotation Y )




Exponentially generation of fringes

® Evolution in a repulsive quadratic potential
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® Evolution in a repulsive quadratic potential
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Exponentially generation of fringes

® Evolution in a repulsive quadratic potential

In

In

fringes generate

2mht
"= M

fringes generate

xf(t) = et (0)



Exponentially generation of fringes

® Evolution in a repulsive quadratic potential

In fringes generate
2mht
T = —
I Md
In fringes generate

v(t) = e 'a s (0)

Without previous rotation: no fringes




Exponential speed-up:
repulsive potential dynamics




Free expansion:
free dynamics

rd




Double-slit:
X-squared measurement




Rotation:
harmonic potential dynamics
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Exponential generation of fringes:
repulsive potential




Results




Growing coherence length in repulsive expansion

Gravitationally-induced
decoherence could be falsified

o7 m -------------
2 \ 0.5} | ﬂ
o P
o T A |
=t / \. :
| 2‘\ 0.1 ¢ A
GM ooAﬁMUU LU Uu AL
Ag = ~150 -100 -50 0 50 100 150
2 hRS X [nm]

A:Ag—I—AQM
A= Aows



Growing coherence length in repulsive expansion

® Sphere (Nb): 4 micrometers

Gravitationally-induced
decoherence could be falsified
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Growing coherence length in repulsive expansion

® Sphere (Nb): 4 micrometers

® Total time: 537 ms

= Exponential speed-up: 4.8 ms
= Free expansion: 500 ms
= Rotation: |.3 ms

= Exp generation of fringes: 31.8 ms

Gravitationally-induced
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Growing coherence length in repulsive expansion

® Sphere (Nb): 4 micrometers

® Total time: 537 ms

= Exponential speed-up: 4.8 ms
= Free expansion: 500 ms

= Rotation: |.3 ms

Gravitationally-induced
decoherence could be falsified

= O.4;—

A 0.3

= Exp generation of fringes: 31.8 ms

® Slit separation: 84 nm (width 4 nm) 4
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Growing coherence length in repulsive expansion

® Sphere (Nb): 4 micrometers
Gravitationally-induced

® Total time: 537 ms decoherence could be falsified
ozt -j

= Exponential speed-up: 4.8 ms 06l n m | :
"= Free expansion: 500 ms 0.5 | | :
= Rotation: |.3 ms § 0.4¢ | |
0.3} ” Py \\ A ]

= Exp generation of fringes: 31.8 ms 0.0! pd N\ |
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® Slit separation: 84 nm (width 4 nm) 4. IRRR AR ;

-150 -100 -50 0 50 100 150
X [nm]

A=Aqg+ AQM
® Quadratic potentials: 100 Hz A= Aqum

® Temperature: < |K



Experimental Proposal



Levitating superconducting microspheres

® Quantum magnetomechanics: magnetic coupling to a quantum circuit

L1t
e Diameter ~ 4 pum
e N ~ 1014

¢ ORIl et al. PRL 109 147205 (2012).



Levitating superconducting microspheres

® Quantum magnetomechanics: magnetic coupling to a quantum circuit

® Sphere behaves as a magnetic dipole

scales with volume!

¢ ORI, et al. PRL 109 147205 (2012).



On-chip all-magnetic ‘“‘skatepark’

for a superconducting microsphere
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On-chip magnetic “skatepark”




Conclusions



Final remarks

2R
GM?

® Gravitationally-induced decoherence? Gravitational regime! 7=nr



Final remarks

® Magnetically levitated superconducting microspheres can falsify it

= Mass of 1014 amu

= Cryogenic temperatures
= Magnetic levitation

= Static potentials

= On-chip all-magnetic “skatepark”



Final remarks

® Challenging but put it into context and recall side applications (measuring
capital G?)



Final remarks

® This experiment would falsify (by far) all other known collapse models



Thank you very much for your attention




