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 Why? - Fundamental interest: exploring/testing QM in new regimes

- Extremely sensitive to environment: very good sensor!

- Measuring gravity?

- New techniques in quantum control

- Mesoscopic physics
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Two strategies

 Quantum mechanical resonators

optical cavity field and the mechanical oscillator, including all
fluctuation effects.
It is equally useful to give the classical, averaged version of

these equations that will be valid for sufficiently large photon
and phonon numbers, in the semiclassical limit. Then we can
write down the equations for the complex light amplitude
αðtÞ ¼ hâðtÞi and the oscillator position xðtÞ ¼ hx̂ðtÞi:

_α ¼ −
κ
2
αþ iðΔþ GxÞαþ ffiffiffiffiffiffi

κex
p

αin; ð40Þ

meff ẍ ¼ −meffΩ2
mx −meffΓm _xþ ℏGjαj2. ð41Þ

Here we neglected all fluctuations, although these could be
added to describe thermal and even, in a semiclassical
approximation, quantum noise forces. The term αin represents
the laser drive. Note that we also chose to write the mechanical
equation of motion in terms of the displacement, where
x ¼ 2xZPFReðhb̂iÞ. This becomes equivalent to the equation
given above only for weak damping Γm ≪ Ωm. These fully
nonlinear coupled differential equations are the basis for our
discussion of nonlinear phenomena, in particular, the opto-
mechanical parametric instability (also called “self-induced
oscillations” or “mechanical lasing,” see Sec. VIII).

FIG. 7 (color online). A gallery illustrating the variety of optomechanical devices, arranged according to mass. Pictures courtesy (from
top left, down): N. Mavalvala, A. Heidmann, M. Aspelmeyer, D. Bouwmeester, J. Harris, P. Treutlein, T. J. Kippenberg, I. Favero,
M. Lipson, T. J. Kippenberg/E. Weig/J. Kotthaus, H. Tang, K. Vahala/T. Carmon, J. Teufel/K. Lehnert, I. Robert, O. Painter, O. Painter,
I. Favero/E. Weig/K. Karrai, and D. Stamper-Kurn.

Aspelmeyer, Kippenberg, and Marquardt: Cavity optomechanics 1403

Rev. Mod. Phys., Vol. 86, No. 4, October–December 2014

 Aspelmeyer, Kippenberg, Marquardt, Rev. Mod. Phys. 86, 1391 (2014)
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Optical Levitation

 ORI, M. L. Juan, R. Quidant, J. I. Cirac NJP 12, 033015 (2010)
 D. E. Chang, et al. (Kimble and Zoller) PNAS 107, 1005 (2010)

• Diameter
• N ~ 106 � 109

� � � 1 µm



Optical levitation of dielectric nanospheres

 ORI,  A. C. Pflanzer, et al. PRA 83, 013803 (2011)
 A. C. Pflanzer, ORI, and J. I. Cirac PRA 86, 013802 (2012)

 Theory:

- Master equation for arbitrary sized dielectrics (all orders in perturbation theory)

�̇(t) = i[�(t),H] + . . .

- Sources of decoherence (gas, black-body, elasticity, ...)

 Protocols:

- Preparation of  “small” quantum superpositions

 ORI, M. L. Juan, R. Quidant, J. I. Cirac NJP 12, 033015 (2010)
 ORI,  A. C. Pflanzer, et al. PRA 83, 013803 (2011)
 A. C. Pflanzer, ORI, and J. I. Cirac PRA 88, 033804 (2013)
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- Preparation of large quantum superpositions 

 ORI,  et al. PRL 107, 020405 (2011)
 ORI PRA 84, 052121 (2011) |�� = +



Subkelvin Parametric Feedback Cooling of a Laser-Trapped Nanoparticle
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We optically trap a single nanoparticle in high vacuum and cool its three spatial degrees of freedom by

means of active parametric feedback. Using a single laser beam for both trapping and cooling we

demonstrate a temperature compression ratio of four orders of magnitude. The absence of a clamping

mechanism provides robust decoupling from the heat bath and eliminates the requirement of cryogenic

precooling. The small size and mass of the nanoparticle yield high resonance frequencies and high quality

factors along with low recoil heating, which are essential conditions for ground state cooling and for low

decoherence. The trapping and cooling scheme presented here opens new routes for testing quantum

mechanics with mesoscopic objects and for ultrasensitive metrology and sensing.

DOI: 10.1103/PhysRevLett.109.103603 PACS numbers: 42.50.Wk, 07.10.Pz, 62.25.Fg

The interaction between light and matter sets ultimate
limits on the accuracy of optical measurements. Braginsky
predicted that the finite response time of light in an optical
interferometer can lead to mechanical instabilities [1] and
impose limits on the precision of laser-based gravitational
interferometers. Later, it was demonstrated that this
‘‘dynamic back-action mechanism’’ can be used to reduce
the oscillation amplitude of a mechanical system and to
effectively cool it below the temperature of the environment
[2–7] and even to its quantum ground state [8–10]. In
addition to the fascinating possibility of observing the quan-
tum behavior of a mesoscopic system, many applications
have been proposed for such systems ranging from detection
of exotic forces [11–13] to the generation of nonclassical
states of light and matter [14,15].

Most of the mechanical systems studied previously are
directly connected to their thermal environment, which
imposes limits to thermalization and decoherence. As a
consequence, clamped systems require cryogenic precool-
ing. A laser-trapped particle in ultrahigh vacuum, by con-
trast, has no physical contact to the environment [16,17],
which makes it a promising system for ground state cooling
even at room temperatures [14,15]. Cooling of micron-sized
particles to millikelvin temperatures has recently been
achieved by applying an active optical feedback inspired
by atom cooling experiments [18]. A particle is trapped by
two counter-propagating beams and cooling is performed
with three additional laser beams via radiation pressure.
However, because light scattering leads to recoil heating
there is a limit for the lowest attainable temperature.
Eliminating recoil heating as the limiting factor for ground
state cooling requires considerably smaller mechanical sys-
tems, such as single dielectric nanoparticles [14,15]. Here
we demonstrate optical trapping in high vacuum of a fused
silica nanoparticle of radius R! 70 nm. Additionally, we

employ a novel cooling scheme based on the optical
gradient force to cool its motional degrees of freedom
from room temperature to !50 mK (compression factor
of !104).
In our experiments we use a laser beam of wavelength

! ¼ 1064 nm (! 100 mW), focused by a lens with
numerical aperture 0.8 mounted in a vacuum chamber. A
single nanoparticle is trapped by means of the optical
gradient force, which points towards the center of the
trap for all translational degrees of freedom of the nano-
particle (c.f. Fig. 1). For particles much smaller than the
wavelength, the polarizability scales as " / R3 and the
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FIG. 1 (color online). Trapping of a nanoparticle. (a) Photograph
of light scattered from a trapped silica nanoparticle (arrow). The
object to the right is the outline of the objective that focuses the
trapping laser. (b) Time trace of the particle’s x coordinate
(transverse to the optical axis) at 2 mbar pressure.
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For the case of a single optical cavity mode, the particle is trapped
at an intensity maximum ðx= 0Þ, and, for small displacements, only
coupling terms that are quadratic in x̂ are relevant (30). Linear
coupling provides intrinsically larger coupling rates and can be
exploited for various quantum control protocols (41). However,
it requires to position the particle outside the intensity maxi-
mum of the field. This can be achieved for example by an optical
tweezer external to the cavity (10), by harnessing gravity in
a vertically mounted cavity (42) or by using a second cavity
mode with longitudinally shifted intensity maxima (9, 10).
We follow the latter approach and operate the optical cavity

with two longitudinal Gaussian modes of different frequency,
namely, a strong “trapping field” to realize a well-localized op-
tical trap at one of its intensity maxima, and a weaker “control
field” that couples to the particle at a shifted position x≠ 0. For
localization in the Lamb–Dicke regime ðk2hx̂2i # 1Þ this yields (8,
43) linear optomechanical coupling between the trapped particle

and the control field at a rate g0 =U0ðx0Þsinð2kxÞk
ffiffiffiffiffiffiffi
Z

mΩ0

q
per

photon (m: particle mass; Ω0: frequency of CM motion). De-
tuning of the control field from the cavity resonance by a fre-
quency Δ=ωcav −ωc(ωc : control field frequency) results in the
well-known dynamics of cavity optomechanics (8). Specifically,
the position dependence of the gradient force will change the
stiffness of the optical trap, shifting Ω0 to an effective frequency
Ωeff (optical spring), and the cavity-induced retardation of the
force will introduce additional optomechanical (positive or
negative) damping on the particle motion. From a quantum-
optics viewpoint, the oscillating submicron particle scatters
photons into optical sidebands of frequencies ωc ±Ω0 at rates

A±= 1
4

g20hn̂iκ
ðκ=2Þ2 + ðΔ±Ω0Þ2

, known as Stokes and anti-Stokes scattering,

respectively (κ: FWHM cavity line width). For Δ> 0 (red
detuning), anti-Stokes scattering becomes resonantly enhanced by
the cavity, effectively depleting the kinetic energy of the submicron
particle motion via a net laser-cooling rate of Γ=A− − A+. In the
following, we demonstrate all these effects experimentally with an
optically trapped silica submicron particle.
As is shown in Fig. 1, our setup comprises a high-finesse Fabry–

Perot cavity (Finesse F = 76000; κ= 2π × 180kHz) that is moun-
ted inside a vacuum chamber kept at a pressure between 1 and
5 mbar. Airborne silica submicron particles (specified with
radius r= 127± 13nm) are emitted from an isopropanol solution
via an ultrasonic nebulizer and are trapped inside the cavity in
the standing wave of the trapping field (Materials and Methods).
To achieve the desired displacement between the intensity
maxima of trapping field and control field ðx≠ 0Þ, we use the
adjacent longitudinal cavity mode for the control beam, i.e., the
cavity mode shifted by approximately one free spectral range
FSR= c

2L≈ 13:67 GHz in frequency from the trapping beam (c:
vacuum speed of light; L: cavity length). Depending on the dis-
tance from the cavity center x0, the two standing-wave intensity
distributions are then shifted with respect to each other by
λ
2Lðx0 +L=2Þ (Fig. 1B). For example, to achieve maximal coupling
g0 for weak control beam powers, i.e., for μ= Pc

Pt
# 1 [PcðtÞ: power

of control (trapping) beam in the cavity], the submicron particle
needs to be positioned at x0 =L=4, where the antinodes of
the two beams are separated by λ=8 (9, 10). Note that when the
control beam is strong enough to significantly contribute to the
optical trap ðμ>≈ 0:1Þ, the displacement x and both Ω0 and g0 are
modified when μ is changed (35). The exact dependence of these
optomechanical parameters on μ depends on x0 (SI Text, section 1).
The optomechanical coupling between the control field and

the particle can be used to both manipulate and detect the
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Fig. 1. Optical trapping and readout of a submicron particle in a Fabry–Perot cavity. (A) Submicron particle in a cavity. A photo of our near-confocal Fabry–
Perot optical cavity (OC) [F = 76,000; L= c

2FSR = 10:97mm, determined via the free spectral range (FSR)]. The white-shaded areas indicate the curvature of the
cavity mirrors. The optical field between the mirrors traps a submicron particle. The enlarged Inset shows light scattered by the submicron particle. (B)
Schematics of two-mode optical trap and dispersive coupling. Two optical fields form standing-wave intensity distributions along the optical cavity axis
(dashed lines; blue: control beam; red: trapping beam). Because of their different frequencies, the intensity maxima of the two fields are displaced with
respect to each other. A submicron particle is trapped at the maximum of the total intensity distribution (purple solid line). Because the trapping beam is more
intense than the control beam, the submicron particle is trapped at a distance x ≠ 0 away from the control beam intensity maximum x0. As a consequence, the
submicron particle oscillates within a region where the control beam intensity varies with the particle position (blue arrow), resulting in linear dispersive
coupling (see main text and SI Text, section 1). The displacement x depends on the ratio between the intensity maxima of the two fields. (C) Experimental
setup. A Nd:YAG laser ðλ= 1; 064 nmÞ is split into three beams at the polarizing beam splitters PBS1 and PBS2. Wave plates (shown as green lines in the figure)
are used to set the power of the beams. The transmitted beam is used to lock the laser to the TEM00 mode of the OC and provides the trapping field for the
submicron particle. The beam reflected at PBS1 is used to prepare the control beam, which is frequency shifted by δω close to the adjacent cavity resonance of
the TEM00 mode, i.e., δω= FSR+Δ (Δ: detuning from cavity resonance). The single-frequency side band at δω is created using an electrooptical modulator
(EOM) followed by optical amplification in fiber and transmission through a filtering cavity (FC) with an FWHM line width of 2π × 500 MHz. The control and
trapping beams are overlapped at PBS3 and transmitted through the OC with orthogonal polarizations. The OC is mounted inside a vacuum chamber (VAC).
When a submicron particle is trapped in the optical field in the cavity, its center-of-mass (CM) motion introduces a phase modulation on the control beam. To
detect this signal, we perform interferometric phase readout of the control beam: At PBS4, the control beam is separated from the trapping beam and
spatially overlapped with the local oscillator (LO). Note that the LO and the control beam are orthogonally polarized. After a polarization rotation by 45° at
WP1, PBS5 serves to superimpose the control beam with the LO resulting in interference in its two output ports, where high-frequency InGaAs photo
detectors PD1 and PD2 detect the resulting beat signal. We mix (multiply) the difference signal of the two detectors with an ELO of frequency FSR+Δ and
record the NPS of the resulting signal using a spectrum analyzer (SA) (see Materials and Methods and SI Text, section 2, for more detail).

Kiesel et al. PNAS | August 27, 2013 | vol. 110 | no. 35 | 14181
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Matter-Wave Interference with Levitated Nanospheres

Large Quantum Superpositions and Interference of Massive Nanometer-Sized Objects

O. Romero-Isart,1 A. C. Pflanzer,1 F. Blaser,2 R. Kaltenbaek,2 N. Kiesel,2 M. Aspelmeyer,2 and J. I. Cirac1

1Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Strasse 1, D-85748, Garching, Germany
2Vienna Center for Quantum Science and Technology, Faculty of Physics, University of Vienna,

Boltzmanngasse 5, A-1090 Vienna, Austria
(Received 21 March 2011; published 7 July 2011)

We propose a method to prepare and verify spatial quantum superpositions of a nanometer-sized object

separated by distances of the order of its size. This method provides unprecedented bounds for objective

collapse models of the wave function by merging techniques and insights from cavity quantum

optomechanics and matter-wave interferometry. An analysis and simulation of the experiment is

performed taking into account standard sources of decoherence. We provide an operational parameter

regime using present-day and planned technology.

DOI: 10.1103/PhysRevLett.107.020405 PACS numbers: 03.65.Ta, 03.75.!b, 42.50.Pq

Quantum superpositions of a massive object at two
spatial locations are allowed by quantum mechanics. This
puzzling prediction has been observed in seminal matter-
wave interferometry experiments with electrons, neutrons,
atoms and dimers, van der Waals clusters, and even com-
plex molecules (e.g., C70, C60F48) [1]. Preparing quantum
superpositions of even larger objects is considered to be
extremely challenging due to the decoherence caused by
interaction with the environment [2]. However, succeeding
in this task would allow completely new tests of quantum
mechanics: this includes experiments in a hitherto un-
achieved parameter regime where collapse theories predict
quantum mechanics to fail [3,4], or even more general tests
of quantum theory against full classes of macrorealistic
theories [5]. Moreover, these states would be so fragile to
environmental interactions that one could exploit this ultra-
high sensitivity to design a new generation of sensors.
Pushing large objects to the quantum regime is also the
aim of cavity quantum optomechanics [6]. Similarly to
laser cooling of atoms, the radiation pressure of light is
exploited to cool and coherently manipulate the mechani-
cal motion of some degree of freedom (e.g., the center of
mass) of a massive object and even to create quantum
superpositions of harmonic vibrational states [7,8].

In this Letter, we present a method to prepare spatial
quantum superpositions of massive objects (with masses of
"107 amu) based on cavity quantum optomechanics and
show how it can be used to test wave function collapse
models. This builds upon the recent proposal of using an
optically levitating nanodielectric as a cavity quantum
optomechanical system [8–11]. The main idea is to trap a
dielectric sphere in the standing wave field of an optical
cavity. The mechanical motion of the sphere’s center of
mass along the cavity axis is predicted to be a high-quality
mechanical oscillator due to the absence of clamping
losses. This facilitates laser cooling to its motional ground
state (see also experiments on feedback cooling of an
optically levitated microsphere [12]). In addition, a cooled

levitating object offers the possibility to be released by
switching off the trap [10], creating in this way a scenario
similar to matter-wave interferometry experiments. Here,
we will use precisely this feature both to coherently expand
the wave function over a large spatial region and to en-
hance the nonlinear coupling that is required to prepare
large quantum superpositions.
More specifically, the linear and quadratic coupling in

cavity optomechanics after displacing the cavity field (see,
e.g., Sec. V.A.1 and Appendix B.2 in [10]) is given by

Ĥ OM ¼ !@gðâþ âyÞ~xþ @gqðâþ âyÞ~x2; (1)

where âðâyÞ is the annihilation (creation) operator of a
cavity photon, ~x ¼ x̂=x0 is the dimensionless position
operator of the mechanical resonator, with x0 ¼
½@=ð2m!tÞ(1=2 its zero point motion, m the mass, and !t

the mechanical frequency. The photon-enhanced linear
optomechanical coupling is given by g and the typical
quadratic coupling by gq ¼ kcx0g, where kc ¼ 2!="c is
the wave number of the cavity mode.When the equilibrium
position is at the node (antinode) of the standing wave,
g ! 0 and gq ¼ 0 (g ¼ 0 and gq ! 0). A fundamental
figure of merit of the cavity-mechanical system is the
cooperativity parameter defined as Cl ¼ g2=ð#!Þ for
the linear coupling, and Cq ¼ g2q=ð#!Þ ¼ Clðkcx0Þ2 for
the quadratic one. Here, # is the decay rate of the cavity
field and ! the decoherence rate of the mechanical motion.
Ground-state cooling requires Cl * 1, whereas nonlinear
effects, such as energy quantization detection [13] or
preparation of non-Gaussian states without using hybrid
systems or single photon resources, require Cq * 1. The
latter is a very demanding condition due to the strong
reduction given by ðkcx0Þ2 ) 1. In this Letter we propose
to achieve this challenging regime by expanding the wave
function to a given size hx̂2i" $2 * x0, such that

"C q ¼ "g2q
# "!

¼ Clðkc$Þ2; (2)

where "gq and "! are defined below. Thus, for sufficiently
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Quantum superposition of massive objects and collapse models

Oriol Romero-Isart
Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Str. 1, D-85748 Garching, Germany

(Received 19 October 2011; published 28 November 2011)

We analyze the requirements to test some of the most paradigmatic collapse models with a protocol that
prepares quantum superpositions of massive objects. This consists of coherently expanding the wave function of
a ground-state-cooled mechanical resonator, performing a squared position measurement that acts as a double
slit, and observing interference after further evolution. The analysis is performed in a general framework and
takes into account only unavoidable sources of decoherence: blackbody radiation and scattering of environmental
particles. We also discuss the limitations imposed by the experimental implementation of this protocol using
cavity quantum optomechanics with levitating dielectric nanospheres.

DOI: 10.1103/PhysRevA.84.052121 PACS number(s): 03.65.Ta

I. INTRODUCTION

In the past few decades, seminal experiments have demon-
strated that massive objects can be prepared in spatial su-
perpositions of the order of its size. This has been realized
with electrons [1], neutrons [2], atoms and dimers [3], small
van der Waals clusters [4], fullerenes [5], and even with
organic molecules containing up to 400 atoms [6]. These
experiments are designed to observe the interference of matter
waves after passing, in essence, through a Young’s double slit.
The possibility of observing these quantum pheonomena with
yet-larger objects is extremely challenging. This is due to the
great quantum control and isolation from the environment that
these experiments require.

More recently, the field of cavity quantum electro- and
optomechanics [7–11] has opened the pathway to bring
much more massive objects to the quantum regime, namely
objects containing billions of atoms, thereby improving the
previous benchmark by many orders of magnitude. This allows
us to explore the physics of a completely new parameter
regime. A first step toward this direction has been realized
in Refs. [12–14], where ground-state cooling of mechanical
resonators at the nano- and microscale has been achieved.
Additionally, various researchers have proposed to exploit the
coherent coupling of the mechanical resonator with single
photons or qubits to create quantum superpositions, see, for
instance, Refs. [15,16]. In these proposals, the superposition of
the mechanical motion state is, typically, of the form |0⟩ + |1⟩,
where |0⟩ and |1⟩ are, respectively, the ground state and the
first excited state of the harmonic potential. In these states,
the position is delocalized over distances of the order of the
zero point motion, i.e., x0 =

√
h̄/(2mω), where m is the mass

of the object and ω the frequency of the harmonic potential.
Within the megahertz regime, objects containing nat atoms are
delocalized over distances of the order of 10−7n

−1/2
at m, which

is subatomic for objects containing billions of atoms. This is
in contrast with matter-wave experiments, where, despite the
fact that objects have “only” hundreds of atoms, they can be
delocalized over distances larger than their size.

Remarkably, these experiments might be applied to the
service of a very fundamental goal, namely the exploration of
the limits of quantum mechanics predicted by several collapse
models [17–26]. The common idea of these models is the
conjecture that the Schrödinger equation is an approximation

of a more fundamental equation, which breaks down when
objects above a critical mass are delocalized over a critical
distance. This prediction is very difficult to confront because
of the following argument: standard decoherence [27,28],
described within quantum mechanics, also predicts the im-
possibility of delocalizing large objects due to the interaction
with the environment; thus, this masks the effects of collapse
models. This poses a major challenge to corroborate collapse
models, as the effects predicted by these must stand alone
from decoherence processes and be exposed to potential
falsification. This leads to the central questions of this work:
How challenging is it to test collapse models while also
taking into account unavoidable sources of decoherence? Is
it preferable to have small objects delocalized over large
distances, as in matter-wave experiments, or rather large
objects delocalized over small distances, as in experiments
with mechanical resonators?

The aim of this paper is to address the latter questions by
analyzing a prototypical experiment that bridges approaches
from quantum-mechanical-resonators and matter-wave in-
terferometry. This experiment relies, on the one hand, on
techniques of cavity electro-optomechanics to prepare a me-
chanical resonator in the ground state of its harmonic potential.
On the other hand, the experiment mimics matter-wave inter-
ferometry, as the ground-state-cooled mechanical resonator
is released from the harmonic trap in such a way that it
coherently delocalizes over distances much larger than its zero-
point motion x0. A subsequent measurement of the squared
position, which is to be realized using techniques of quantum-
mechanical resonators, collapses the state into a superposition
of different spatial locations, thereby acting as a Young’s
double slit. Finally, the subsequent free evolution generates
an interference pattern. We remark that the implementation
of this experiment using cavity quantum optomechanics with
optically levitating dielectric nanospheres [16,29–31] has been
recently proposed in Ref. [32]. The present article analyzes
this proposal with a broader scope, namely it studies the effect
of some of the most paradigmatic collapse models together
with unavoidable sources of decoherence. This allows us to
obtain the environmental conditions, masses of the objects,
and delocalization distances where collapse models can be
falsified. These conditions are general and will be common to
any physical implementation of the protocol.

052121-11050-2947/2011/84(5)/052121(17) ©2011 American Physical Society
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The interference of a single particle in a Young’s double slit is a beautiful demonstration of the
quantum superposition principle for massive objects. Current optical matter-wave interferometers
hold a mass record of 104 amu. Here we propose and analyze a novel approach where quantum
interference of a micrometer-sized superconducting sphere of 1014 amu could be observed in an all-
magnetic on-chip setup. We show that gravity-induced decoherence and other paradigmatic collapse
models, which predict a breakdown of the quantum superposition principle at large scales, can be
unambiguously falsified in an experimentally feasible scenario. Our scheme paves the path for a
new generation of earth-based tabletop quantum experiments operating in a hitherto unexplored
parameter where new opportunities, in particular for measuring gravity, are envisaged.

Preparing a massive object in a spatial quantum su-
perposition over distances comparable to its size is an
exciting possibility. Since many decades some scientists
have conjectured that the quantum superposition princi-
ple breaks down at su�ciently large scales, thereby con-
sidering quantum mechanics as an e�ective theory valid
only at scales where quantum experiments have operated
so far. Gravity had an important role in these discussions
where precise predictions, although not derived from first
principles, have been made regarding the impossibility
to delocalize a su�ciently massive object over large dis-
tances, see Fig. So far, such parameter-free prediction
seemed a formidable task even for the more ambitious
proposals. Apart from exploring nature in new regimes,
this endeavor requires such an exquisite degree of con-
trol of massive objects in the quantum regime that many
new opportunities are open as a by-product. Particu-
larly fascinating is the possibility to measure gravity in
tabletop quantum experiments, for instance, measuring
the Newton’s gravitational constant or testing Newton’s
law at short-distances where physics beyond the standard
model predict corrections.

In the last years objects with masses ranging from 1011

amu to 1013 amu have been brought to the quantum
regime in the context of quantum nano- and microme-
chanical oscillators by cooling their associated mechani-
cal degree of freedom to its quantum ground state. While
clamped micro-oscillators are many orders of magnitude
more massive than those used in current matter-wave in-
terferometers, the mass is delocalized over tiny distances
smaller than the size of a single atom. Levitated quan-
tum nano-mechanical oscillators, in particular quantum
optomechanics with optically levitated nanospheres, has
been suggested as a tool for increasing the mass of optical
matter-wave interferometers while keeping large delocal-
ization distances. These all-optical hybrid schemes using
the best of matter-wave interferometry and quantum op-
tomechanics seem limited, even in the most ambitious
proposals requiring a space environment, to masses be-
tween 108 and 1011 amu. As shown in Fig. 2, larger
masses are required to falsify gravitational induced de-
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FIG. 1: Parameter regime where gravitational e�ects
might be relevant. The time scale · = 2Rh/(GM

2) as a
function of the mass M of a sphere of radius R and density
fl = 104Kg/m3 is plotted. · has two interpretations: (i) life-
time of a quantum superposition state of a single sphere delo-
calized over a distance 2R according to gravitational-induced
decoherence, (ii) h/· is the kinetic energy of two spheres equal
to their gravitational interaction energy when separated by a
distance 2R. The regime · π 1s, which can be achieved for
masses around 1014 amu (as in our scheme), is required to fal-
sify gravitational induced decoherence, according to (i), and
to measure gravity using several cooled masses in harmonic
potentials of trap frequency frequency 2fi/· , according to (ii).

coherence and enter into the regime where gravitational
energies might be relevant.

Here we propose a radically new approach to attain
macroscopic quantum superpositions of masses of 1014

amu, well in the gravitational regime (see Fig. 2), by
abandoning the use of lasers and using instead an all-
magnetic on-chip architecture. This allows us to com-
bine the following salient features: (i) cryogenic tem-
peratures both for environment and the massive parti-
cle to minimizes decoherence due to emission, scattering,
and absorption of black-body radiation, (ii) the use of
static magnetic potentials created by persistent currents
to magnetically levitate the sphere without creating deco-
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➡ Combination of salient features:

1. Cryogenic temperatures No black-body decoherence!

2. Static magnetic potentials
Levitation and exponential 
speed-up of dynamics (no need 
for space)!

3. Coupling to quantum circuits Purification, quantum double-slit, 
measurement!
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Magnetic levitation

 Magnetic coupling to a quantum circuit

• Diameter
• N 

� 4 µm
� 1014

 ORI, et al. PRL 109 147205 (2012).
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FIG. 5. (Color online) As an example, the coherence distance
ξ (t), see Eq. (17), is plotted for a sphere of R = 50 nm at a bulk
temperature of 200 K, taking into account the decoherence given by
blackbody radiation; see Sec. III B 2. Other experimental parameters
are taken from Table II.

where P̃s(p,t) =
∫

dxe−ipx ′/h̄Ps(x,t)/
√

2πh̄. The position
distribution without decoherence Ps(x,t) oscillates with a
wavelength given by xf = 2πh̄t/(md), which corresponds to
the distances between the interference maxima. Thus, P̃s(p,t)
has peaks at pf = ±2πh̄/xf = md/t . Hence, the reduction
of the interference peaks, which we use as a figure of merit
for the visibility of the interference pattern, is given by
V(t) ≡ F(2πh̄/xf ) = exp [−t#], where

# = γ − γ

√
πa

d
erf

[
d

2a

]
. (22)

Note that # ≈ %d2/3 in the limit d ≪ 2a and # ≈ γ in the
limit d ≫ 2a. Therefore, the requirement #t2 ≪ 1 establishes
the conditions (vii) and (viii) in Table I depending on the ratio
d/(2a).

B. Unavoidable sources of standard decoherence

Let us now focus on the unavoidable decoherence given
by scattering of air molecules and blackbody radiation.
Decoherence due to environmental scattering is a well-studied
topic triggered by the work of Joos and Zeh [37]. For
an extensive review on these topics, we refer the reader
to Refs. [27,28]. Here we review the results needed for
our analysis. Localization due to environmental scattering is
described by a master equation of the type

⟨x|ρ̇(t)|x′⟩ = i

h̄
⟨x|[ρ̂,Ĥ ]|x′⟩ − F (x − x′)ρ̂(x,x′), (23)

where the decoherence function F (x − x′) depends on the
distance |x − x′| and can be expressed as [28]

F (x) =
∫ ∞

0
dqρ(q)v(q)

∫
dndn′

4π

×(1 − eiq(n−n′)·x/h̄)|f (qn,qn′)|2. (24)

The derivation assumes an infinitely massive object and the
fact that the incoming particles are isotropically distributed
in space. Here, ρ(q) denotes the number density of incoming
particles with magnitude of momentum equal to q, v(q) =

q/ma [v(q) = c] is the velocity of massive (massless) par-
ticles, |n| = |n′| = 1, and f (qn,qn′) is the elastic-scattering
amplitude. For further details, see Chapter 3 of Ref. [28].
The behavior of the function differs substantially depending
on the ratio between |x − x′| and the thermal wavelength
of the scattering particles λth. In the long-wavelength limit,
λth ≫ |x − x′|, F (x − x′) ∼ %|x − x′|2, whereas in the short-
wavelength limit, λth ≪ |x − x′|, one obtains the saturation
of F (x − x′) ∼ γ . That is, above some critical distance each
scattering event resolves the separation |x − x′| and thereby
provides which path information. This allows us to relate
qualitatively and quantitatively the master equation (23) with
the simpler one (8) discussed in the previous subsections.
This connection, which has been discussed previously in
Refs. [38,39], is given by the following relations:

a = λth/2 and γ = λ2
th%. (25)

In the analysis of decoherence due to environmental scat-
tering one typically employs the long-wavelength limit since
it always provides upper bounds on decoherence rates, even
when one is in the short-wavelength limit. This was the case,
for instance, in the analysis performed in the optomechanical
double slit proposal in Ref. [32]. As shown below, the upper
bounds for the case of scattering of air molecules were too
loose, since one is in the saturation regime. This yielded the
requirement of very low pressures. The analysis performed
in the following takes into account the saturation effect and
yields much more feasible vacuum conditions.

1. Air molecules

The thermal wavelength of a typical air molecule, which is
assumed to be in thermal equilibrium with an environment
at temperature T , is given by λair

th = 2πh̄/
√

2πmakbTe ≡
2aair, where ma is its mass. Using ma ∼ 28.97 amu and
Te ∼ 4.5 K, one obtains 2aair ∼ 0.15 nm. The localization
parameter associated with scattering of air molecules in the
long-wavelength limit is given by [28]

(air = 8
√

2πmav̄PR2

3
√

3h̄2
, (26)

where v̄ is the mean velocity of the air molecules, P the
pressure of the gas, and R the radius of the sphere. Thus,
using Eqs. (25) and (26) and the expression of λair

th , one obtains

γair = 16π
√

2π√
3

PR2

v̄ma

. (27)

In the following, we will consider superpositions which are,
at least, in the nanometer scale. Therefore, we will use the
short-wavelength limit d ≫ 2a to account for the decoherence
effect of air molecules. The effect of this decoherence is
shown in Fig. 6, where the coherence time γ −1

air and the
corresponding coherence distance ξs(γ −1

air ) are plotted as a
function of the diameter of the sphere and for different
pressures. Note that these quantities define the conditions (vi)
and (viii) in Table I. In particular, for sufficiently low pressures,
large superpositions of the order of the size of the object are
permitted. We remark, again, that in Ref. [32] the saturation
effect was not taken into account, and this gave rise to pressures
of 10−16 Torr for spheres of 40 nm, which turns out to be a
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FIG. 5. (Color online) As an example, the coherence distance
ξ (t), see Eq. (17), is plotted for a sphere of R = 50 nm at a bulk
temperature of 200 K, taking into account the decoherence given by
blackbody radiation; see Sec. III B 2. Other experimental parameters
are taken from Table II.

where P̃s(p,t) =
∫

dxe−ipx ′/h̄Ps(x,t)/
√

2πh̄. The position
distribution without decoherence Ps(x,t) oscillates with a
wavelength given by xf = 2πh̄t/(md), which corresponds to
the distances between the interference maxima. Thus, P̃s(p,t)
has peaks at pf = ±2πh̄/xf = md/t . Hence, the reduction
of the interference peaks, which we use as a figure of merit
for the visibility of the interference pattern, is given by
V(t) ≡ F(2πh̄/xf ) = exp [−t#], where

# = γ − γ

√
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d
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. (22)

Note that # ≈ %d2/3 in the limit d ≪ 2a and # ≈ γ in the
limit d ≫ 2a. Therefore, the requirement #t2 ≪ 1 establishes
the conditions (vii) and (viii) in Table I depending on the ratio
d/(2a).

B. Unavoidable sources of standard decoherence

Let us now focus on the unavoidable decoherence given
by scattering of air molecules and blackbody radiation.
Decoherence due to environmental scattering is a well-studied
topic triggered by the work of Joos and Zeh [37]. For
an extensive review on these topics, we refer the reader
to Refs. [27,28]. Here we review the results needed for
our analysis. Localization due to environmental scattering is
described by a master equation of the type

⟨x|ρ̇(t)|x′⟩ = i

h̄
⟨x|[ρ̂,Ĥ ]|x′⟩ − F (x − x′)ρ̂(x,x′), (23)

where the decoherence function F (x − x′) depends on the
distance |x − x′| and can be expressed as [28]

F (x) =
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0
dqρ(q)v(q)

∫
dndn′

4π

×(1 − eiq(n−n′)·x/h̄)|f (qn,qn′)|2. (24)

The derivation assumes an infinitely massive object and the
fact that the incoming particles are isotropically distributed
in space. Here, ρ(q) denotes the number density of incoming
particles with magnitude of momentum equal to q, v(q) =

q/ma [v(q) = c] is the velocity of massive (massless) par-
ticles, |n| = |n′| = 1, and f (qn,qn′) is the elastic-scattering
amplitude. For further details, see Chapter 3 of Ref. [28].
The behavior of the function differs substantially depending
on the ratio between |x − x′| and the thermal wavelength
of the scattering particles λth. In the long-wavelength limit,
λth ≫ |x − x′|, F (x − x′) ∼ %|x − x′|2, whereas in the short-
wavelength limit, λth ≪ |x − x′|, one obtains the saturation
of F (x − x′) ∼ γ . That is, above some critical distance each
scattering event resolves the separation |x − x′| and thereby
provides which path information. This allows us to relate
qualitatively and quantitatively the master equation (23) with
the simpler one (8) discussed in the previous subsections.
This connection, which has been discussed previously in
Refs. [38,39], is given by the following relations:

a = λth/2 and γ = λ2
th%. (25)

In the analysis of decoherence due to environmental scat-
tering one typically employs the long-wavelength limit since
it always provides upper bounds on decoherence rates, even
when one is in the short-wavelength limit. This was the case,
for instance, in the analysis performed in the optomechanical
double slit proposal in Ref. [32]. As shown below, the upper
bounds for the case of scattering of air molecules were too
loose, since one is in the saturation regime. This yielded the
requirement of very low pressures. The analysis performed
in the following takes into account the saturation effect and
yields much more feasible vacuum conditions.

1. Air molecules

The thermal wavelength of a typical air molecule, which is
assumed to be in thermal equilibrium with an environment
at temperature T , is given by λair

th = 2πh̄/
√

2πmakbTe ≡
2aair, where ma is its mass. Using ma ∼ 28.97 amu and
Te ∼ 4.5 K, one obtains 2aair ∼ 0.15 nm. The localization
parameter associated with scattering of air molecules in the
long-wavelength limit is given by [28]

(air = 8
√

2πmav̄PR2

3
√

3h̄2
, (26)

where v̄ is the mean velocity of the air molecules, P the
pressure of the gas, and R the radius of the sphere. Thus,
using Eqs. (25) and (26) and the expression of λair

th , one obtains

γair = 16π
√

2π√
3

PR2

v̄ma

. (27)

In the following, we will consider superpositions which are,
at least, in the nanometer scale. Therefore, we will use the
short-wavelength limit d ≫ 2a to account for the decoherence
effect of air molecules. The effect of this decoherence is
shown in Fig. 6, where the coherence time γ −1

air and the
corresponding coherence distance ξs(γ −1

air ) are plotted as a
function of the diameter of the sphere and for different
pressures. Note that these quantities define the conditions (vi)
and (viii) in Table I. In particular, for sufficiently low pressures,
large superpositions of the order of the size of the object are
permitted. We remark, again, that in Ref. [32] the saturation
effect was not taken into account, and this gave rise to pressures
of 10−16 Torr for spheres of 40 nm, which turns out to be a
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FIG. 5. (Color online) As an example, the coherence distance
ξ (t), see Eq. (17), is plotted for a sphere of R = 50 nm at a bulk
temperature of 200 K, taking into account the decoherence given by
blackbody radiation; see Sec. III B 2. Other experimental parameters
are taken from Table II.

where P̃s(p,t) =
∫

dxe−ipx ′/h̄Ps(x,t)/
√

2πh̄. The position
distribution without decoherence Ps(x,t) oscillates with a
wavelength given by xf = 2πh̄t/(md), which corresponds to
the distances between the interference maxima. Thus, P̃s(p,t)
has peaks at pf = ±2πh̄/xf = md/t . Hence, the reduction
of the interference peaks, which we use as a figure of merit
for the visibility of the interference pattern, is given by
V(t) ≡ F(2πh̄/xf ) = exp [−t#], where

# = γ − γ

√
πa

d
erf

[
d

2a

]
. (22)

Note that # ≈ %d2/3 in the limit d ≪ 2a and # ≈ γ in the
limit d ≫ 2a. Therefore, the requirement #t2 ≪ 1 establishes
the conditions (vii) and (viii) in Table I depending on the ratio
d/(2a).

B. Unavoidable sources of standard decoherence

Let us now focus on the unavoidable decoherence given
by scattering of air molecules and blackbody radiation.
Decoherence due to environmental scattering is a well-studied
topic triggered by the work of Joos and Zeh [37]. For
an extensive review on these topics, we refer the reader
to Refs. [27,28]. Here we review the results needed for
our analysis. Localization due to environmental scattering is
described by a master equation of the type

⟨x|ρ̇(t)|x′⟩ = i

h̄
⟨x|[ρ̂,Ĥ ]|x′⟩ − F (x − x′)ρ̂(x,x′), (23)

where the decoherence function F (x − x′) depends on the
distance |x − x′| and can be expressed as [28]

F (x) =
∫ ∞

0
dqρ(q)v(q)

∫
dndn′

4π

×(1 − eiq(n−n′)·x/h̄)|f (qn,qn′)|2. (24)

The derivation assumes an infinitely massive object and the
fact that the incoming particles are isotropically distributed
in space. Here, ρ(q) denotes the number density of incoming
particles with magnitude of momentum equal to q, v(q) =

q/ma [v(q) = c] is the velocity of massive (massless) par-
ticles, |n| = |n′| = 1, and f (qn,qn′) is the elastic-scattering
amplitude. For further details, see Chapter 3 of Ref. [28].
The behavior of the function differs substantially depending
on the ratio between |x − x′| and the thermal wavelength
of the scattering particles λth. In the long-wavelength limit,
λth ≫ |x − x′|, F (x − x′) ∼ %|x − x′|2, whereas in the short-
wavelength limit, λth ≪ |x − x′|, one obtains the saturation
of F (x − x′) ∼ γ . That is, above some critical distance each
scattering event resolves the separation |x − x′| and thereby
provides which path information. This allows us to relate
qualitatively and quantitatively the master equation (23) with
the simpler one (8) discussed in the previous subsections.
This connection, which has been discussed previously in
Refs. [38,39], is given by the following relations:

a = λth/2 and γ = λ2
th%. (25)

In the analysis of decoherence due to environmental scat-
tering one typically employs the long-wavelength limit since
it always provides upper bounds on decoherence rates, even
when one is in the short-wavelength limit. This was the case,
for instance, in the analysis performed in the optomechanical
double slit proposal in Ref. [32]. As shown below, the upper
bounds for the case of scattering of air molecules were too
loose, since one is in the saturation regime. This yielded the
requirement of very low pressures. The analysis performed
in the following takes into account the saturation effect and
yields much more feasible vacuum conditions.

1. Air molecules

The thermal wavelength of a typical air molecule, which is
assumed to be in thermal equilibrium with an environment
at temperature T , is given by λair

th = 2πh̄/
√

2πmakbTe ≡
2aair, where ma is its mass. Using ma ∼ 28.97 amu and
Te ∼ 4.5 K, one obtains 2aair ∼ 0.15 nm. The localization
parameter associated with scattering of air molecules in the
long-wavelength limit is given by [28]

(air = 8
√

2πmav̄PR2

3
√

3h̄2
, (26)

where v̄ is the mean velocity of the air molecules, P the
pressure of the gas, and R the radius of the sphere. Thus,
using Eqs. (25) and (26) and the expression of λair

th , one obtains

γair = 16π
√

2π√
3

PR2

v̄ma

. (27)

In the following, we will consider superpositions which are,
at least, in the nanometer scale. Therefore, we will use the
short-wavelength limit d ≫ 2a to account for the decoherence
effect of air molecules. The effect of this decoherence is
shown in Fig. 6, where the coherence time γ −1

air and the
corresponding coherence distance ξs(γ −1

air ) are plotted as a
function of the diameter of the sphere and for different
pressures. Note that these quantities define the conditions (vi)
and (viii) in Table I. In particular, for sufficiently low pressures,
large superpositions of the order of the size of the object are
permitted. We remark, again, that in Ref. [32] the saturation
effect was not taken into account, and this gave rise to pressures
of 10−16 Torr for spheres of 40 nm, which turns out to be a
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 Gravitationally-induced decoherence
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Exponential speed-up

 Evolution in a repulsive quadratic potential

Vp(t) ⇡ e2!RtVp(0)

Dynamics can be calculated analytically taking 
into account decoherence

Momentum (and position) distribution grows 
exponentially

⇠(t) = P (t)
p

8V
x

(t)

Also coherence length

Interesting that for position localization 
decoherence:
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Free expansion

 Evolution with free dynamics
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p̂2
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Coherence lengths grows linearly in time at a 
speed
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r
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Without momentum speedup the speed is
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107p

M [amu]
⇥ 40 nm/s
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Free expansion

 Evolution with free dynamics

Ĥ =
p̂2

2M

Dynamics can be calculated analytically taking 
into account decoherence

Coherence lengths grows linearly in time at a 
speed
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Double slit

 X squared measurement

Interaction with a non-quadratic potential is 
analytically and numerically very challenging

Coupling to quantum system used to measure X^2

Advantage: double-slit can be smaller than particle 
size

Disadvantage: slit separation depends on outcome
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Rotation

 pi/4 rotation

!Rt =
⇡

4

We have to prepare state for exponential time-
of-flight

We make a pi/4 rotation

After double slit state is more robust against 
decoherence
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Exponentially generation of fringes

xf =
2⇡~t
Md

xf (t) ⇡ e

!rt
xf (0)

 Evolution in a repulsive quadratic potential

In free dynamics fringes generate very slowly

In repulsive dynamics fringes generate 
exponentially faster
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Expansion: 
with repulsive quadratic potential

Double-slit: 
X-squared measurement



Expansion: 
with repulsive quadratic potential

Rotation: 
harmonic potential dynamics



Expansion: 
with repulsive quadratic potential

Exponential generation of fringes: 
repulsive potential
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Growing coherence length in repulsive expansion

-��� -��� -�� � �� ��� ������

���

���

���

���

���

���

���

� [��]

�(
�)

⇤ = ⇤G + ⇤QM

⇤ = ⇤QM

Gravitationally-induced 
decoherence could be falsified

⇤G =
GM2

2~R3



Growing coherence length in repulsive expansion

 Sphere (Nb): 4 micrometers

-��� -��� -�� � �� ��� ������

���

���

���

���

���

���

���

� [��]

�(
�)

⇤ = ⇤G + ⇤QM

⇤ = ⇤QM

Gravitationally-induced 
decoherence could be falsified



Growing coherence length in repulsive expansion

 Total time: 537 ms

➡ Exponential speed-up: 4.8 ms
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Growing coherence length in repulsive expansion

 Total time: 537 ms
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 Slit separation: 84 nm (width 4 nm)

⇤ = ⇤G + ⇤QM

⇤ = ⇤QM

 Temperature: < 1K

 Quadratic potentials: 100 Hz

Gravitationally-induced 
decoherence could be falsified



Experimental Proposal



Levitating superconducting microspheres

 Quantum magnetomechanics: magnetic coupling to a quantum circuit

 ORI, et al. PRL 109 147205 (2012).

• Diameter
• N 

� 4 µm
� 1014



Levitating superconducting microspheres

 Quantum magnetomechanics: magnetic coupling to a quantum circuit

 ORI, et al. PRL 109 147205 (2012).

 Sphere behaves as a magnetic dipole

Ba

m = �Ba

µ0

3V

2m

scales with volume!



On-chip all-magnetic “skatepark”  

for a superconducting microsphere



On-chip magnetic “skatepark”



On-chip magnetic “skatepark”



On-chip magnetic “skatepark”



Persistent currents, 
Quantum Circuits and 
SQUIDS

On-chip magnetic “skatepark”
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Final remarks

Gravitationally-induced decoherence? Gravitational regime?

Magnetically levitated superconducting microspheres can falsify it

➡ Mass of 10^14 amu

➡ Cryogenic temperatures

➡ Magnetic levitation

➡ Static potentials

➡ On-chip all-magnetic “skatepark”

This experiment would falsify (by far) all other known collapse models

Challenging but put it into context and recall side applications (measuring 
capital G?)

⌧ = h
2R

GM2
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Expansion: 
with repulsive quadratic potentialThank you very much for your attention


