Toward Macroscopic Quantum Superpositions of Levitated Superconducting Microspheres

Oriol Romero-Isart and Hernan Pino

IQOQI - Institute of Quantum Optics and Quantum Information ITP - Institute of Theoretical Physics, University of Innsbruck Innsbruck, Austria

Galiano Island, 17th August 2015

Plan of the talk

Motivation: quantum superposition of massive objects

Decoherence

Protocol

Results

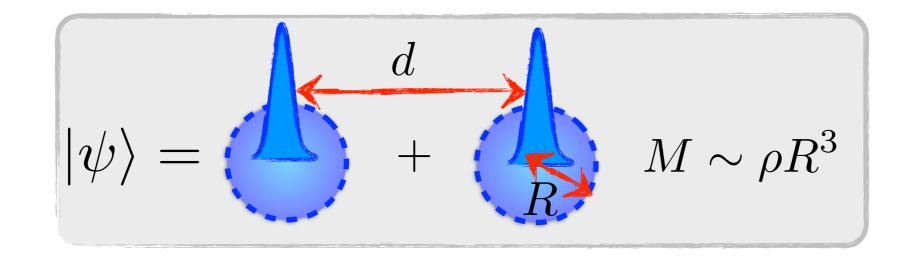
Experimental proposal

Motivation

Quantum Superposition of a Massive Object

Quantum Superposition of Massive Objects

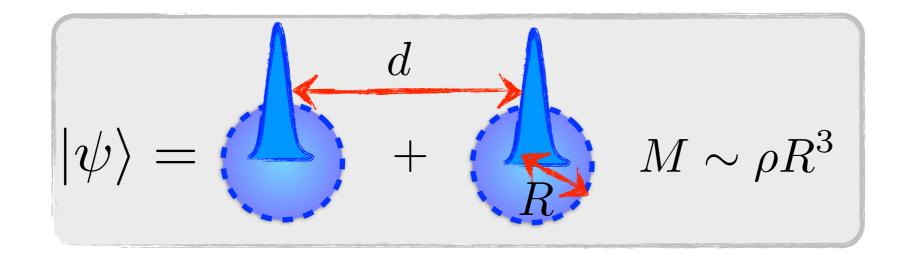
Spatial superposition of a massive object



• How large can we make d and M?

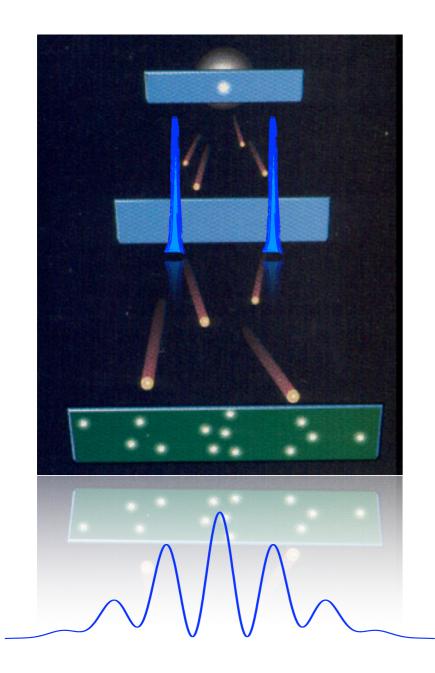
Quantum Superposition of Massive Objects

Spatial superposition of a massive object

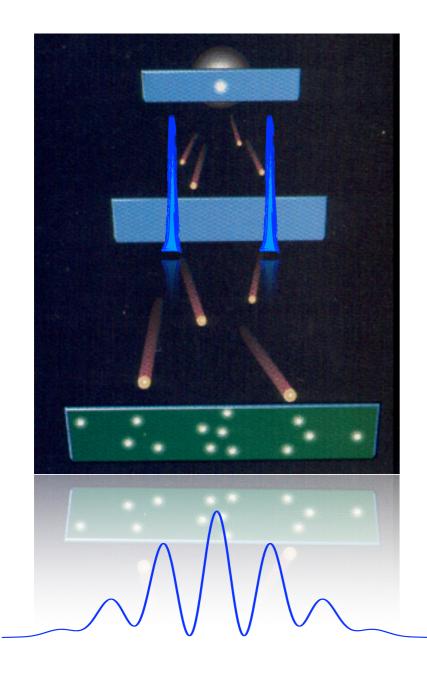


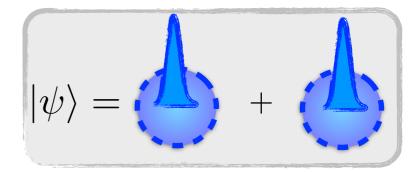
- How large can we make d and M?
- Why?
- Fundamental interest: exploring/testing QM in new regimes
 - Extremely sensitive to environment: very good sensor!
 - Measuring gravity?
 - New techniques in quantum control
 - Mesoscopic physics
 - . . .

Matter-wave interferometry



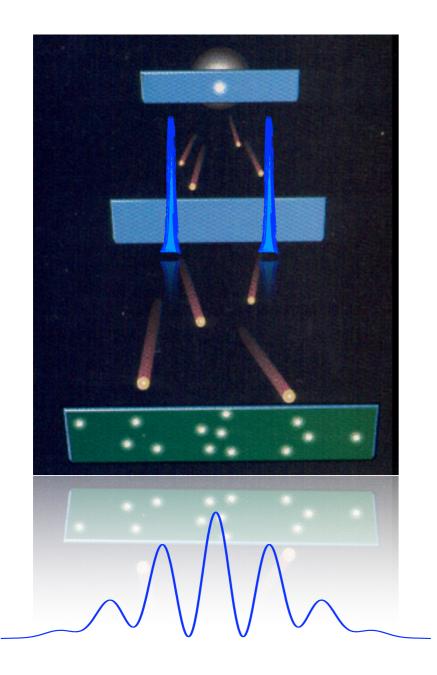
Matter-wave interferometry

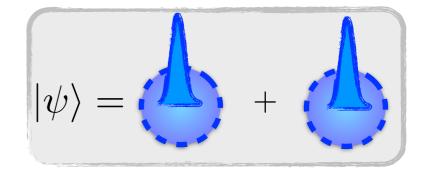




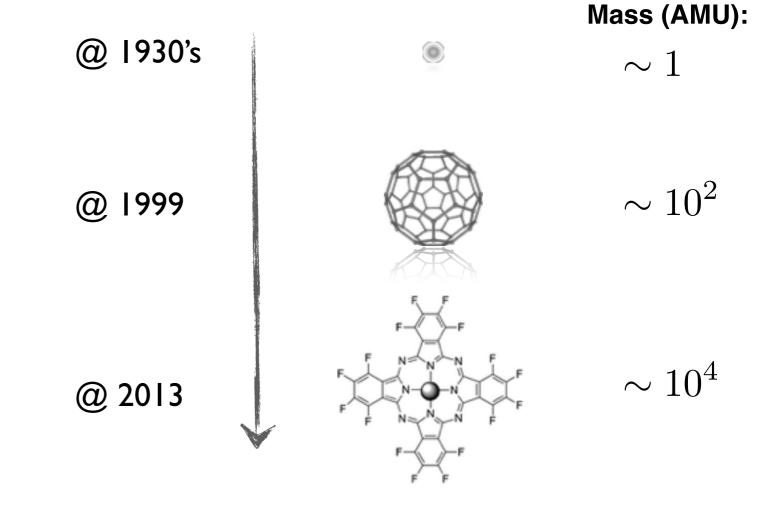
- Large superpositions
- Easily probed by the interference pattern
- Challenge in increasing the mass:

Matter-wave interferometry



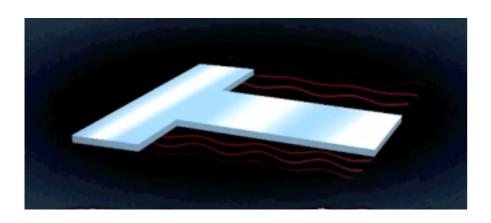


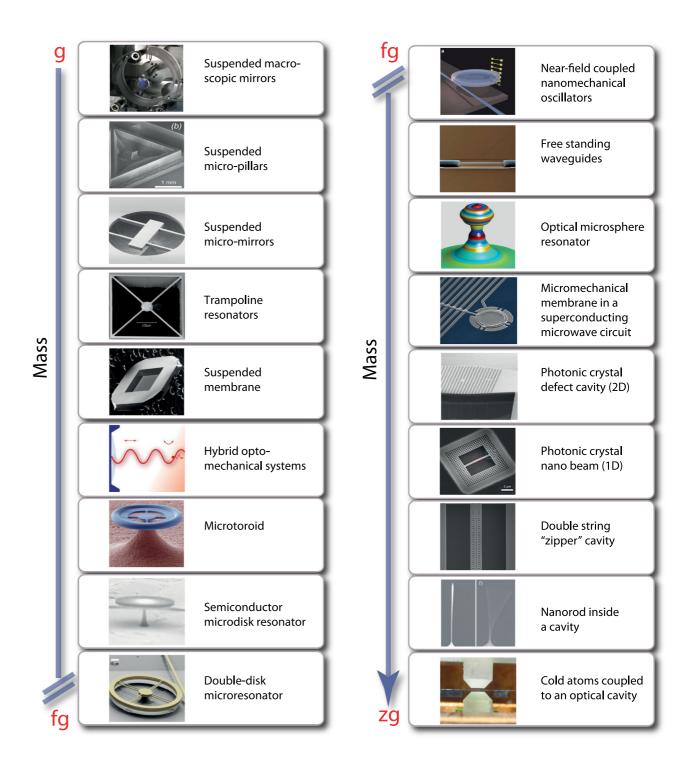
- Large superpositions
- Easily probed by the interference pattern
- Challenge in increasing the mass:



Arndt and Hornberger Nature Phys. 10, 271 (2014).

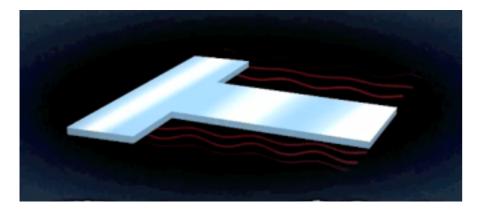
Quantum mechanical resonators



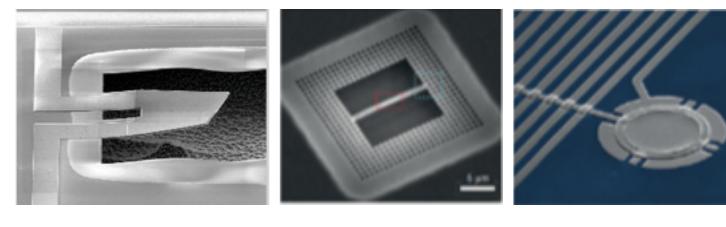


September and the set of the set

Quantum mechanical resonators



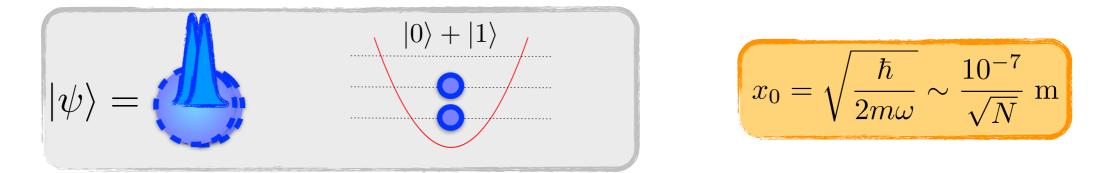
- Large mass



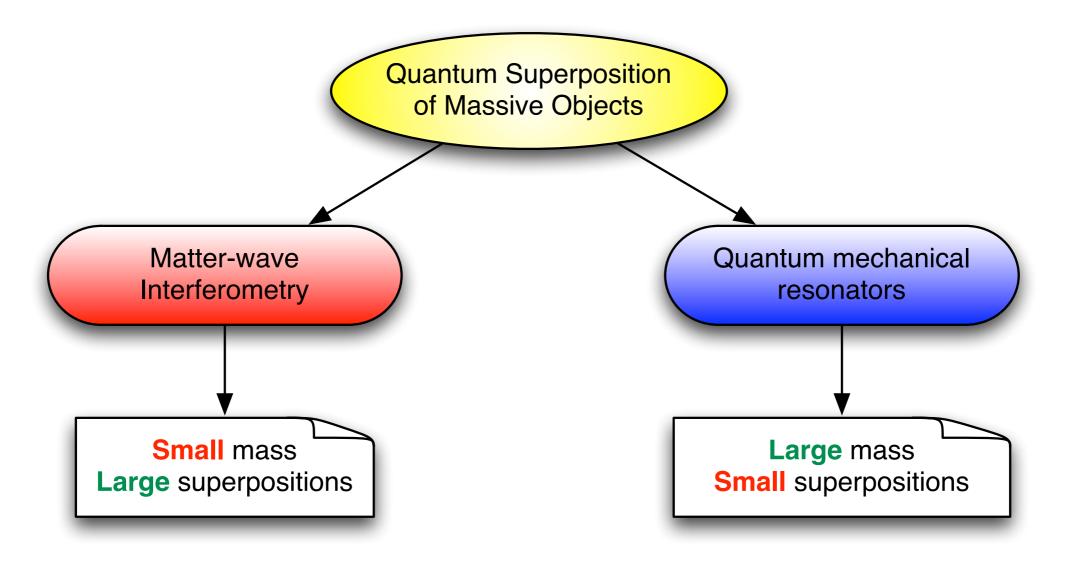
2011

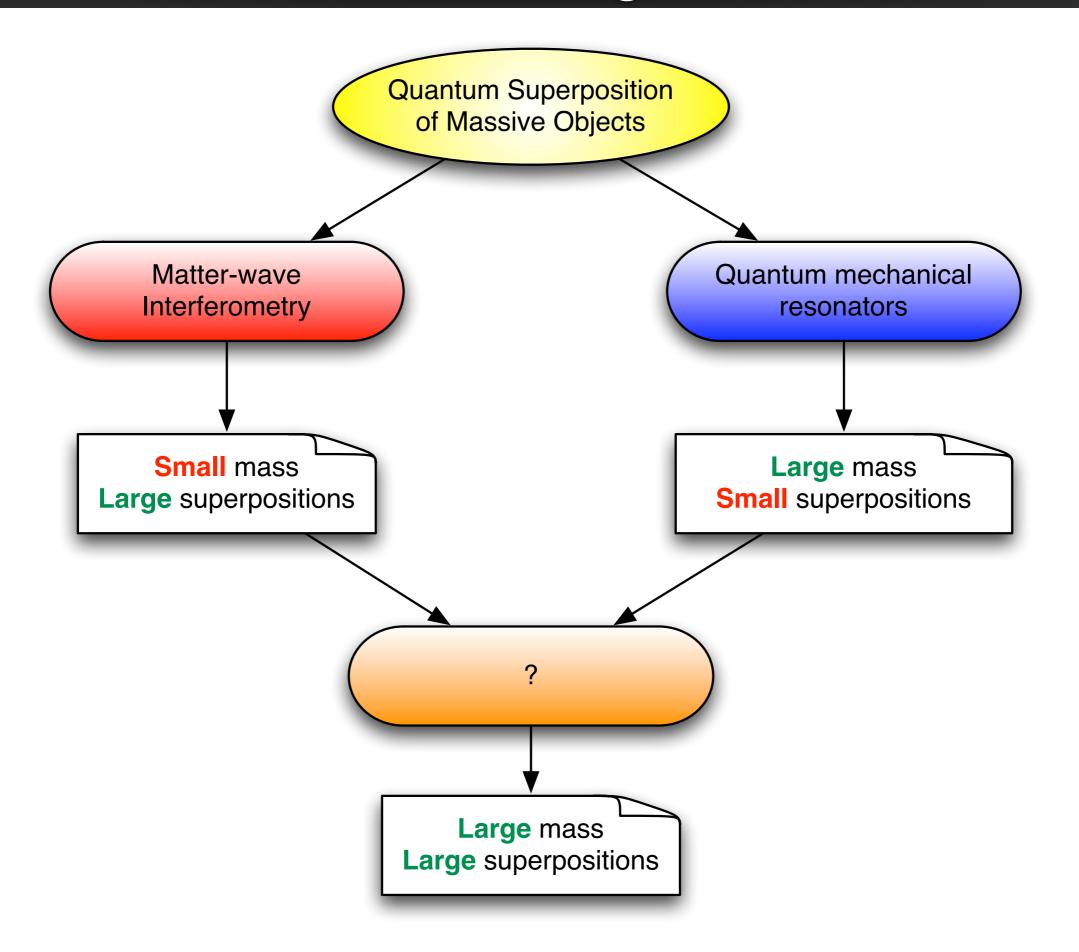
 $\sim 10^{13}$ $\sim 10^{11}$ $\sim 10^{13}$ Mass (AMU): 2010 2011

- Small superpositions:



Aspelmeyer, Kippenberg, Marquardt, Rev. Mod. Phys. 86, 1391 (2014)

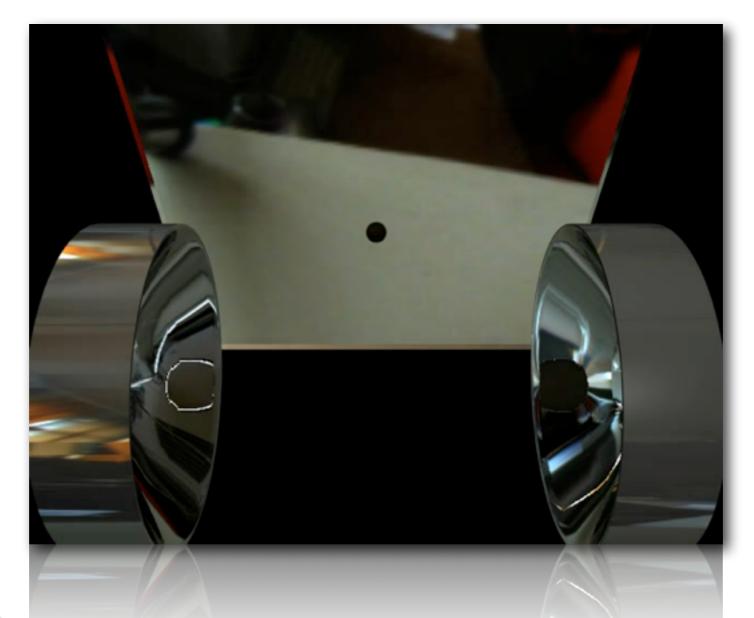




Levitation of nano/micro-spheres

Optical Levitation

• Diameter $\ll \lambda \sim 1 \ \mu m$ • N ~ $10^6 \sim 10^9$



ORI, M. L. Juan, R. Quidant, J. I. Cirac NJP 12, 033015 (2010)
 D. E. Chang, et al. (Kimble and Zoller) PNAS 107, 1005 (2010)

Optical levitation of dielectric nanospheres

Theory:

- Master equation for arbitrary sized dielectrics (all orders in perturbation theory)

 $\dot{\rho}(t) = \mathbf{i}[\rho(t), H] + \dots$

- Sources of decoherence (gas, black-body, elasticity, ...)

ORI, A. C. Pflanzer, et al. PRA 83, 013803 (2011)
 A. C. Pflanzer, ORI, and J. I. Cirac PRA 86, 013802 (2012)

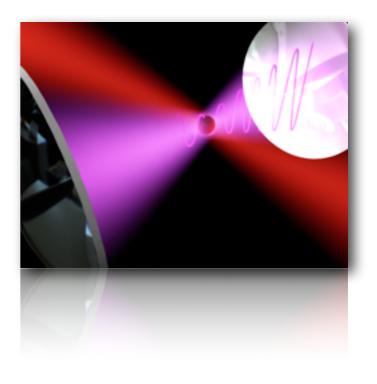
Protocols:

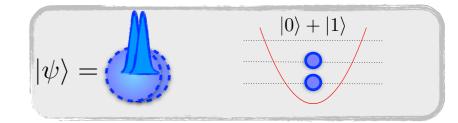
- Preparation of "small" quantum superpositions

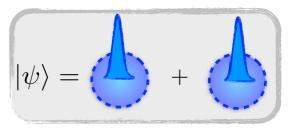
ORI, M. L. Juan, R. Quidant, J. I. Cirac NJP 12, 033015 (2010)
 ORI, A. C. Pflanzer, et al. PRA 83, 013803 (2011)
 A. C. Pflanzer, ORI, and J. I. Cirac PRA 88, 033804 (2013)

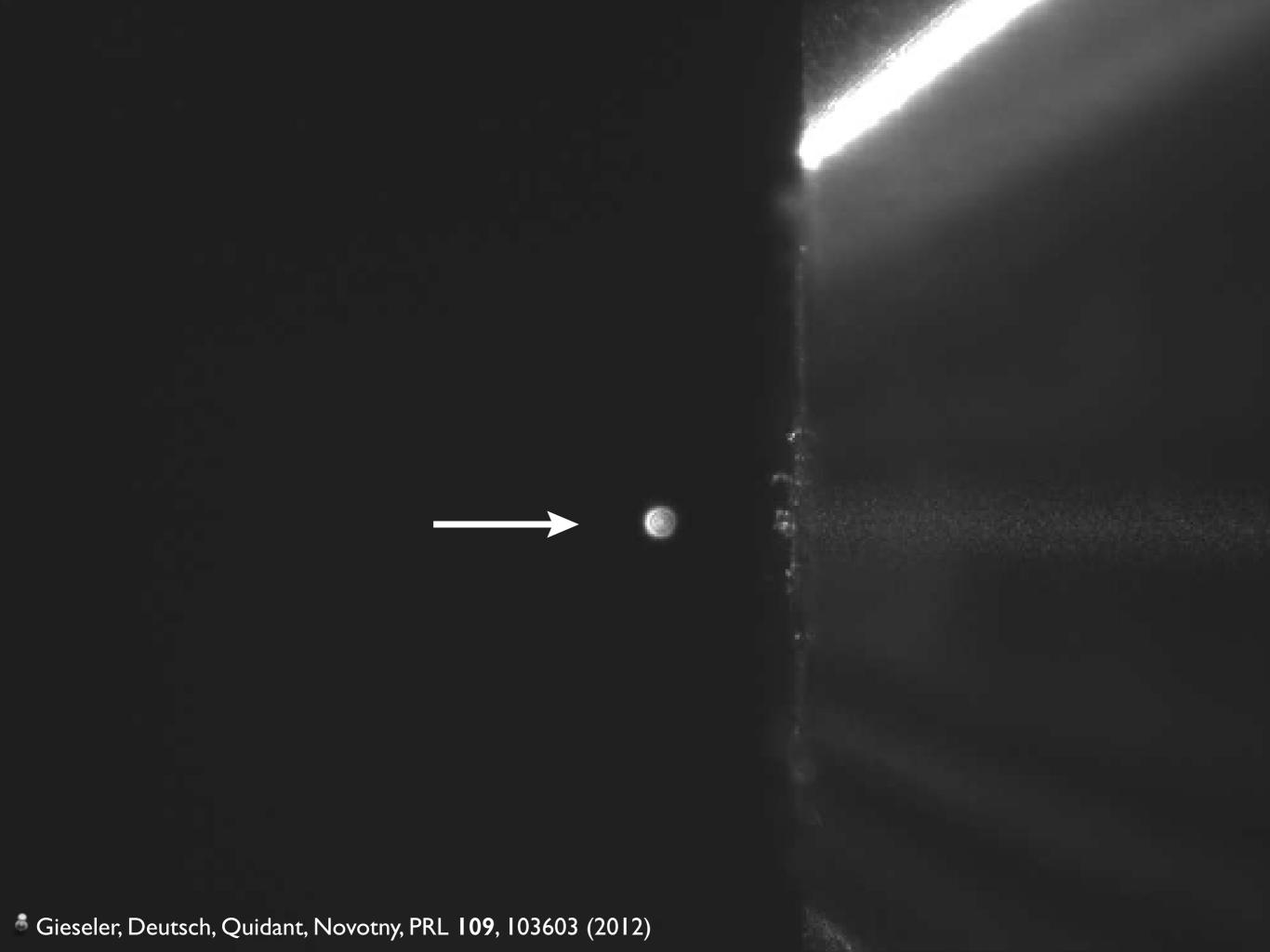
- Preparation of large quantum superpositions

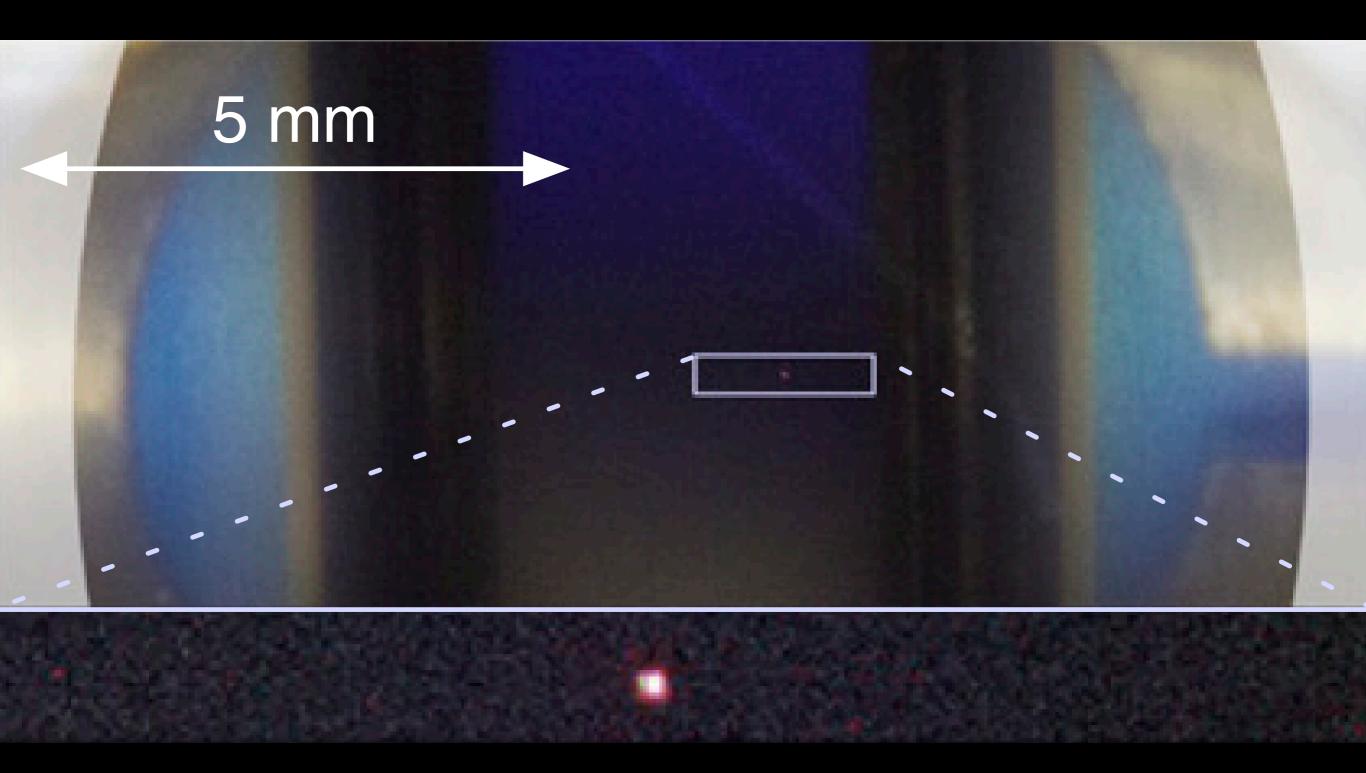
ORI, et al. PRL 107, 020405 (2011)
 ORI PRA 84, 052121 (2011)



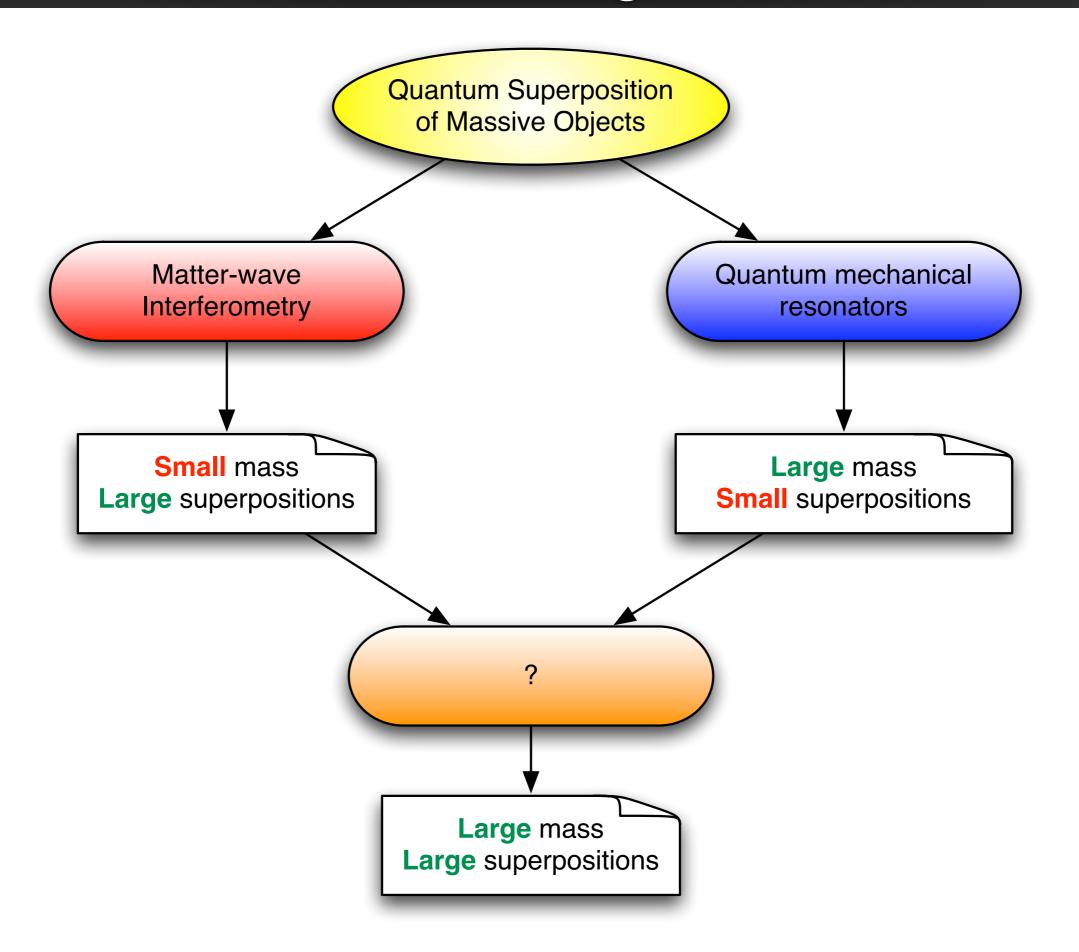








Kiesel, Blaser, Delic, Grass, Kaltenbaek, Aspelmeyer, PNAS 110, 14180 (2013)



Matter-Wave Interference with Levitated Nanospheres

week ending

8 JULY 2011

PHYSICAL REVIEW LETTERS PRL 107, 020405 (2011) Ŷ Large Quantum Superpositions and Interference of Massive Nanometer-Sized Objects

O. Romero-Isart,¹ A. C. Pflanzer,¹ F. Blaser,² R. Kaltenbaek,² N. Kiesel,² M. Aspelmeyer,² and J. I. Cirac¹ ¹Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Strasse 1, D-85748, Garching, Germany ²Vienna Center for Quantum Science and Technology, Faculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090 Vienna, Austria

PHYSICAL REVIEW A 84, 052121 (2011)

Quantum superposition of massive objects and collapse models

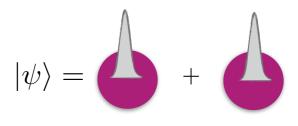
Oriol Romero-Isart

Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Str. 1, D-85748 Garching, Germany (Received 19 October 2011; published 28 November 2011)

Are they big enough?

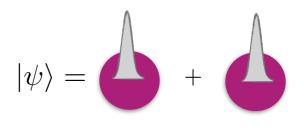
"Gravitational Regime" with Quantum Systems

Macroscopic quantum superpositions



Macroscopic quantum superpositions

Entering into the "gravitational regime"



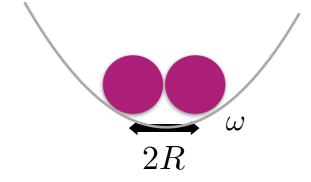
$$\textbf{Time scale} \quad \tau = h \frac{2R}{GM^2}$$

Macroscopic quantum superpositions

Entering into the "gravitational regime"

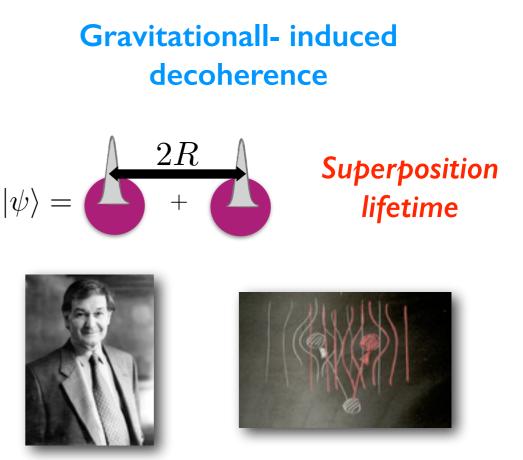
Two interpretations:

Gravitational energy vs kinetic energy of 2 masses



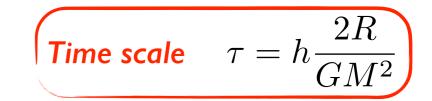
$$G\frac{M^2}{2R} = \hbar\omega \qquad \omega = \frac{2\pi}{\tau}$$

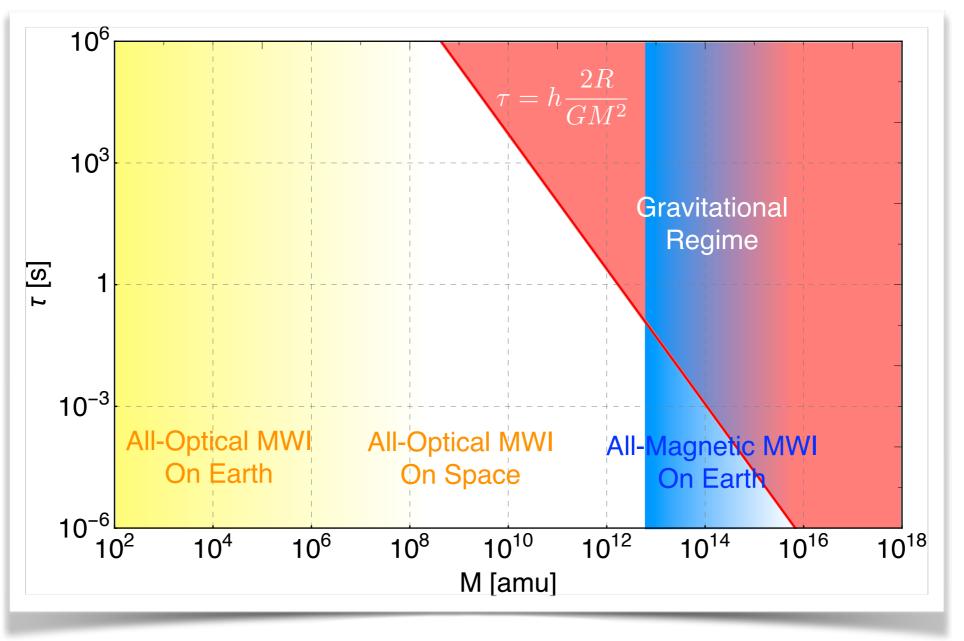
$$\begin{array}{ll} \text{Time scale} & \tau = h \frac{2R}{GM^2} \end{array}$$



🖗 Penrose, Diósi 80's

Entering into the "gravitational regime"





• Toward macroscopic quantum superpositions

Entering into the "gravitational regime"

All-magnetic matter-wave interferometer on a chip

Toward Macroscopic Quantum Superpositions of Levitated Superconducting Spheres

Hernan Pino^{1,2} and Oriol Romero-Isart^{1,2*}

¹Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, A-6020 Innsbruck, Austria. and ²Institute for Theoretical Physics, University of Innsbruck, A-6020 Innsbruck, Austria.

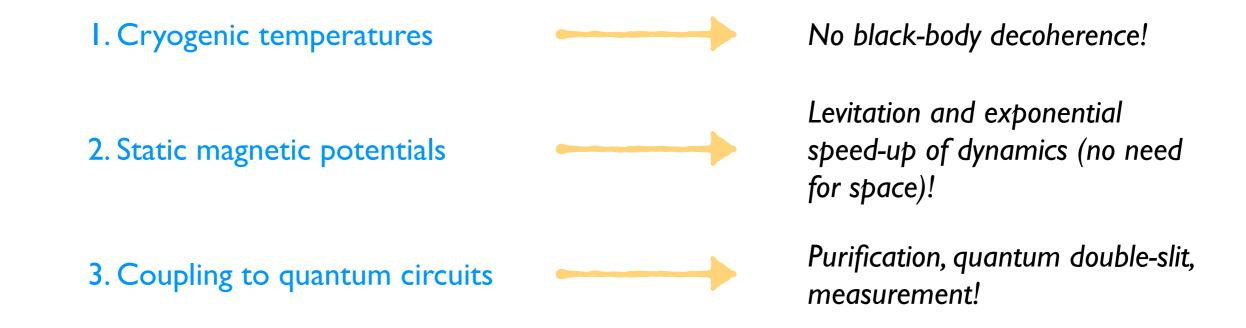
🗳 ArXiv: ...

 10^{6}

• Toward macroscopic quantum superpositions

Entering into the "gravitational regime"

All-magnetic matter-wave interferometer on a chip

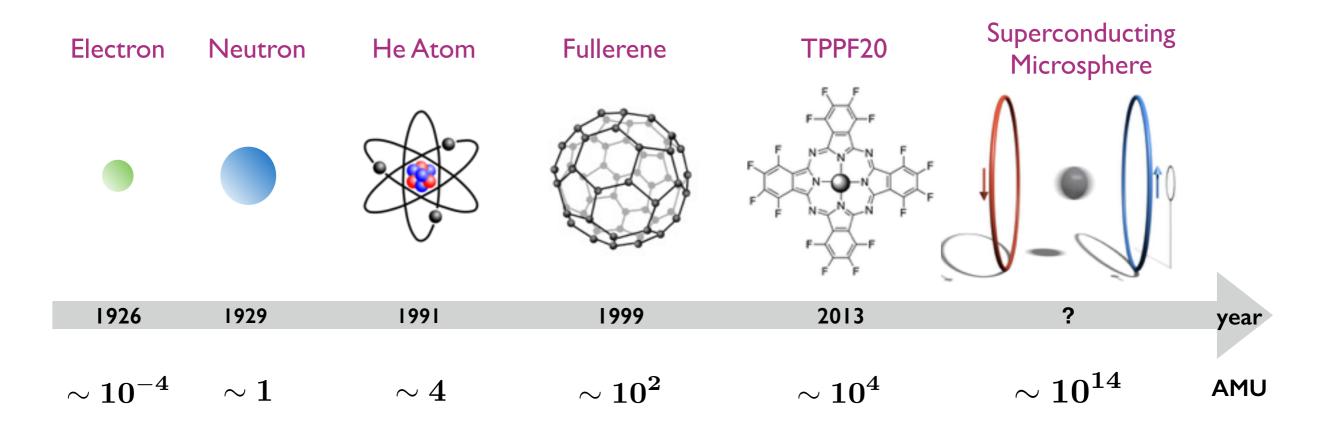


• Toward macroscopic quantum superpositions

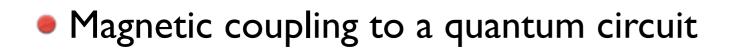
Entering into the "gravitational regime"

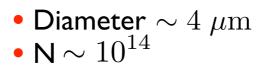
Time scale $au = h rac{2R}{GM^2}$

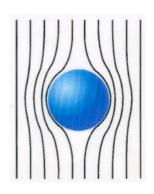
All-magnetic matter-wave interferometer on a chip



Magnetic levitation



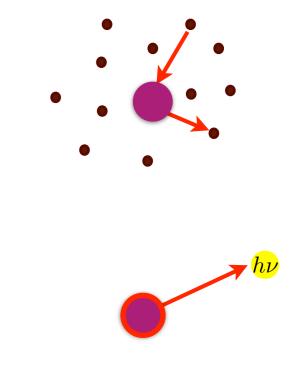


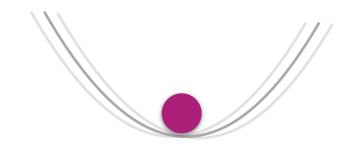


Scattering of air molecules

 Scattering, emission, and absorption of blackbody radiation (or any used light)

Fluctuating forces (e.g. due to vibrations)

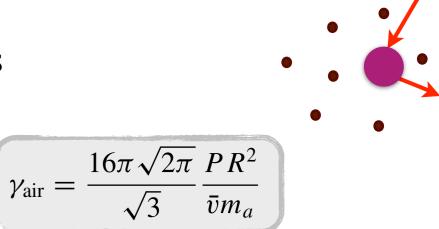


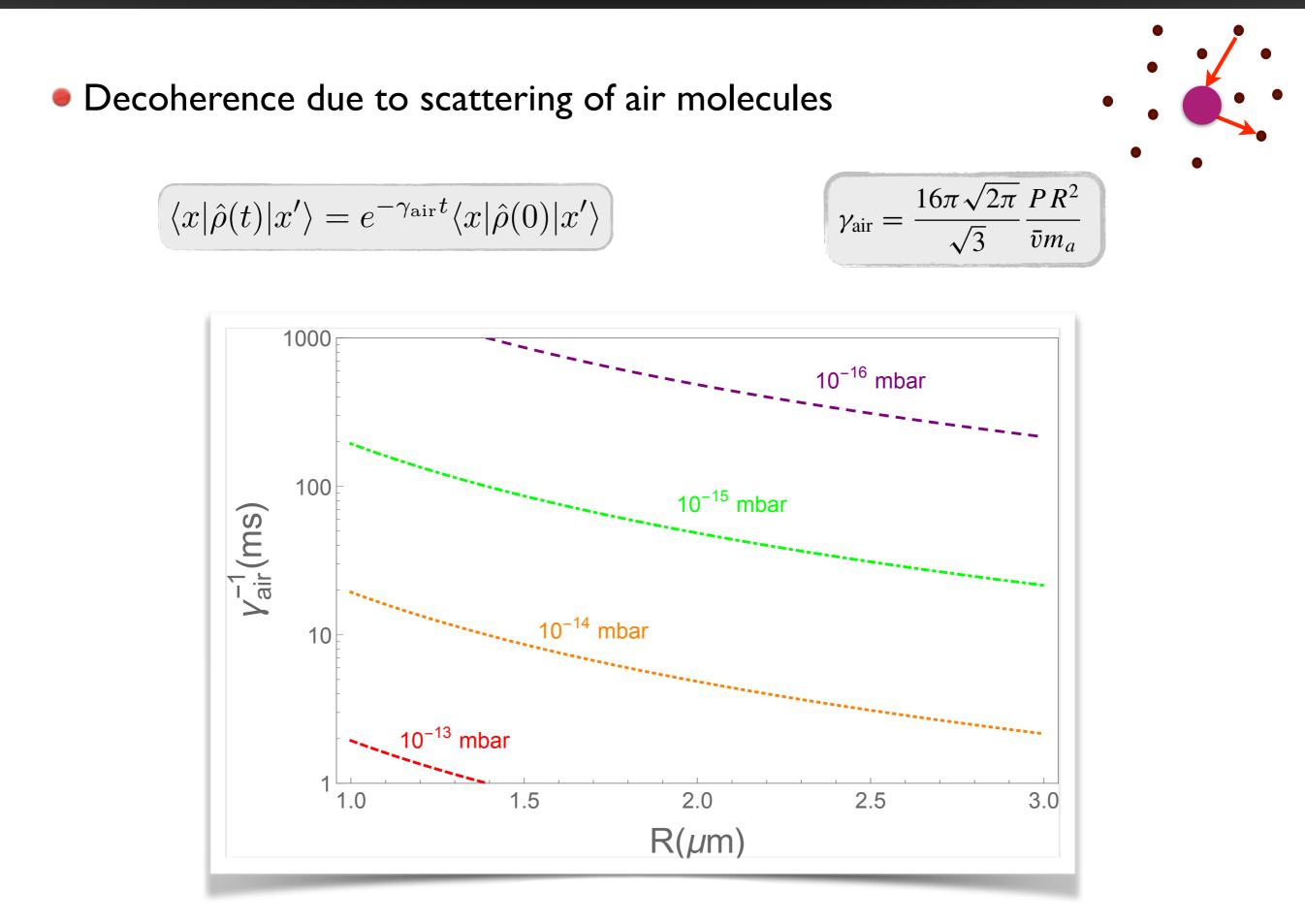


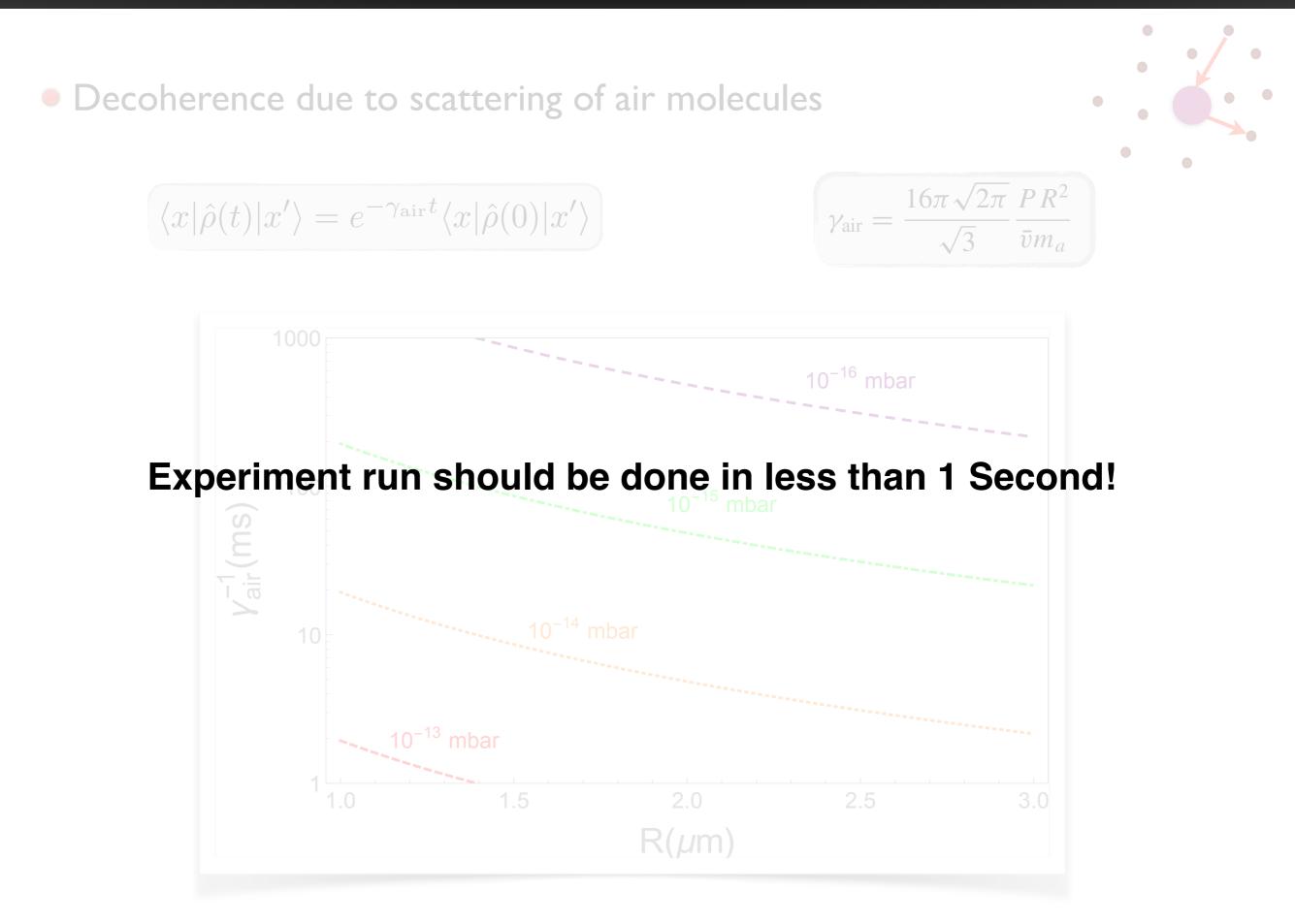
Collapse models

Decoherence due to scattering of air molecules

$$\langle x|\hat{\rho}(t)|x'\rangle = e^{-\gamma_{\rm air}t} \langle x|\hat{\rho}(0)|x'\rangle$$







Position localization master equation

$$\dot{
ho} = rac{1}{\mathrm{i}\hbar}[\hat{H},\hat{
ho}] - \Lambda[\hat{x},[\hat{x},\hat{
ho}]]$$

Describes black-body and fluctuating forces decoherence, and collapse models

$$\langle x|\rho(t)|x'\rangle \sim e^{-\Lambda(x-x')^2} \langle x|\rho(0)|x'\rangle$$

Position localization master equation

$$\dot{
ho} = rac{1}{\mathrm{i}\hbar}[\hat{H},\hat{
ho}] - \Lambda[\hat{x},[\hat{x},\hat{
ho}]]$$

Gravitationally-induced decoherence

$$\Lambda_G = \frac{GM^2}{2\hbar R^3}$$

Position localization master equation

$$\dot{
ho} = rac{1}{\mathrm{i}\hbar} [\hat{H},\hat{
ho}] - \Lambda[\hat{x},[\hat{x},\hat{
ho}]]
ight)$$

Gravitationally-induced decoherence

$$\Lambda_G = \frac{GM^2}{2\hbar R^3}$$

Very weak compared to other collapse models! But parameter free...

G-induced with mass resolution (Yanbei's talk)

$$\tilde{\Lambda}_G = \Lambda_G \left(\frac{R}{\sigma_{DP}}\right)^3 \sim 10^{18} \Lambda_G$$

CSL Model (Yanbei's and Angelo's talk) $\Lambda_{CSL} \sim \Lambda_G \times 10^6 \times \frac{\gamma_{CSL}^0}{10^{-16} \text{Hz}}$

Position localization decoherence

$$\dot{
ho} = rac{1}{\mathrm{i}\hbar}[\hat{H},\hat{
ho}] - \Lambda[\hat{x},[\hat{x},\hat{
ho}]]
ight)$$

Gravitationally-induced decoherence

$$\Lambda_G = \frac{GM^2}{2\hbar R^3}$$

Falsifying parameter-free gravitationally-induced decoherence

$$\tilde{\Lambda}_G = \Lambda_G \left(\frac{R}{\sigma_{DP}}\right)^3 \sim 10^{15} \Lambda_G$$

Position localization decoherence

Position localization master equation

$$\dot{
ho} = rac{1}{\mathrm{i}\hbar}[\hat{H},\hat{
ho}] - \Lambda[\hat{x},[\hat{x},\hat{
ho}]]
ight)$$

Gravitationally-induced decoherence

$$\Lambda_G = \frac{GM^2}{2\hbar R^3}$$

Coherence length

$$\langle x/2|\hat{\rho}| - x/2 \rangle = \frac{1}{\sqrt{2\pi V_x}} \exp\left(-\frac{x^2}{\xi^2}\right)$$

For gaussian states and dynamics

$$\xi(t) = P(t)\sqrt{8V_x(t)}$$

We require

$$\Lambda_G \gg \Lambda_{
m QM}$$

Position localization master equation

$$\dot{
ho} = rac{1}{\mathrm{i}\hbar}[\hat{H},\hat{
ho}] - \Lambda[\hat{x},[\hat{x},\hat{
ho}]]$$

Gravitationally-induced decoherence

$$\Lambda_G = \frac{GM^2}{2\hbar R^3}$$

Coherence length

$$\langle x/2|\hat{\rho}| - x/2 \rangle = \frac{1}{\sqrt{2\pi V_x}} \exp\left(-\frac{x^2}{\xi^2}\right)$$

For gaussian states and dynamics

$$\xi(t) = P(t)\sqrt{8V_x(t)}$$

• We require

$$\Lambda_G \gg \Lambda_{
m QM}$$

2. Exponential speed-up

3. Free expansion

4. Double slit

5. Rotation

6. Exponential generation of fringes

2. Exponential speed-up

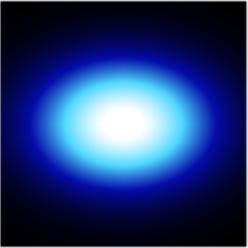
3. Free expansion

4. Double slit

5. Rotation

6. Exponential generation of fringes

Cooling the center-of-mass motion

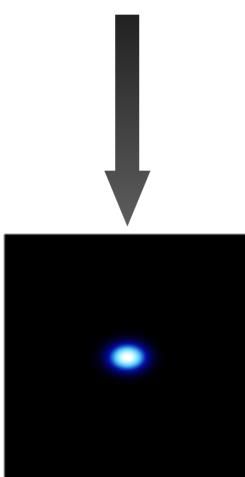


Microsphere trapped in an harmonic potential

$$\hat{H} = \frac{\hat{p}^2}{2M} + \frac{1}{2}M\omega_t^2\hat{x}^2$$

Cooling by coupling to quantum circuit

$$egin{aligned} V_x &= \langle \hat{x}^2
angle = rac{\hbar}{2M\omega_t}(2ar{n}+1) \ V_p &= \langle \hat{p}^2
angle = rac{\hbar M\omega_t}{2}(2ar{n}+1) \ C &= rac{1}{2}\langle \hat{x}\hat{p}+\hat{p}\hat{x}
angle = 0 \end{aligned}$$



Cooling the center-of-mass motion

Microsphere trapped in an harmonic potential

$$\hat{H} = \frac{\hat{p}^2}{2M} + \frac{1}{2}M\omega_t^2 \hat{x}^2$$

Cooling by coupling to quantum circuit

$$egin{aligned} V_x &= \langle \hat{x}^2
angle = rac{\hbar}{2M\omega_t}(2ar{n}+1) \ V_p &= \langle \hat{p}^2
angle = rac{\hbar M\omega_t}{2}(2ar{n}+1) \ C &= rac{1}{2}\langle \hat{x}\hat{p}+\hat{p}\hat{x}
angle = 0 \end{aligned}$$

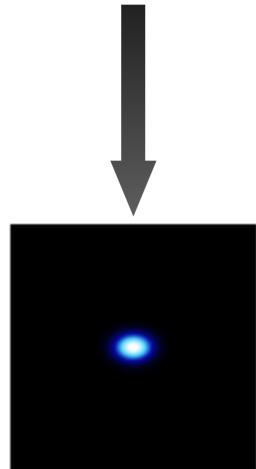
Cooling the center-of-mass motion

Microsphere trapped in an harmonic potential

$$\hat{H} = \frac{\hat{p}^2}{2M} + \frac{1}{2}M\omega_t^2 \hat{x}^2$$

Cooling by coupling to quantum circuit

$$egin{aligned} V_x &= \langle \hat{x}^2
angle = rac{\hbar}{2M\omega_t}(2ar{n}+1) \ V_p &= \langle \hat{p}^2
angle = rac{\hbar M\omega_t}{2}(2ar{n}+1) \ C &= rac{1}{2}\langle \hat{x}\hat{p}+\hat{p}\hat{x}
angle = 0 \end{aligned}$$



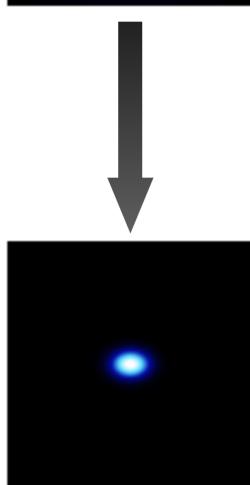
Cooling the center-of-mass motion

Microsphere trapped in an harmonic potential

$$\hat{H} = \frac{\hat{p}^2}{2M} + \frac{1}{2}M\omega_t^2 \hat{x}^2$$

Cooling by coupling to quantum circuit

$$V_x = \langle \hat{x}^2 \rangle = \frac{\hbar}{2M\omega_t} (2\bar{n}+1)$$
$$V_p = \langle \hat{p}^2 \rangle = \frac{\hbar M\omega_t}{2} (2\bar{n}+1)$$
$$C = \frac{1}{2} \langle \hat{x}\hat{p} + \hat{p}\hat{x} \rangle = 0$$



2. Exponential speed-up

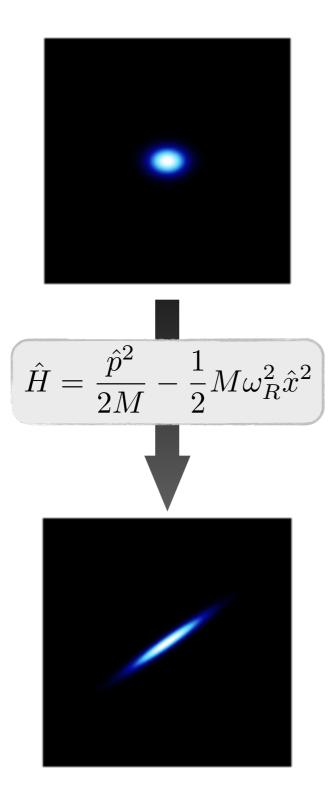
3. Free expansion

4. Double slit

5. Rotation

6. Exponential generation of fringes

Evolution in a repulsive quadratic potential



Dynamics can be calculated analytically taking into account decoherence

Momentum (and position) distribution grows exponentially

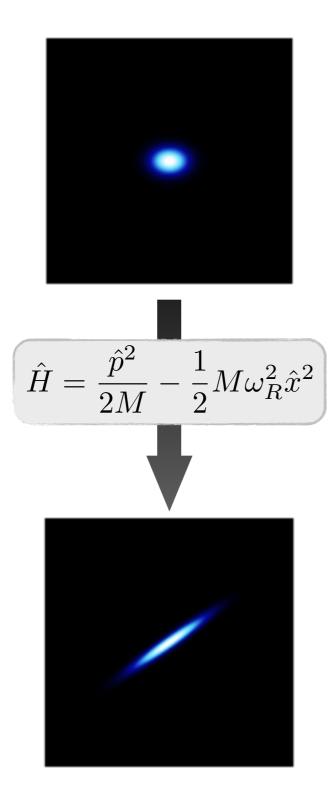
$$V_p(t) \approx e^{2\omega_R t} V_p(0)$$

Also coherence length

$$\xi(t) = P(t)\sqrt{8V_x(t)}$$

$$\xi(t \to \infty) = \sqrt{\frac{2\omega_r}{\Lambda}}$$

Evolution in a repulsive quadratic potential



Dynamics can be **calculated analytically** taking into account decoherence

Momentum (and position) distribution grows exponentially

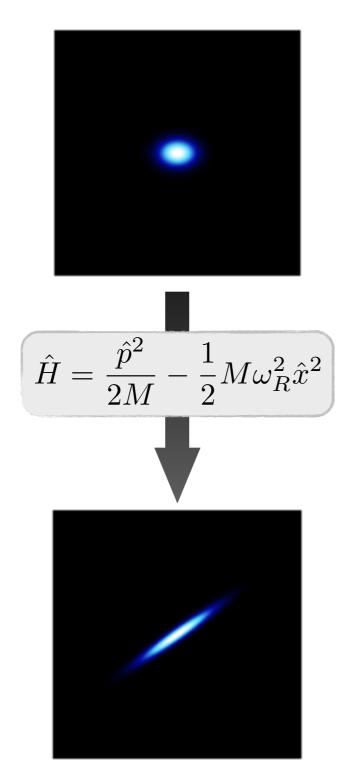
$$V_p(t) \approx e^{2\omega_R t} V_p(0)$$

Also coherence length

$$\xi(t) = P(t)\sqrt{8V_x(t)}$$

$$\xi(t \to \infty) = \sqrt{\frac{2\omega_r}{\Lambda}}$$

Evolution in a repulsive quadratic potential



Dynamics can be **calculated analytically** taking into account decoherence

Momentum (and position) distribution grows exponentially

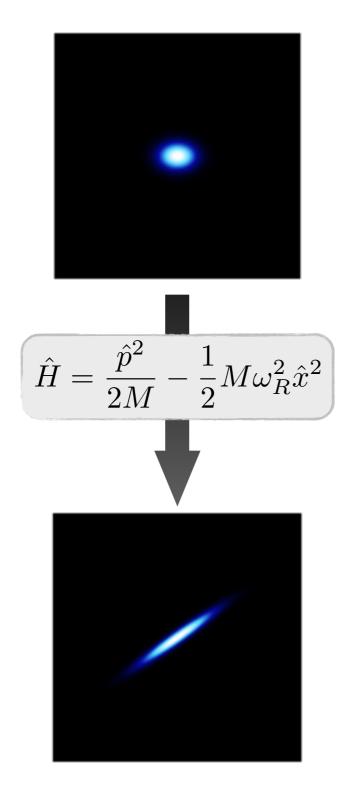
$$V_p(t) \approx e^{2\omega_R t} V_p(0)$$

Also coherence length

$$\xi(t) = P(t)\sqrt{8V_x(t)}$$

$$\xi(t\to\infty)=\sqrt{\frac{2\omega_r}{\Lambda}}$$

Evolution in a repulsive quadratic potential



Dynamics can be **calculated analytically** taking into account decoherence

Momentum (and position) distribution grows exponentially

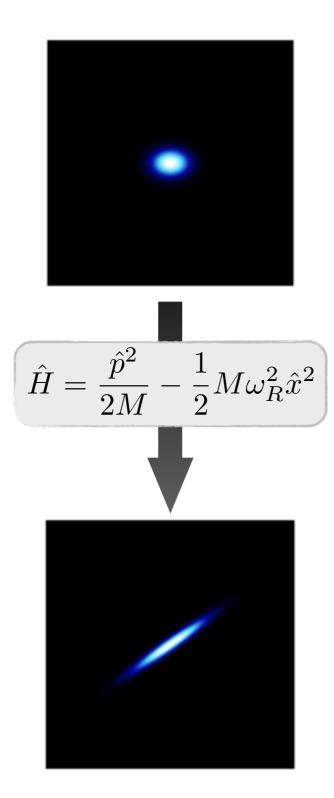
$$V_p(t) \approx e^{2\omega_R t} V_p(0)$$

Also coherence length

$$\xi(t) = P(t)\sqrt{8V_x(t)}$$

$$\xi(t \to \infty) = \sqrt{\frac{2\omega_r}{\Lambda}}$$

Evolution in a repulsive quadratic potential



Dynamics can be **calculated analytically** taking into account decoherence

Momentum (and position) distribution grows exponentially

$$V_p(t) \approx e^{2\omega_R t} V_p(0)$$

Also coherence length

$$\xi(t) = P(t)\sqrt{8V_x(t)}$$

$$\xi(t \to \infty) = \sqrt{\frac{2\omega_r}{\Lambda}}$$

2. Exponential speed-up

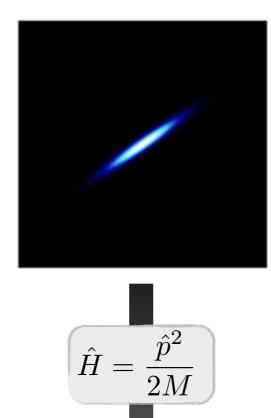
3. Free expansion

4. Double slit

5. Rotation

6. Exponential generation of fringes

Evolution with free dynamics



Dynamics can be calculated analytically taking into account decoherence

Coherence lengths grows linearly in time at a speed

$$\dot{\xi}_{
m free} = \sqrt{rac{8V_p}{M^2}}$$

Without momentum speedup the speed is

$$\dot{\xi}_{\rm free} \approx \frac{10^7}{\sqrt{M[\rm amu]}} \times 40 \ \rm nm/s$$

Evolution with free dynamics

$$\hat{H} = \frac{\hat{p}^2}{2M}$$

Dynamics can be **calculated analytically** taking into account decoherence

Coherence lengths grows linearly in time at a speed

$$\dot{\xi}_{\rm free} = \sqrt{\frac{8V_p}{M^2}}$$

Without momentum speedup the speed is

$$\dot{\xi}_{\rm free} \approx \frac{10^7}{\sqrt{M[\rm amu]}} \times 40 \ \rm nm/s$$

Evolution with free dynamics

$$\hat{H} = \frac{\hat{p}^2}{2M}$$

Dynamics can be **calculated analytically** taking into account decoherence

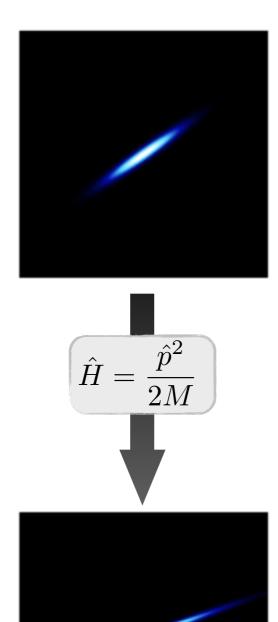
Coherence lengths grows linearly in time at a speed

$$\dot{\xi}_{\rm free} = \sqrt{\frac{8V_p}{M^2}}$$

Without momentum speedup the speed is

$$\dot{\xi}_{\rm free} \approx \frac{10^7}{\sqrt{M[\rm amu]}} \times 40 \ \rm nm/s$$

Evolution with free dynamics



Dynamics can be **calculated analytically** taking into account decoherence

Coherence lengths grows linearly in time at a speed

$$\dot{\xi}_{\text{free}} = \sqrt{\frac{8V_p}{M^2}}$$

Without momentum kick the speed is very slow

$$\dot{\xi}_{\rm free} \approx \frac{10^7}{\sqrt{M[\rm amu]}} \times 40 \ \rm nm/s$$

2. Exponential speed-up

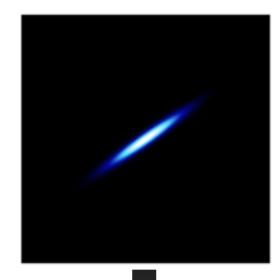
3. Free expansion

4. Double slit

5. Rotation

6. Exponential generation of fringes

X squared measurement



Interaction with a non-quadratic potential is analytically and numerically very challenging

Coupling to quantum system used to measure X^2.

$$\hat{\mathcal{M}}_d = e^{\mathrm{i}\phi_{\mathrm{ds}}\left(\frac{\hat{x}}{\sigma}\right)^2} \left\{ \exp\left[-\frac{\left(\hat{x} - \frac{d}{2}\right)^2}{4\sigma_d^2}\right] + \exp\left[-\frac{\left(\hat{x} + \frac{d}{2}\right)^2}{4\sigma_d^2}\right] \right\}$$

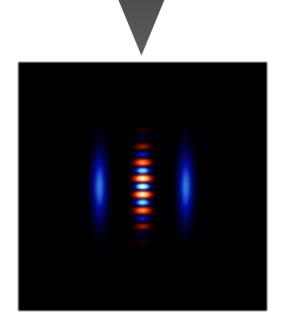
Advantage: double-slit can be smaller than particle size

X squared measurement

Interaction with a non-quadratic potential is analytically and numerically very challenging

Coupling to quantum system used to measure X^2

$$\hat{\mathcal{M}}_d = e^{\mathrm{i}\phi_{\mathrm{ds}}\left(\frac{\hat{x}}{\sigma}\right)^2} \left\{ \exp\left[-\frac{\left(\hat{x} - \frac{d}{2}\right)^2}{4\sigma_d^2}\right] + \exp\left[-\frac{\left(\hat{x} + \frac{d}{2}\right)^2}{4\sigma_d^2}\right] \right\}$$



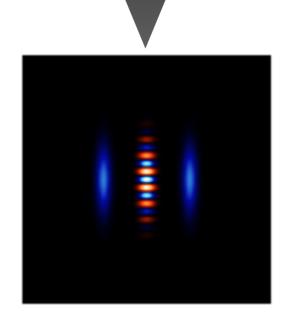
Advantage: double-slit can be smaller than particle size

X squared measurement

Interaction with a non-quadratic potential is analytically and numerically very challenging

Coupling to quantum system used to measure X²

$$\hat{\mathcal{M}}_d = e^{\mathrm{i}\phi_{\mathrm{ds}}\left(\frac{\hat{x}}{\sigma}\right)^2} \left\{ \exp\left[-\frac{\left(\hat{x} - \frac{d}{2}\right)^2}{4\sigma_d^2}\right] + \exp\left[-\frac{\left(\hat{x} + \frac{d}{2}\right)^2}{4\sigma_d^2}\right] \right\}$$



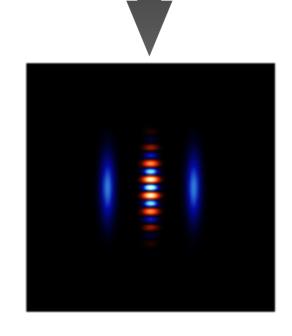
Advantage: double-slit can be smaller than particle size

X squared measurement

Interaction with a non-quadratic potential is analytically and numerically very challenging

Coupling to quantum system used to measure X²

$$\hat{\mathcal{M}}_d = e^{\mathrm{i}\phi_{\mathrm{ds}}\left(\frac{\hat{x}}{\sigma}\right)^2} \left\{ \exp\left[-\frac{\left(\hat{x} - \frac{d}{2}\right)^2}{4\sigma_d^2}\right] + \exp\left[-\frac{\left(\hat{x} + \frac{d}{2}\right)^2}{4\sigma_d^2}\right] \right\}$$



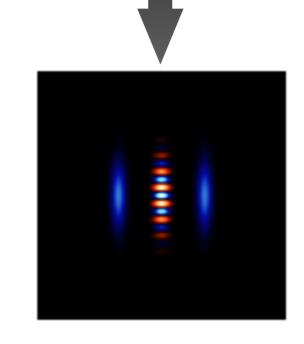
Advantage: double-slit can be smaller than particle size

X squared measurement

Interaction with a non-quadratic potential is analytically and numerically very challenging

Coupling to quantum system used to measure X²

$$\hat{\mathcal{M}}_d = e^{\mathrm{i}\phi_{\mathrm{ds}}\left(\frac{\hat{x}}{\sigma}\right)^2} \left\{ \exp\left[-\frac{\left(\hat{x} - \frac{d}{2}\right)^2}{4\sigma_d^2}\right] + \exp\left[-\frac{\left(\hat{x} + \frac{d}{2}\right)^2}{4\sigma_d^2}\right] \right\}$$



2. Exponential speed-up

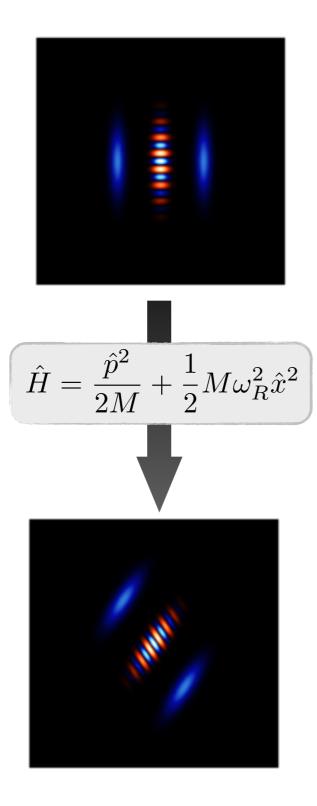
3. Free expansion

4. Double slit

5. Rotation

6. Exponential generation of fringes

pi/4 rotation



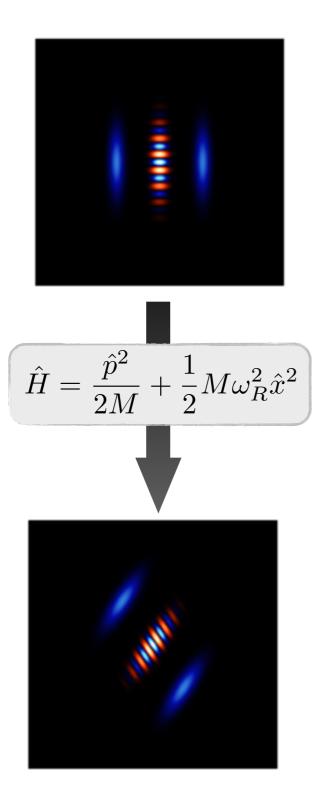
We have to **prepare state** for exponential timeof-flight

We make a pi/4 rotation

$$\omega_R t = \frac{\pi}{4}$$

After double slit <mark>state is more robust</mark> against decoherence

pi/4 rotation



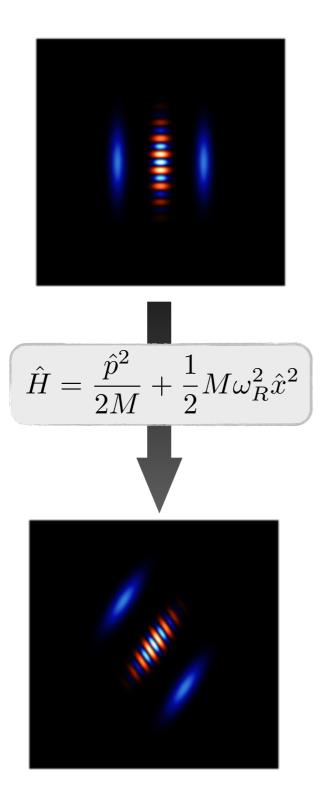
We have to prepare state for exponential timeof-flight

We make a pi/4 rotation

 $\omega_R t = \frac{\pi}{4}$

After double slit <mark>state is more robust</mark> against decoherence

pi/4 rotation



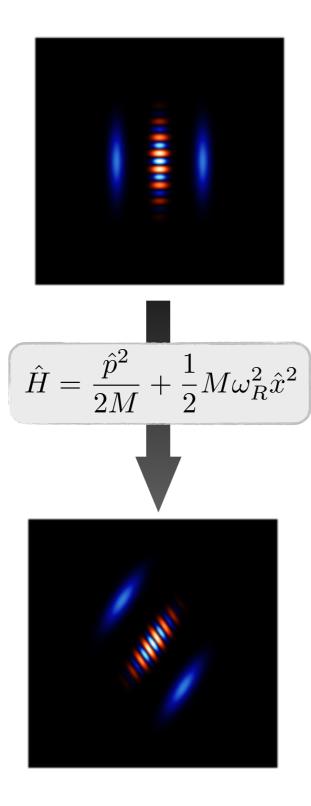
We have to prepare state for exponential timeof-flight

We make a pi/4 rotation

$$\omega_R t = \frac{\pi}{4}$$

After double slit state is more robust against decoherence

pi/4 rotation



We have to prepare state for exponential timeof-flight

We make a pi/4 rotation

$$\omega_R t = \frac{\pi}{4}$$

After double slit state is more robust against decoherence

2. Exponential speed-up

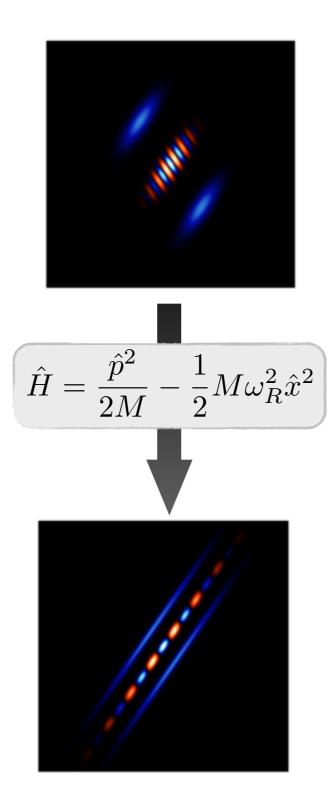
3. Free expansion

4. Double slit

5. Rotation

6. Exponential generation of fringes

Evolution in a repulsive quadratic potential



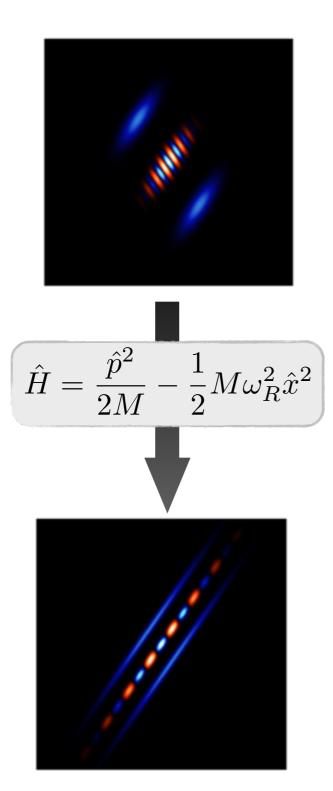
In free dynamics fringes generate very slowly

$$x_f = \frac{2\pi\hbar t}{Md}$$

In repulsive dynamics fringes generate exponentially faster

$$x_f(t) \approx e^{\omega_r t} x_f(0)$$

Evolution in a repulsive quadratic potential



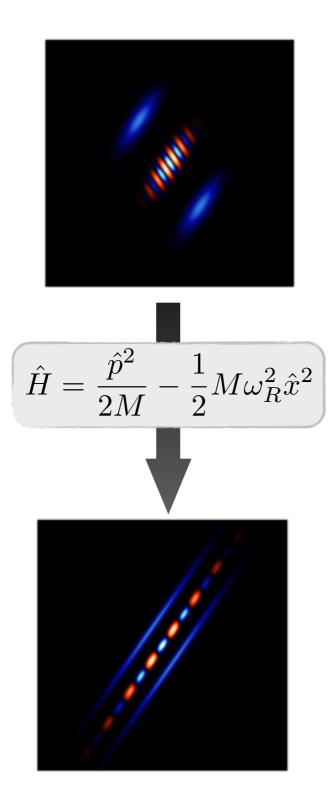
In free dynamics fringes generate very slowly

$$x_f = \frac{2\pi\hbar t}{Md}$$

In repulsive dynamics fringes generate exponentially faster

$$x_f(t) \approx e^{\omega_r t} x_f(0)$$

Evolution in a repulsive quadratic potential



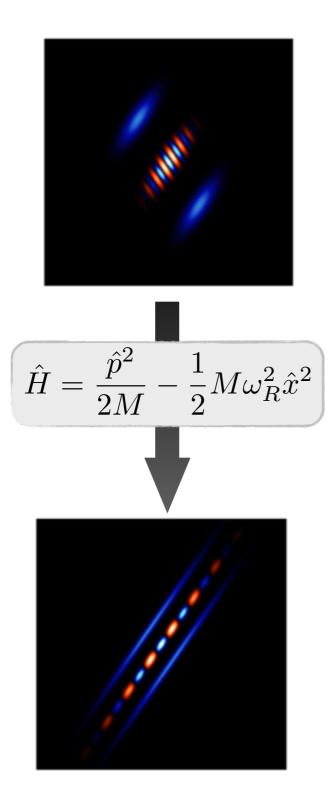
In free dynamics fringes generate very slowly

$$x_f = \frac{2\pi\hbar t}{Md}$$

In repulsive dynamics fringes generate exponentially faster

$$x_f(t) \approx e^{\omega_r t} x_f(0)$$

Evolution in a repulsive quadratic potential



In free dynamics fringes generate very slowly

$$x_f = \frac{2\pi\hbar t}{Md}$$

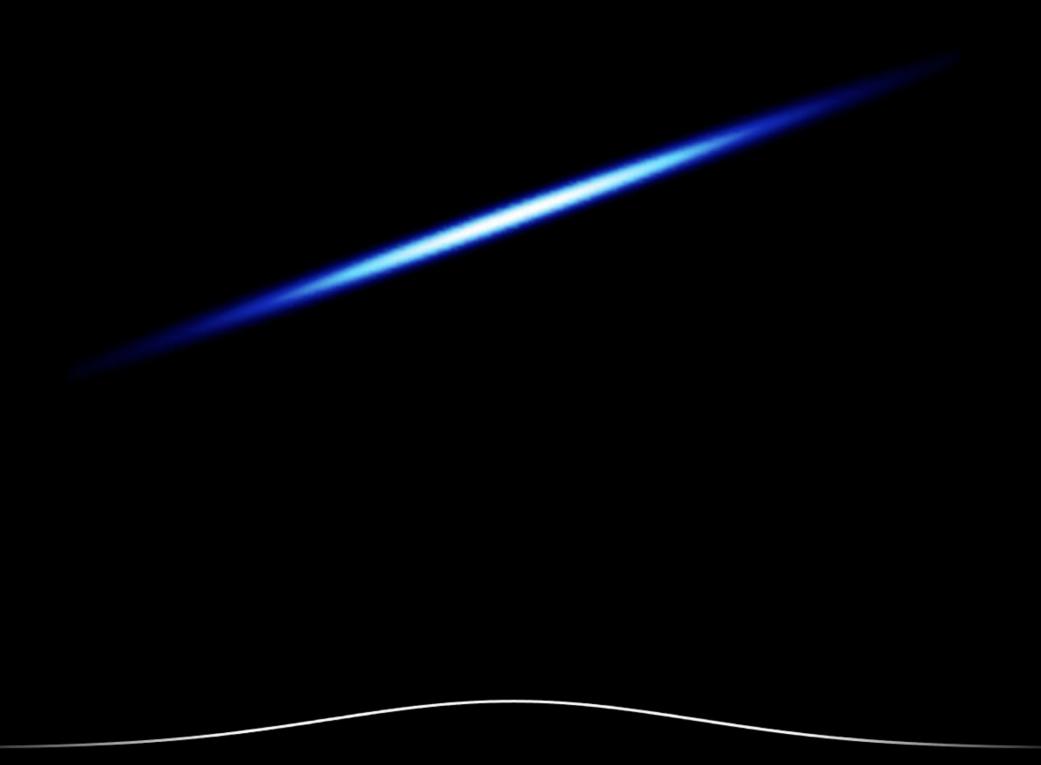
In repulsive dynamics fringes generate exponentially faster

$$x_f(t) \approx e^{\omega_r t} x_f(0)$$

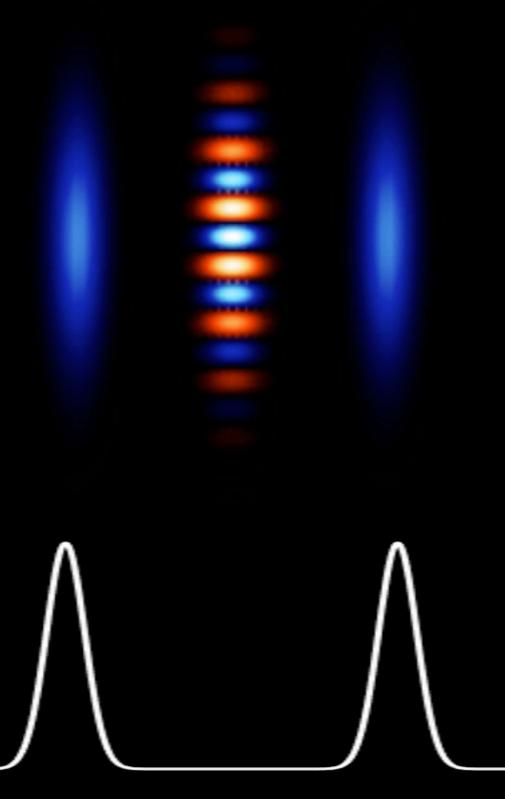
Exponential speed-up: repulsive potential dynamics

Free expansion: free dynamics

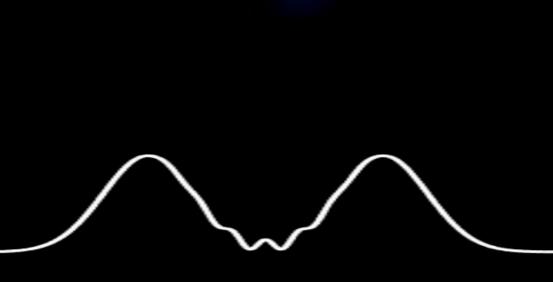
Double-slit: X-squared measurement



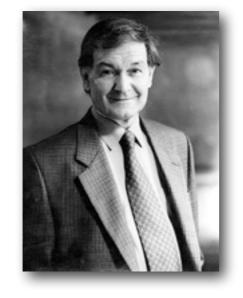
Rotation: harmonic potential dynamics

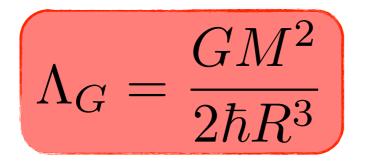


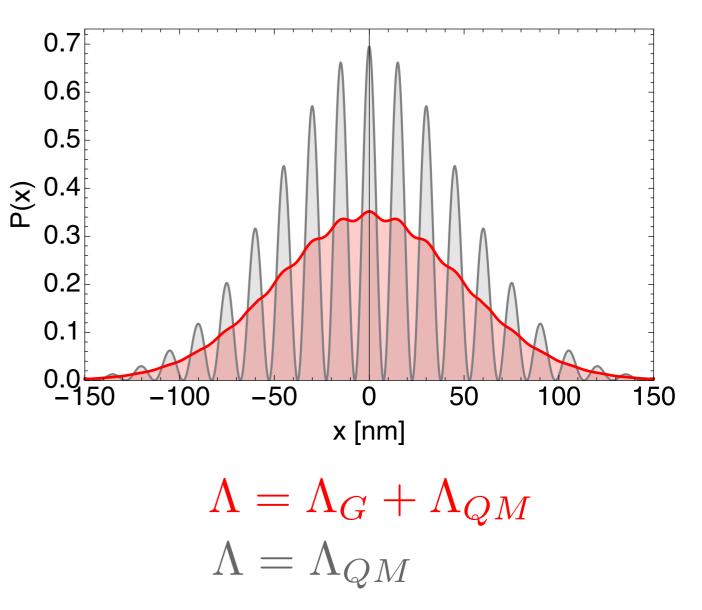
Exponential generation of fringes: repulsive potential



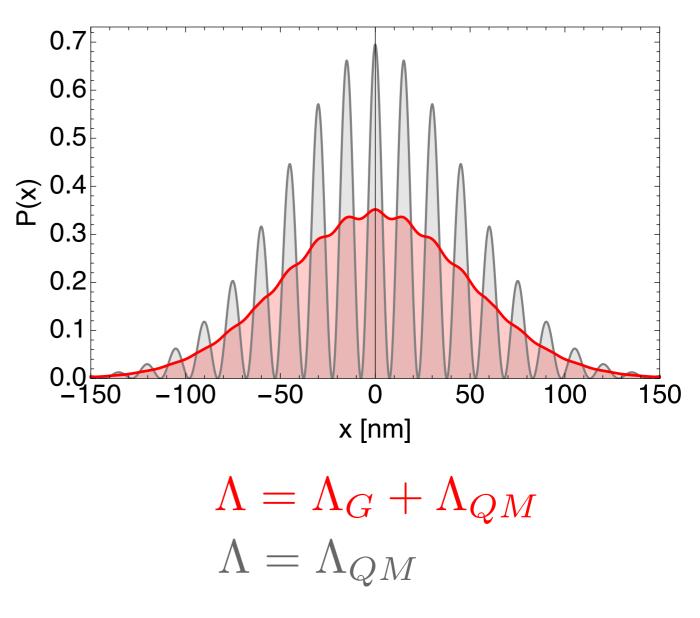
Results



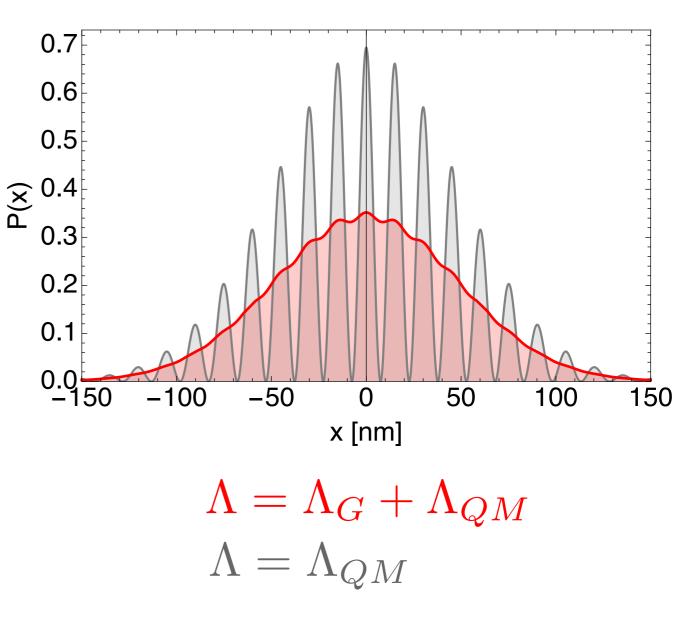




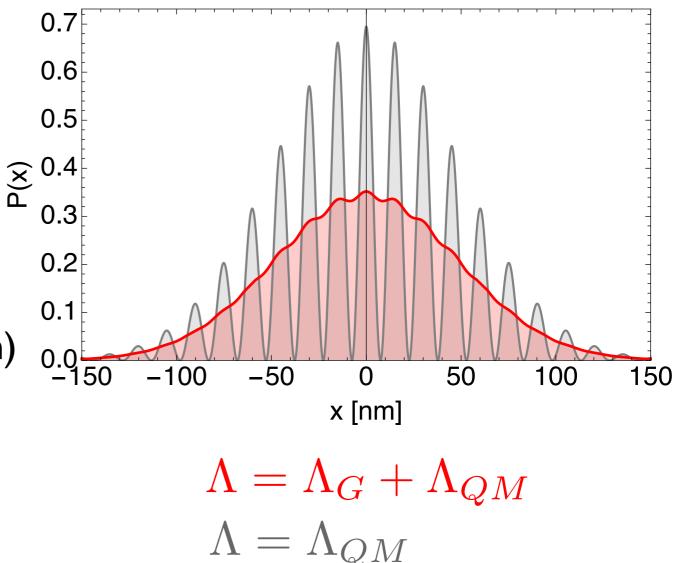
Sphere (Nb): 4 micrometers



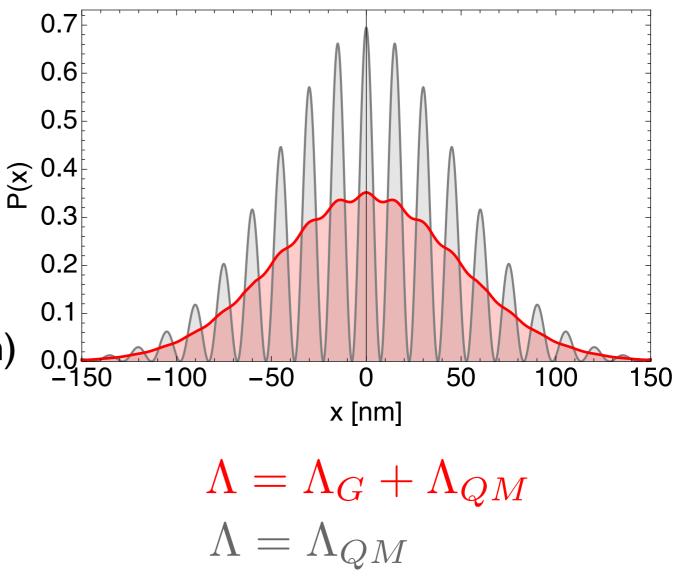
- Sphere (Nb): 4 micrometers
- Total time: 537 ms
 - Exponential speed-up: 4.8 ms
 - Free expansion: 500 ms
 - Rotation: I.3 ms
 - Exp generation of fringes: 31.8 ms



- Sphere (Nb): 4 micrometers
- Total time: 537 ms
 - Exponential speed-up: 4.8 ms
 - Free expansion: 500 ms
 - Rotation: I.3 ms
 - Exp generation of fringes: 31.8 ms
- Slit separation: 84 nm (width 4 nm)



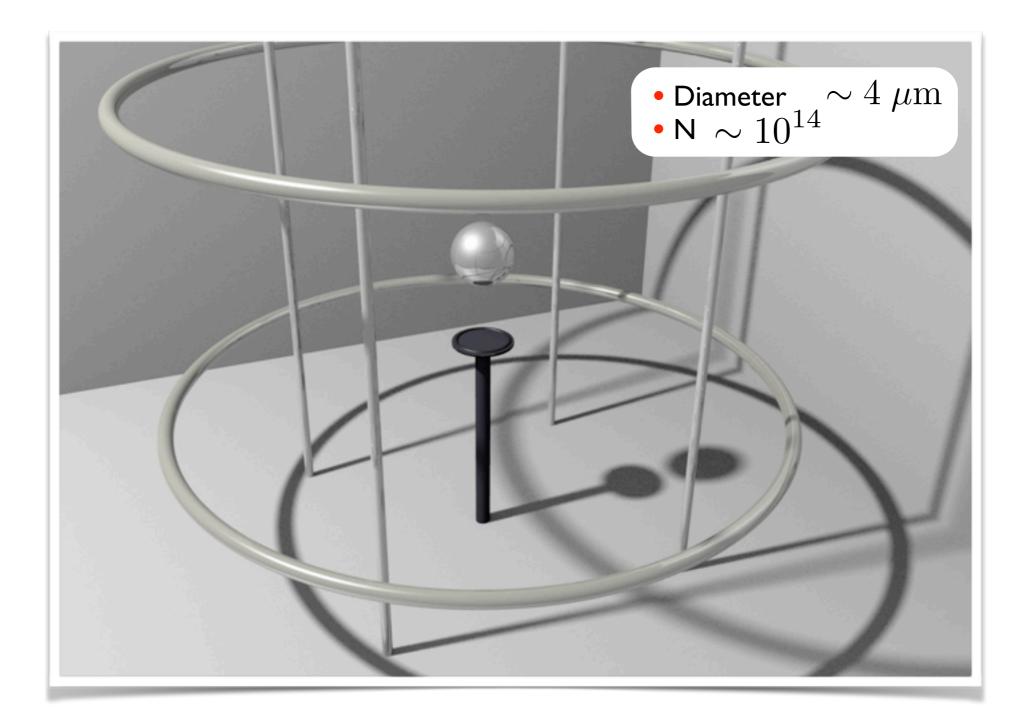
- Sphere (Nb): 4 micrometers
- Total time: 537 ms
 - Exponential speed-up: 4.8 ms
 - Free expansion: 500 ms
 - Rotation: I.3 ms
 - Exp generation of fringes: 31.8 ms
- Slit separation: 84 nm (width 4 nm)
- Temperature: < IK</p>
- Quadratic potentials: 100 Hz



Experimental Proposal

Levitating superconducting microspheres

• Quantum magnetomechanics: magnetic coupling to a quantum circuit

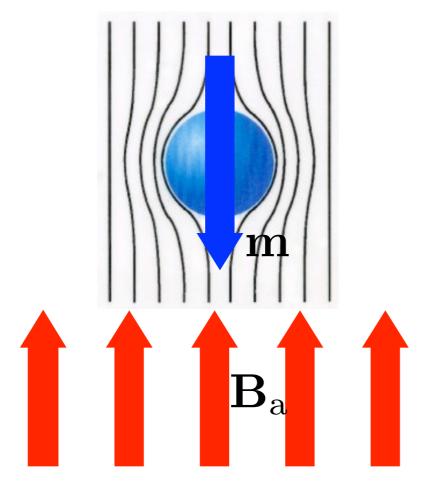


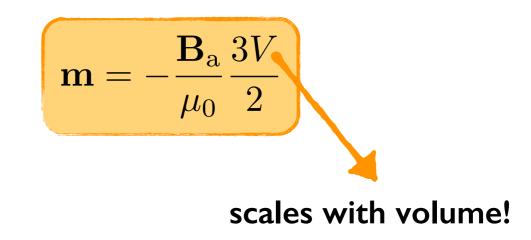
GRI, et al. PRL 109 147205 (2012).

Levitating superconducting microspheres

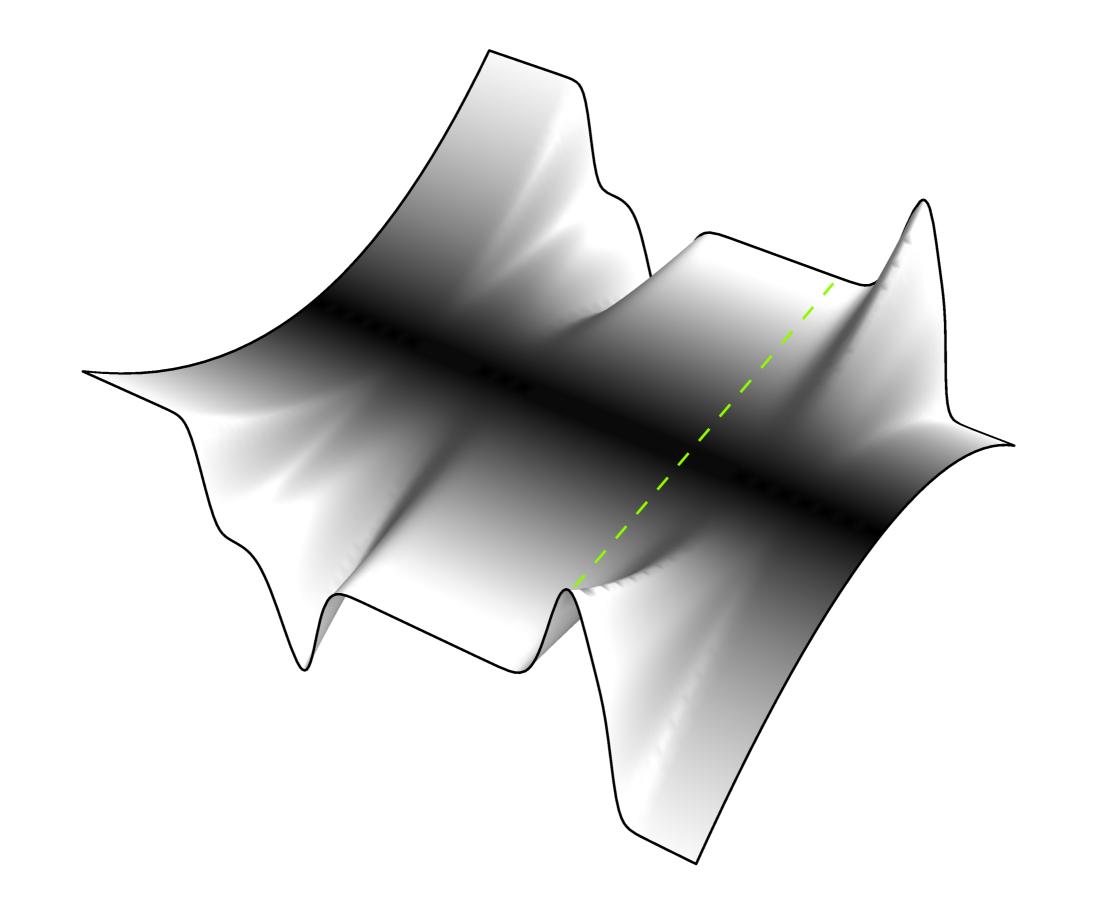
• Quantum magnetomechanics: magnetic coupling to a quantum circuit

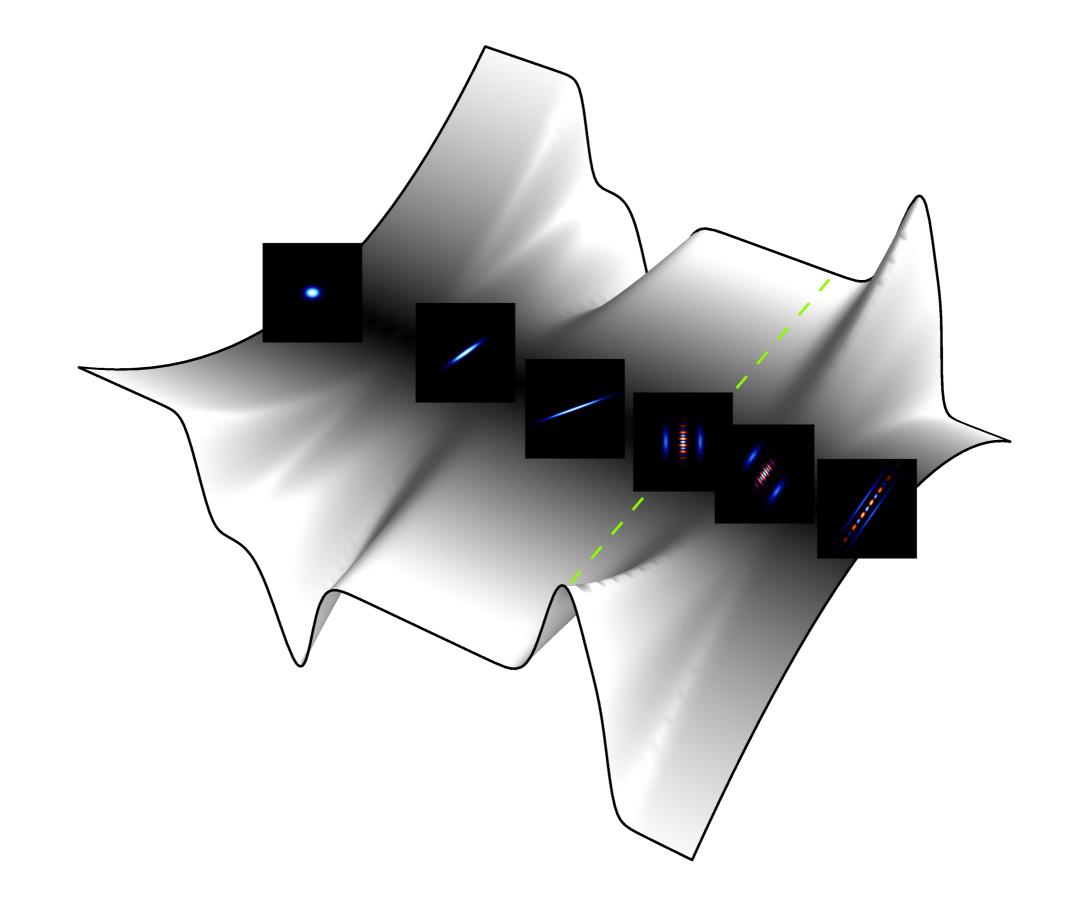
Sphere behaves as a magnetic dipole

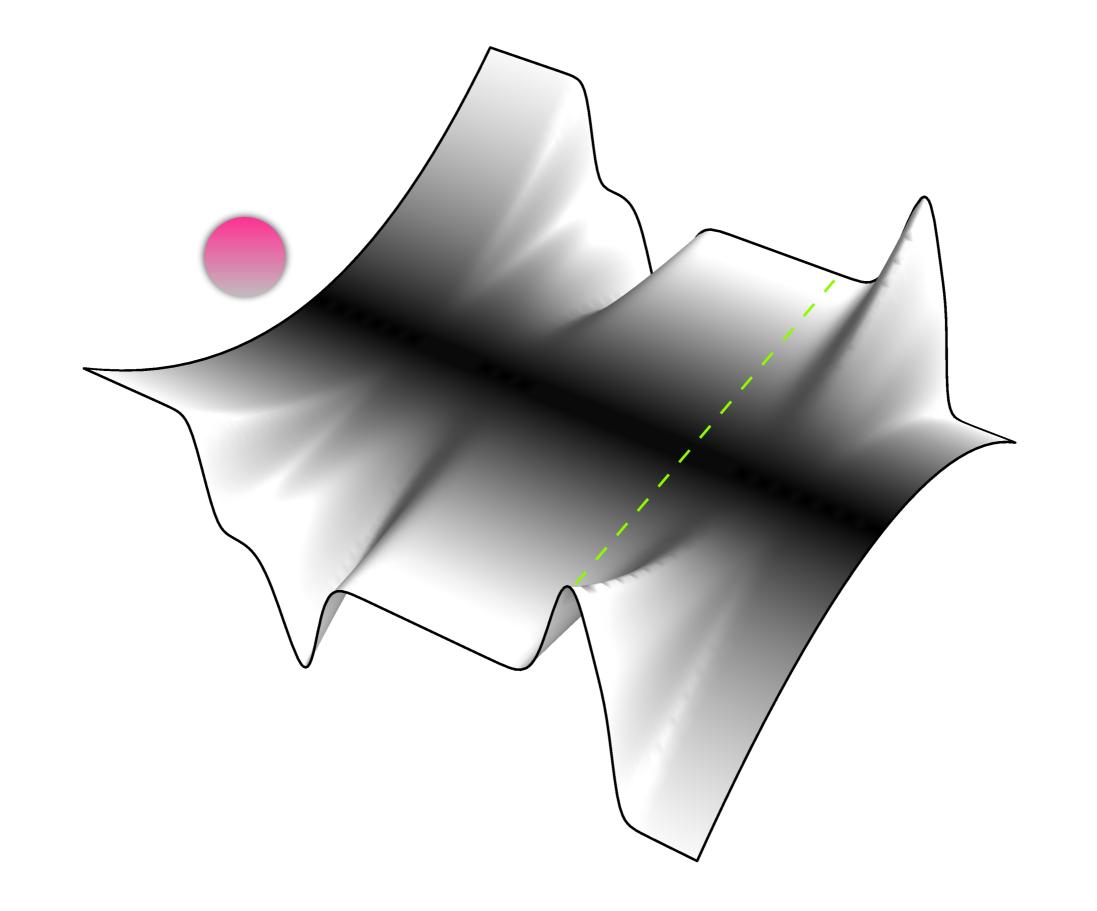




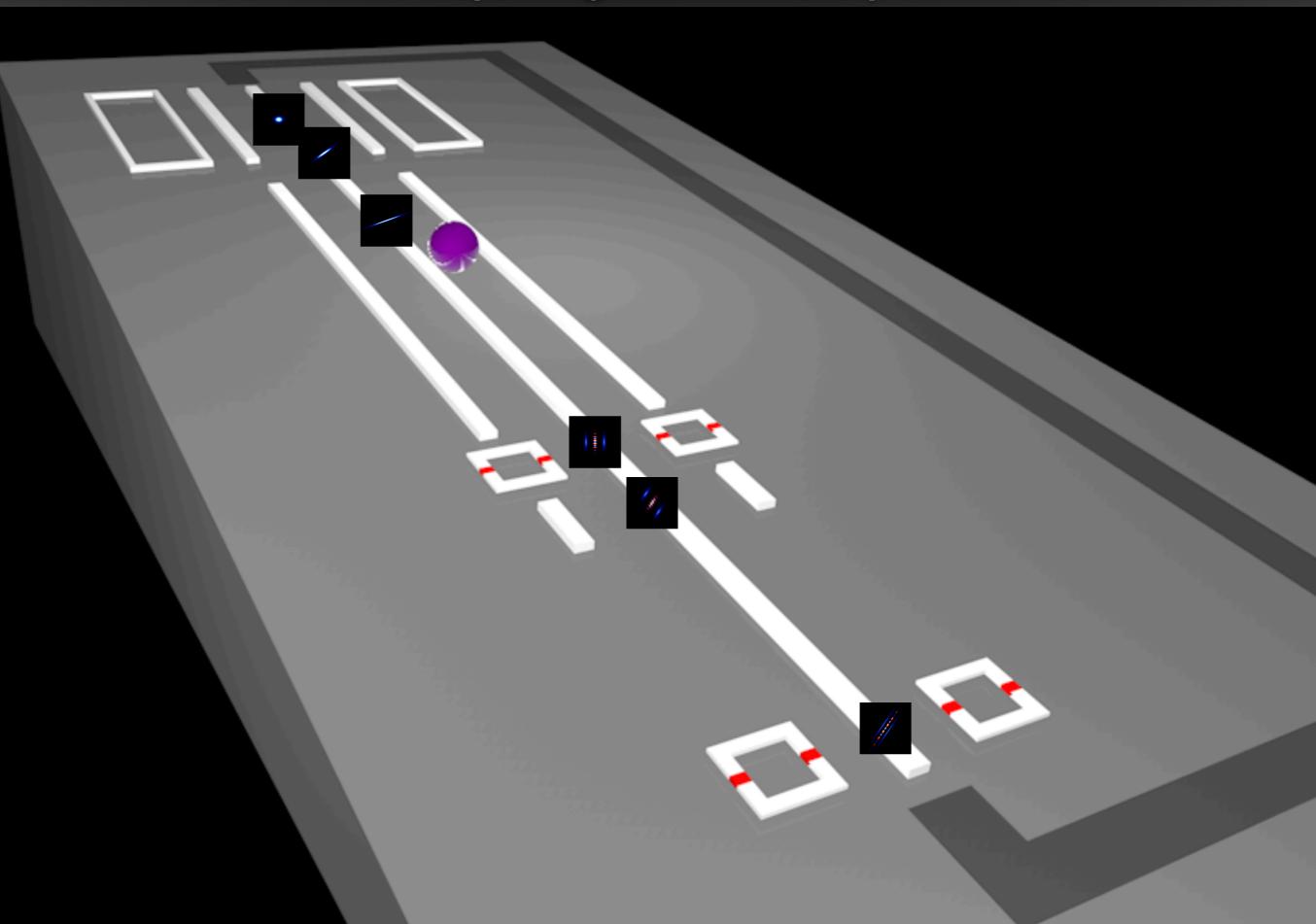
On-chip all-magnetic "skatepark" for a superconducting microsphere







Persistent currents, Quantum Circuits and SQUIDS



Conclusions

• Gravitationally-induced decoherence? Gravitational regime? $\tau = h \frac{2R}{GM^2}$

• Magnetically levitated superconducting microspheres can falsify it

- Mass of 10^14 amu
- Cryogenic temperatures
- Magnetic levitation
- Static potentials
- On-chip all-magnetic "skatepark"

Challenging but put it into context and recall side applications (measuring capital G?)

• This experiment would falsify (by far) all other known collapse models

• Gravitationally-induced decoherence? Gravitational regime? au =

• Magnetically levitated superconducting microspheres can falsify it

- Mass of 10^14 amu
- Cryogenic temperatures
- Magnetic levitation
- Static potentials
- On-chip all-magnetic "skatepark"

Challenging but put it into context and recall side applications (measuring capital G?)

This experiment would falsify (by far) all other known collapse models

• Gravitationally-induced decoherence? Gravitational regime? $\tau = h \frac{2R}{GM^2}$

• Magnetically levitated superconducting microspheres can falsify it

- Mass of 10^14 amu
- Cryogenic temperatures
- Magnetic levitation
- Static potentials
- On-chip all-magnetic "skatepark"

 Challenging but put it into context and recall side applications (measuring capital G?)

This experiment would falsify (by far) all other known collapse models

• Gravitationally-induced decoherence? Gravitational regime? $\tau = h \frac{2R}{GM^2}$

• Magnetically levitated superconducting microspheres can falsify it

- Mass of 10^14 amu
- Cryogenic temperatures
- Magnetic levitation
- Static potentials
- On-chip all-magnetic "skatepark"

Challenging but put it into context and recall side applications (measuring capital G?)

This experiment would falsify (by far) all other known collapse models

Thank you very much for your attention

