

Multiferroics for spintronics

Manuel Bibes²

H. Béa¹, M. Gajek¹, X.-H. Zhu¹, S. Fusil¹, G. Herranz¹, M. Basletic¹,
B. Warot-Fonrose³, S. Petit⁴, P. Bencok⁶, K. Bouzehouane¹,
C. Deranlot¹, E. Jacquet¹, A. Barthélémy¹, J. Fontcuberta⁵ and A. Fert¹

¹ Unité Mixte de Physique CNRS / Thales, Orsay (FRANCE)

² Institut d'Electronique Fondamentale, CNRS, Université Paris-Sud, Orsay (FRANCE)

³ CEMES, CNRS, Toulouse (FRANCE)

⁴ Laboratoire Léon Brillouin, CEA, Saclay (FRANCE)

⁵ ICMAB, CSIC, Campus de la UAB, Bellaterra (SPAIN)

⁶ European Synchrotron Radiation Facility, Grenoble (FRANCE)

Ferromagnetic materials

Partially filled d/f shells

Magnetic Data Storage Spintronics

Switchable parameter : M External stimulus : H

Ferroics and multiferroics

Switchable parameter : P External stimulus : E

Multiferroics for spintronics

Ferroics and multiferroics

Insulating oxides : a classification

Derived from Eerenstein, Mathur and Scott, Nature 442, 759 (2006)

Multiferroics - examples of magnetoelectric coupling

(Gd,Dy,Tb)MnO₃ : spiral magnets

Spiral ordering breaks inversion symmetry

→ (improper) ferroelectricity appears (but no finite magnetization)

Apply a magnetic field : change magnetic state→ switch polarization on/off

CoCr₂O₄ : conical magnet

Conical ordering breaks inversion symmetry

 → (improper) ferroelectricity appears (with a finite magnetization)

Flip polarization direction by a magnetic field

Yamasaki et al, PRL 96, 207204 (2006)

Kimura et al, PRB 71, 224425 (2005)

Insulating oxides : a classification

Derived from Eerenstein, Mathur and Scott, Nature 442, 759 (2006)

BiFeO₃

A room-temperature antiferromagnetic ferroelectric

Rhombohedral Perovskite (R3c) a=3.96Å, α=89.4°

Neaton et al. Phys. Rev. B, 71, 014113 (2005)

Ferroelectric

 T_{C} =1100K P_{S} =6µC/cm² (1970 paper, bad crystal) J. R. Teague et al., Solid State Commun., 8, 1073 (1970)

P_s=60µC/cm² (2007 paper, good crystal)

D. Lebeugle, M. Viret et al, PRB in press Condmat/0706.0404

Ederer et Spaldin, Phys. Rev. B, 71, 060401 (R) (2005)

$\begin{array}{l} \hline \textbf{G-type Antiferromagnetic} \\ T_N = 640 K \\ Canted spins \rightarrow weak FM \\ \textbf{M}_S = 0.01 \mu_B / f.u. \\ Incommensurate cycloidal modulation \end{array}$

P. Fisher et al., J. Phys. C,13, 1931 (1980) Popov et al. in Magnetoelectric Interaction Phenomena in Crystals (NATO Science Series, 2004) p. 277

Wang et al., Science, 299, 1719 (2003) : BFO//STO (001)

 t_{BFO} =70nm : M_S=150emu/cm³ (~1µ_B/fu) t_{BFO} =400nm : M_s=5emu/cm³ (0.03µ_B/f.u.)

Claim of enhanced polarization and magnetization compared to bulk

Growth of BiFeO₃ thin films

Pulsed laser deposition on SrTiO₃ (001) Target : Bi_{1.15}FeO₃

Growth conditions : T=580°C, P_{O2} =6.10⁻³mbar

Bi much more volatile than Fe :

 low P or high T (Bi evaporates more than Fe)

\Rightarrow Fe oxides

high P or low T (excess Bi)
 ⇒Bi oxides

Growth of BiFeO₃ thin films

Pure BiFeO₃ obtained in a very *narrow region* around T_{dep} =580°C and P_{O2}=6.10⁻³mbar

Appl. Phys. Lett.,87, 072508 (2005)

Growth of BiFeO₃ thin films – Parasitic Fe-rich phases

Growth of BiFeO₃ thin films – Parasitic Fe-rich phases

BFO + γ -**Fe**₂**O**₃ : up to M_s~150emu/cm³ γ -Fe₂O₃ ferrimagnetic (M_s=430emu/cm³) **Pure BFO** : M_s~2emu/cm³

Phys. Rev. B, 74, 020101R (2006)

Similar conclusions :

Eerenstein et al. Science, 307 1203a (2005) Wang et al., Science, 307, 1203b (2005) Magnetic moment comes from γ -Fe₂O₃

BFO weak bulk-like ferromagnetic moment

Neutron diffraction

In R3c bulk BFO : $[003]_{H}^{*}$ single peak \rightarrow *G-type* antiferromagnet $[101]_{H}^{*}$ peak with satellites \rightarrow *cycloidal modulation* \Rightarrow *Averaging to zero* of the linear ME effect

In pseudo-cubic notation : $[003]_{H}^{*} \rightarrow [\frac{1}{2} \frac{1}{2} \frac{1}{2}]_{C}^{*}$ $[101]_{H}^{*} \rightarrow [\frac{-1}{2} \frac{-1}{2} \frac{1}{2}]_{C}^{*}$

from Sosnowska et al., J. Phys. C, 15, 4835 (1982)

BFO(240nm)//STO (001)

 G-type antiferromagnetic order as in bulk BFO
 No cycloidal modulation contrary to bulk BFO
 Linear magnetoelectric effect allowed
 Phil. Mag. Lett. 87, 165 (2007)

(Special issue on multiferroic thin films Eds. N.D. Mathur and MB)

Brought to you by PITP (www.pitp.phas.ubc.ca)

6

(001) BiFeO₃ films – Ferroelectric properties

Piezoresponse force microscopy

➢ BFO films are ferroelectric with a large polarization (~70 µC/cm²) and piezoelectric with a d₃₃ coefficient of ~20 pm/V
 ➢ Ferroelectricity is preserved down to 2 nm.

Jpn. J. of Appl. Phys., 45, L187 (2006)

Examples of devices

Principle : voltage-controlled exchange bias

Magnetic tunnel junction with *multiferroic barrier* (FE and AFM)

Electric field control of the junction resistance state

Prerequisites :

- 1. observe robust exchange bias at room-temperature
- 2. spin-dependent tunneling through multiferroic barrier
- 3. switch exchange bias direction by E-field (magnetoelectric coupling)

Spin-valve on top of a *multiferroic film* (FE and AFM)

Exchange bias with BiFeO₃ films

With NiFe : J. Dho et al., Adv. Mat., 18, 1445 (2006)

Exchange bias with BiFeO₃ films

GMR measured on top of BFO at RT *Exchange bias* has *shifted* the GMR curve

Tunnel junctions with BiFeO₃ barriers

Positive TMR up to ~30%

- rather large value for an AFM barrier
- positive spin polarization at Co/BFO interface

TMR vanishes around **200K** : Local deoxygenation of LSMO

Tunnel junctions with BiFeO₃ barriers

Tunnel junctions with BiFeO₃ barriers

- > TMR is positive and decreases symmetrically with bias voltage
- > Behaviour is completely different from the case of LSMO/STO/Co and LSMO/LAO/Co junctions
- > Possible reasons : oxygen vacancies at LSMO/BFO interface, symmetry filtering, etc

Magnetoelectric switching

Domain structure and magnetoelectric switching

P along <111> directions : 8 possible variants When an electric field is applied, P can be switched to different directions Only some of them yield a rotation of the AF plane

Important to know and control the ferroelectric domain structure

(001) BiFeO₃ films – Ferroelectric properties

Domain structure

2µm

8 variants are present

only 4 variants are present

Das et al., APL, 88, 242904 (2006)

Domain structure can be controlled by playing with the substrate miscut angle and/or orientation.

(001) films (111) films

8 variants are present

only 4 variants are present

Ideally, one type of domain orientation would be required, with the appropriate polarization switching mechanism (109°?)

Multiferroics for spintronics

(La,Bi)MnO₃

A ferromagnetic ferroelectric

Ferromagnetic tunnel barriers: the spin-filter effect

Since the tunnel transmission depends exponentially on the barrier height, a highly-spin polarized current is generated by the barrier.

$$J_{\uparrow\downarrow} \propto e^{-(arphi_0\pmrac{\Delta arphi_{exch}}{2})^{1/2}}$$

Expected TMR :

 $P_{\rm B} = \frac{J_{\uparrow} - J_{\downarrow}}{J_{\uparrow} + J_{\downarrow}}$

Ferromagnetic tunnel barriers

Spin-filters

Au/EuS/Al spin-filter Superconducting Al is used the spin-analyzer

 Early spin-filtering experiments focused on Eu chalcogenides
 Large spin-filtering efficiency (>90%) have been measured
 Limited by low Tc of EuX compounds

Au/EuS/Gd spin-filter Ferromagnetic Gd is used as the spin-analyzer

➔ Ferromagnetic oxides

BiMnO₃

Crystal structure

Magnetic ordering

Unusual orbital ordering resulting from

Bi_{6s}-O_{2p} interaction Moreira dos Santos et al, PRB 66 064425 (2002)

→ Ferromagnetic order

 \odot T_c=105K, M_s=3.6 μ _B

Shishidou et al, JPCM 2005

- Synthesis at high pressure
 Distorted perovskite structure
- (Monoclinic symmetry)
- Polar structure
- → Ferroelectric (?) Son et al, APL 84, 4971 (2004)
- « Magnetodielectric effect » observed in bulk samples

Kimura et al, PRB 67, 180401 (2003)

• Partial substitution of Bi by La : lower synthesis pressure, stabilization of perovskite phase Troyanchuk et al, Low. Temp. Phys. 28, 569 (2002).

 \rightarrow Growth of BiMnO₃ and La_{0.1}Bi_{0.9}MnO₃ thin films

Multiferroics for spintronics

La_{1-x}Bi_xMnO₃ thin films

Growth by PLD

KrF laser at 2 Hz
 Fluence: 2 J/cm².

O₂ Pressure: 10⁻¹ mbar.
 O_{dep} from 575°C to 700°C

Single phase films only in a very narrow window La-substitution helps to stabilize the perovskite phase

See for details : PRB 75, 174417 (2007) JAP 97 103909 (2005)

- BMO films have a reduced moment compared to bulk
- \odot T_c close to bulk (105K)
- \odot Substitution by La further reduces max. moment and slightly decreases T_c (as in bulk)
- Low magnetic moment likely due to Bi vacancies
- Very thin films are also ferromagnetic

Magnetic properties

La_{0.1}Bi_{0.9}MnO₃ thin films

Ferroelectric properties

LBMO films as thin as 2 nm are still ferroelectric at room temperature

Nature Materials 6, 196 (2007)

BiMnO₃-based junctions

Tunnel magnetoresistance

Junctions defined by nano-indentation lithography Nanoletters 3, 1599 (2003)

- Large TMR at low temperature
- → spin-filtering by the BMO layer
- Polarization induced by BMO : 22%
- Spin-filter effect vanishes at T < T_c

LBMO-based junctions

Tunnel magnetoresistance

JAP 99, 08E504 (2006)

Polarization induced by LBMO : 35%
TMR decreases rapidly with bias Magnons ? Defects ?

LBMO-based junctions

Tunnel electroresistance

A ~20% electroresistance effect is observed
The shape of the G(V) curve suggests direct tunneling

What is the origin of the TER?

Nature Materials 6, 196 (2007)

Tunneling through a ferroelectric tunnel barrier

Several mechanisms leading to current modulation upon polarization reversal

Tunneling through a ferroelectric tunnel barrier

Several mechanisms leading to current modulation upon polarization reversal

Tunneling through a ferroelectric tunnel barrier

Tunneling through a ferroelectric tunnel barrier

Tunneling through a ferroelectric tunnel barrier

Hysteretic I (V) curves are expected An electroresistance effect should occur upon polarization reversal

See details in Zhuravlev et al, PRL 94, 246802 (2005)

Combination of tunnel electroresistance and magnetoresistance

Demonstration of a 4-resistance state system with a multiferroic barrier
 Effect was observed on several junctions and is reproducible

Nature Materials 6, 196 (2007)

Manuel Bibes

LBMO-based junctions

Temperature dependence of TER and TMR consistent with an origin related to to ferroelectricity and ferromagnetism, respectively

BiFeO₃

Single phase films can be grown in a narrow range of P and T They are G-type antiferromagnetic and ferroelectric at RT LSMO/BFO/Co junctions show a large positive TMR BFO induced exchange bias on CoFeB

(La,Bi)MnO₃ based junctions

La_{0.1}Bi_{0.9}MnO₃ films are ferromagnetic and ferroelectric LBMO junctions show TMR and electroresistance (4 resistance states) We suggest electroresistance effect due to ferroelectric switching in the barrier Control of the magnetic state by electric field ?

Perspectives :

Magnetization manipulation with an electric field at RT New materials, ideally ferromagnetic multiferroics with high T_cs , M_s and P are required

See review on Oxide Spintronics by M. Bibes and A. Barthélémy, IEEE Trans. Electron Devices 54, 1003 (2007)

Financial support by EU Streps Nanotemplates and MaCoMuFi, EU Marie-Curie program, ESF Thiox program, French ANR program, Spanish Ministry for Research and EGIDE

