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Bose-Einstein-Condensation

classical gas quantum gas BEC

Thermodynamics of BEC:
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classical gas quantum gas BEC

Thermodynamics of BEC:
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Magnons in ferromagnetic films

YIG (yttrium-iron-garnet)
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In equilibrium:
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(Thermo)dynamic of magnons
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(Thermo)dynamic of magnons

In equilibr-ium; Magnons are quasi-particles with variable N,
therefore the chemical potential is zero u = 0.

Due to field/dipole-dipole-interection the
spectrum has a gap, i.e. E_,, > 0.

No BEC possible.

In quasi-equilibrium: Two important time scales.
For YIG:
S e 7. = 10-50ns
7, r, ®0.3-0.5us
-

SS

For the time scale from 30 ns to 0.3 us spins are
an isolated, thermalized system




Mechanisms of magnon thermalization

Two-magnon sca’r’rer'ing Impurity-scattering, linear effect
o = ®, (independent of the magnon dens

kl -+ k2 Elastic, k-thermalization

T Four-magnon scattering: Nonlinear effect
(increase with increasing density)

W, + W, = w; + W,
ki +k, =k +k,

Inelastic, m,k-thermalization

Two- and four-magnon scattering keep the U7 0
number of magnons CONSTANTI!




Strategy to reach BEC of magnons

1. Inject cold magnons (parametric pumping)
a) step-like or b) pulse-like pumping
2. Wait and see what happens with magnon distribution

Photon

to interferometer

3
3 A J
] 3
2 1 4
-10° 10 -10* 10?7 10*  10°
Wekiatsr aiil Photon Magnon
jWWWW Brillouin light scattering
\ Microstrip

Resonator

Magnons created by microwaves and detected by

light scattering with time (and space) resolution
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xperimental setup for time-resolved measuremen

Ar -ion laser

 Fabry-Perot
interferometer
Resonator

1 B

generator

MW
generator

Pumping pulse




Pumped magnons
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BLS spectroscopy
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BLS spectroscopy
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Integrated BLS spectrum

Integration over wavevectors
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Thermal magnons

Thermally excited
magnons are measured t
determine DOS

Equilibrium: 4 =0

| kT
n= =
ho ho
exp| — |—1
kT

BLS-intensity ~ nxDOS



Thermal magnons

Population function, n
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iMagnon population (a.u.)
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Pumped magnons (step-like pumping)

7=200 ns
(h v -,u)/kB=2.5 mK

0,8

0,6

Time development of
magnon distribution

P=59W

Known DOS: n(a)) fit
with U

7=300 ns
(hv_ -1)/k =0




Time dependence of the chemical potential

Vv . _ ~ . . .
“““““ =l ° Using pumping one can
lp=59w | reach the critical
_ :
£ density of magnons
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J. Appl. Phys.
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Pumped magnons
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Magnon distribution above the critical density

2,8 | . |

n(t)-n_ _
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Frequency, GHz Frequency, GHz

The addition to the critical density is of & - type
(width is 2mK, i.e. 10-°kT).

A condensate is created
Nature '06




BEC in a stationary case

Stationary state due to spin-lattice relaxation Magnon

thermal magnons distributio
p=0 at t=800 n

N

Variable
power

-
L

BLS intensity, a.u.
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New J. Phys. 07.




decisive ques
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decisive ques
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1T hermalization: BeC of atoms
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Magnon thermalization (step-like pumping)

Magnon population

20 25 30 35 40
Frequency (GHz)

Thermalization
happens ,wave-like"
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Thermalization time
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Thermalization time strongly depends on
the pumping power (i.e., magnon density)
At the densities of BEC it is below 50 ns




Pumped magnons (pulse-like pumping)

Magnons are pumped just for 30 ns.
Higher peak powers as before.
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Thermalization at different densities

P=25W P=3W P=5W

30 35 40 45 3.0 35 40 45 3.0 35 40 45
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Coherency question

21F ] ' ]
\ Av=50 MHz

| The peak width is 50 MHz,
i.e. 10°KT.
| A single quantum state?

50 MHz < 20 ns (<< lifetime)

How can we prove the coherency?

BLS-intensity ~nxDOS
I:<(E1+E2)2>: <(E1)2 > + <(E2)2 >+2<E1E2>

Incoherent scatterers: <E;E,> =0 = I = 2T,

Coherent scatterers: <E;E,> # 0 = I = 4T,

In general: for coherent scatterers the
scattering intensity is o« n?|



Scattering from the bottom of the spectrum

Number of magnons decays

The decay rate is determined by
the livetime: , _1/;
sp

BLS-intensity from incoherent
magnons oc p oc exp(—at)

BLS-intensity from coherent
magnons . ;% exp(—2at)




Scattering from the bottom of the spectrum
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Doubling of the decay rate
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Doubling of the decay rate
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Experimental confirmation of the time coherency of the condensa

Nature, submitted




Scattering from the bottom of the spectrum
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Spatial coherence

Two condensation points in

the k-space
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BEC-condensates

Magnon mapping
Resolution 250 nm




Space coherence of the condensate
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The created condensate is COHERENT in space




Summary

Gas of magnons with chemical potential y # O
undergoing BEC transition with k_,,#0 can be created
at room temperature

Temporal coherency of the observed state is
experimentally confirmed

Standing wave of condensate density is detected at
high magnon densities (spatial coherency)



Make research in Germany

Opennings in Minster, Germany:
Ph.D student, PostDoc

A young, growing group. Different projects on magnetic dynamics
Experience in magnetism and (pulsed laser) optics is wellcome.

http://www.uni-muenster.de/Physik/AP/Demokritov/




