Bose-Einstein condensation of magnons at RT

Sergej O. Demokritov, V. Demidov, O. Dzyapko Westfälische Wilhelms-Universität, Münster, Germany A.N. Slavin (Oakland Univ.), G. A. Melkov (Kiev Univ.)

Magnons: quanta of spin waves

Group of NonLine Magnetic Dynami

Bose-Einstein-Condensation

Condition of quantum gas:

Thermodynamics of BEC:

$$\lambda = \frac{2\pi\hbar}{p} \approx \sqrt{\langle r^2 \rangle} = N^{-1/3} \qquad k$$
$$kT \approx \frac{p^2}{2m}$$

00000

$$kT_c = 3.31 \frac{\hbar^2}{m} N^{\frac{2}{3}}$$

$$n = \frac{1}{\exp\left(\frac{E - \mu}{kT}\right) - 1}$$

 $\mu = E_{\min}$

Bose-Einstein-Condensation

Condition of quantum gas:

 Thermodynamics of BEC:

$$\langle \lambda \rangle \approx \sqrt{\langle r^2 \rangle} = N^{-1/3}$$

$$kT_c = 3.31 \frac{\hbar^2}{m} N^{\frac{2}{3}}$$

$$\lambda = \frac{2\pi\hbar}{p} kT \approx \frac{\langle p^2 \rangle}{2m}$$

$$N_c^{\frac{2}{3}} = kT \frac{m}{3.31\hbar^2}$$

$$n = \frac{1}{\exp\left(\frac{E - \mu}{kT}\right) - 1}$$

 $\mu = E_{\min}$

Magnons in ferromagnetic films

Transparen Ferro(i)magn Films 5 µm thick

 $RT: N \approx 3 \cdot 10^{21} cm^{-3}$

 $E_{\min} = h \times 2GHz =$ $= k_{R} \times 100 mK = 10 \mu e$

> In equilibrium: $\mu = 0$

(Thermo)dynamic of magnons

In equilibrium:

Magnons are quasi-particles with variable *N*, therefore the chemical potential is zero $\mu = 0$.

Due to field/dipole-dipole-interection the spectrum has a gap, i.e. $E_{min} > 0$.

No BEC possible.

(Thermo)dynamic of magnons

In equilibrium:

Magnons are quasi-particles with variable *N*, therefore the chemical potential is zero $\mu = 0$.

Due to field/dipole-dipole-interection the spectrum has a gap, i.e. $E_{min} > 0$.

No BEC possible.

In quasi-equilibrium:

Two important time scales.

For YIG: $\tau_{ss} \approx 10 - 50 ns$ $\tau_{sp} \approx 0.3 - 0.5 \mu s$

For the time scale from 30 ns to 0.3 μs spins are an isolated, thermalized system

Mechanisms of magnon thermalization

Two-magnon scattering $\omega_1 = \omega_2$ $k_1 \neq k_2$

Impurity-scattering, linear effect (independent of the magnon dens

Elastic, k-thermalization

Four-magnon scattering:

 $\omega_1 + \omega_2 = \omega_3 + \omega_4$ $k_1 + k_2 = k_3 + k_4$

Nonlinear effect (increase with increasing density)

Inelastic, *w*,*k*-thermalization

Two- and four-magnon scattering keep the number of magnons CONSTANT!!!

 $\mu \neq 0$

Strategy to reach BEC of magnons

1. Inject cold magnons (parametric pumping)

a) step-like or b) pulse-like pumping

2. Wait and see what happens with magnon distribution

Magnons created by microwaves and detected by light scattering with time (and space) resolution

Presented at the PITP/SpinAps Asilomar Conference in June 2007

xperimental setup for time-resolved measurement

Presented at the PITP/SpinAps Asilomar Conference in June 2007

Pumped magnons

BLS spectroscopy

BLS spectroscopy

Integrated BLS spectrum

Thermal magnons

Presented at the PITP/SpinAps Asilomar Conference in June 2007

Thermal magnons

BLS-intensity ~ *n*×*DOS*

Presented at the PITP/SpinAps Asilomar Conference in June 2007

Pumped magnons (step-like pumping)

Presented at the PITP/SpinAps Asilomar Conference in June 2007

Time dependence of the chemical potential

Using pumping one can reach the critical density of magnons

J. Appl. Phys.

Presented at the PITP/SpinAps Asilomar Conference in June 2007

Pumped magnons

Time development of magnon distribution is measured.

Known DOS: $n(\omega)$ fit with μ , *T*

Presented at the PITP/SpinAps Asilomar Conference in June 2007

Magnon distribution above the critical density

The addition to the critical density is of δ - type (width is 2mK, i.e. 10^{-5} kT). A condensate is created

Nature '06

Presented at the PITP/SpinAps Asilomar Conference in June 2007

BEC in a stationary case

Stationary state due to spin-lattice relaxation

Magnon distributio at τ=800 n Variable power

New J. Phys. '07.

Presented at the PITP/SpinAps Asilomar Conference in June 2007

Two decisive questions

Do we reach quasi-equilibrium in the above experiments?

Is the obtained state COHERENT?

Two decisive questions

Do we reach quasi-equilibrium in the above experiments?

Is the obtained state COHERENT?

Thermalization: BEC of atoms

Livetime ≈ 30 s, thermalization time ≈ 2 s

Presented at the PITP/SpinAps Asilomar Conference in June 2007

Magnon thermalization (step-like pumping)

Thermalization time

Thermalization time strongly depends on the pumping power (i.e., magnon density) At the densities of BEC it is below 50 ns

Presented at the PITP/SpinAps Asilomar Conference in June 2007

Pumped magnons (pulse-like pumping)

Thermalization at different densities

"Lifetime" depends on the magnon density

Presented at the PITP/SpinAps Asilomar Conference in June 2007

Coherency question

The peak width is 50 MHz, i.e. 10^{-5} kT. A single quantum state? 50 MHz \Leftrightarrow 20 ns (<< lifetime)

How can we prove the coherency?

BLS-intensity ~ $n \times DOS$ $I = \langle (E_1 + E_2)^2 \rangle = \langle (E_1)^2 \rangle + \langle (E_2)^2 \rangle + 2 \langle E_1 E_2 \rangle$ Incoherent scatterers: $\langle E_1 E_2 \rangle = 0 \Rightarrow I = 2I_1$ Coherent scatterers: $\langle E_1 E_2 \rangle \neq 0 \Rightarrow I = 4I_1$ In general: for coherent scatterers the scattering intensity is $\propto n^2$!

Scattering from the bottom of the spectrum

Number of magnons decays

The decay rate is determined by the livetime: $\alpha = 1/\tau_{sp}$

BLS-intensity from incoherent magnons $\infty n \propto \exp(-\alpha t)$

BLS-intensity from coherent magnons $\propto n^2 \propto \exp(-2\alpha t)$

Scattering from the bottom of the spectrum

The decay rate increases with pumping power (total magnon density

Presented at the PITP/SpinAps Asilomar Conference in June 2007

Doubling of the decay rate

Doubling of the decay rate

Experimental confirmation of the time coherency of the condensa

Presented at the PITP/SpinAps Asilomar Conference in June 2007

Brought to you by PITP (www.pitp.phas.ubc.ca)

Nature, submitted

Scattering from the bottom of the spectrum

Spatial coherence

Space coherence of the condensate

The created condensate is COHERENT in space

Presented at the PITP/SpinAps Asilomar Conference in June 2007

Summary

- Gas of magnons with chemical potential $\mu \neq 0$ undergoing BEC transition with $k_{cond} \neq 0$ can be created at room temperature
- Temporal coherency of the observed state is experimentally confirmed
- Standing wave of condensate density is detected at high magnon densities (spatial coherency)

Make research in Germany

Opennings in Münster, Germany: Ph.D student, PostDoc

A young, growing group. Different projects on magnetic dynamics Experience in magnetism and (pulsed laser) optics is wellcome.

http://www.uni-muenster.de/Physik/AP/Demokritov/

Presented at the PITP/SpinAps Asilomar Conference in June 2007

