
Sergej O. Demokritov, V. Demidov, O. Dzyapko

Group of NonLinear
Magnetic Dynamics

Bose-Einstein condensation of magnons at RT

Westfälische Wilhelms-Universität, Münster, Germany

Magnons: 
quanta of 
spin waves

A.N. Slavin (Oakland Univ.), G. A. Melkov (Kiev Univ.)

M
ag

no
n

Po
pu

la
tio

n

kz

Fr
eq

ue
nc

y

ky

BEC-condensates

Presented at the PITP/SpinAps Asilomar Conference in June 2007 Brought to you by PITP (www.pitp.phas.ubc.ca)

marchand
logo



Bose-Einstein-Condensation

2 1/32 r N
p
πλ −= ≈ =
h

2

2
pkT
m

≈

classical gas                           quantum gas             BEC

Condition of quantum gas: Thermodynamics of BEC:

1

exp 1
n

E
kT

µ
=

−  − 
 

minEµ =

2 2
33.31ckT N

m
=

h

Presented at the PITP/SpinAps Asilomar Conference in June 2007 Brought to you by PITP (www.pitp.phas.ubc.ca)



Bose-Einstein-Condensation

2 1/3r Nλ −≈ =

classical gas                           quantum gas             BEC

Condition of quantum gas: Thermodynamics of BEC:

1

exp 1
n

E
kT

µ
=

−  − 
 

minEµ =

2 2
33.31ckT N

m
=

h

2
3

23.31c
mN kT=
h

2
2

2
p

kT
p m
πλ = ≈
h

Presented at the PITP/SpinAps Asilomar Conference in June 2007 Brought to you by PITP (www.pitp.phas.ubc.ca)



Magnons in ferromagnetic films
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Transparen Ferro(i)magnet
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In equilibrium:  
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(Thermo)dynamic of magnons

In equilibrium:  Magnons are quasi-particles with variable N, 
therefore the chemical potential is zero µ = 0.

Due to field/dipole-dipole-interection the
spectrum has a gap, i.e. Emin > 0. 

No BEC possible.
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(Thermo)dynamic of magnons

In equilibrium:  Magnons are quasi-particles with variable N, 
therefore the chemical potential is zero µ = 0.

Due to field/dipole-dipole-interection the
spectrum has a gap, i.e. Emin > 0. 

No BEC possible.

In quasi-equilibrium:  
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Two important time scales. 

For YIG:
10 50
0.3 0.5

ss

sp

ns
s

τ
τ µ

≈ −

≈ −

For the time scale from 30 ns to 0.3 µs  spins are
an isolated, thermalized system

phs
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Mechanisms of magnon thermalization

Two-magnon scattering Impurity-scattering, linear effect 
(independent of the magnon density

Elastic, k-thermalization
1 2

1 2k k
ω ω=

≠

Four-magnon scattering:  Nonlinear effect 
(increase with increasing density)  

Inelastic, ω,k-thermalization
1 2 3 4

1 2 3 4k k k k
ω ω ω ω+ = +

+ = +

Two- and four-magnon scattering keep the
number of magnons CONSTANT!!! 0µ ≠
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Strategy to reach BEC of magnons

1. Inject cold magnons (parametric pumping)

a) step-like or b) pulse-like pumping

2. Wait and see what happens with magnon distribution

Magnons created by microwaves and detected by 
light scattering with time (and space) resolution

Photon

Photon

Magnon

Brillouin light scattering
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Experimental setup for time-resolved measurements
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Ultra-cold magnons 
are pumped
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BLS spectroscopy

A well defined wavevector

Photon

Photon

Magnon
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Thermal magnons

Thermally excited 
magnons are measured to 
determine DOS

BLS-intensity ~ n×DOS

1

exp 1

kTn

kT
ω ω

= ≈
  − 
 
h h

Equilibrium:  0µ =

2 3 4
0,000

0,005

0,010

0,015

0,020

In
te

ns
ity

 (c
ou

nt
s/

s)

Frequency, GHz

 

µ =0

Presented at the PITP/SpinAps Asilomar Conference in June 2007 Brought to you by PITP (www.pitp.phas.ubc.ca)



Thermal magnons

Thermally excited 
magnons are measured to 
determine DOS

BLS-intensity ~ n×DOS

1

exp 1

kTn

kT
ω ω

= ≈
  − 
 
h h

Equilibrium:  0µ =

2 3 4
0,000

0,005

0,010

0,015

0,020

In
te

ns
ity

 (c
ou

nt
s/

s)

P
op

ul
at

io
n 

fu
nc

tio
n,

 n

Frequency, GHz

 

µ =0

Presented at the PITP/SpinAps Asilomar Conference in June 2007 Brought to you by PITP (www.pitp.phas.ubc.ca)



2 3 4
0,00

0,07

0,14

0,21

0,28

2 3 4
0,0

0,2

0,4

0,6

0,8

Frequency, GHz

τ =200 ns
(hνm -µ)/kB=2.5 mK

 

iM
ag

no
n 

po
pu

la
tio

n 
(a

.u
.)

 

 Frequency, GHz 

τ =300 ns
(hνm -µ)/kB=0

 

Pumped magnons (step-like pumping)
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Time development of 
magnon distribution 

P = 5.9 W
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Time dependence of the chemical potential

Using pumping one can
reach the critical

density of magnons  
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J. Appl. Phys. ´07
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Pumped magnons
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Magnon distribution above the critical density
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The addition to the critical density is of δ – type
(width is 2mK, i.e. 10-5kT). 
A condensate is created

Nature ’06

∆ν=250 MHz
∆ν=50 MHz
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BEC in a stationary case

Magnon 
distribution
at τ=800 ns

Variable 
power

New J. Phys. ´07.   

Stationary state due to spin-lattice relaxation
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Two decisive questions

Do we reach quasi-equilibrium in the above 
experiments?

Is the obtained state COHERENT?
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Two decisive questions

Do we reach quasi-equilibrium in the above 
experiments?

Is the obtained state COHERENT?

YES!!!
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Thermalization: BEC of atoms

Livetime ≈ 30 s, thermalization time ≈ 2 s 
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Magnon thermalization (step-like pumping)

Thermalization 
happens „wave-like“
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Thermalization time

Thermalization time strongly depends on 
the pumping power (i.e., magnon density)
At the densities of BEC it is below 50 ns
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Pumped magnons (pulse-like pumping)
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Magnons are pumped just for 30 ns. 
Higher peak powers as before. 
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Thermalization at different densities
P = 2.5 W P = 3 W P = 5 W

“Lifetime” depends on the magnon density

fp
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Coherency question
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∆ν=50 MHz

The peak width is 50 MHz, 
i.e. 10-5kT. 
A single quantum state?
50 MHz ⇔ 20 ns (<< lifetime)

How can we prove the coherency?

I=<(E1+E2)2>= <(E1)2 > + <(E2)2 >+2<E1E2> 

Incoherent scatterers: <E1E2> = 0 ⇒ I = 2I1

Coherent scatterers: <E1E2> ≠ 0 ⇒ I = 4I1

In general: for coherent scatterers the
scattering intensity is ∝ n2 !

BLS-intensity ~ n×DOS
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Scattering from the bottom of the spectrum
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The decay rate is determined by
the livetime:
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Doubling of the decay rate
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Doubling of the decay rate
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Experimental confirmation of the time coherency of the condensate
Nature, submitted

Presented at the PITP/SpinAps Asilomar Conference in June 2007 Brought to you by PITP (www.pitp.phas.ubc.ca)



400 500 600 700 800 900 1000
1

10

100

 2 W
 2.5 W
 3 W
 4 W
 5 W
 6 W

N
or

m
al

iz
ed

 B
LS

 in
te

ns
ity

 

Time (ns)

The decay rate 
increases with
pumping power

(total magnon density)

Scattering from the bottom of the spectrum

400 500 600 700 800 900 1000
1

10

100

 

N
or

m
al

iz
ed

 B
LS

 in
te

ns
ity

 

Time (ns)

Presented at the PITP/SpinAps Asilomar Conference in June 2007 Brought to you by PITP (www.pitp.phas.ubc.ca)



Spatial coherence

Two condensation points in 
the k-space

Check the spatial coherence –
space resolved measurements
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BEC-condensates

Magnon mapping
Resolution 250 nm
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The created condensate is COHERENT in space
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Summary

• Gas of magnons with chemical potential µ ≠ 0 
undergoing BEC transition with kcond≠0 can be created 
at room temperature

• Temporal coherency of the observed state is 
experimentally confirmed

• Standing wave of condensate density is detected at 
high magnon densities (spatial coherency)
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Opennings in Münster, Germany: 
Ph.D student, PostDoc

A young, growing group. Different projects on magnetic dynamics. 
Experience in magnetism and (pulsed laser) optics is wellcome. 

http://www.uni-muenster.de/Physik/AP/Demokritov/

Make research in Germany

Presented at the PITP/SpinAps Asilomar Conference in June 2007 Brought to you by PITP (www.pitp.phas.ubc.ca)


