Single-Molecule Magnets (SMMs): A Molecular (Bottom-up) Approach to Nanoscale Magnetic Materials

Lecture 1:

The Mn₁₂ Family of Single-Molecule Magnets

George Christou

Department of Chemistry, University of Florida Gainesville, FL 32611-7200, USA

Types of Magnetic Materials

Magnetism

Traditional Magnets

3D arrays of metal atoms or ions (metals, metal alloys, metal oxides e.g. magnetite - Fe_3O_4)

Molecular Magnets

3D arrays of linked, interacting molecules

Single-Molecule Magnets (SMMs)

Molecular Nanomagnets magnetism intrinsic to the molecule; each molecule is a separate, nanoscale magnetic particle **Single-Chain Magnets (SCMs)**

magnetism due to 1-D chains

Single-Molecule Magnets (SMMs)

The barrier to magnetization relaxation in SMMs is <u>not</u> due to intermolecular interactions (as in traditional magnets) but to zero-field splitting (ZFS).

Requirements for SMMs:

- 1. Large ground state spin (S)
- 2. Negative ZFS parameter (D)

Magnetization Direction (z)

Spin Hamiltonian:

$$H = axial term + rhombic term + Zeeman term$$

$$D\hat{S}_{z}^{2} + B_{4}^{0}\hat{O}_{4}^{0} \qquad E(\hat{S}_{x}^{2} - \hat{S}_{y}^{2}) + B_{4}^{4}\hat{O}_{4}^{4} \qquad g\mu_{B}\hat{S} \cdot H$$

$$H = D\hat{S}_{Z}^{2} + E(\hat{S}_{X}^{2} - \hat{S}_{Y}^{2}) + g\mu_{B}\hat{S} \cdot H$$

Anisotropy barrier (U) = $S^2|D|$ Integer spin or $(S^2-1/4)|D|$ Half- integer spin

Advantages of SMMs over Traditional Nanoscale Magnetic Particles

Properties

- truly monodisperse particles of nanoscale dimensions
- crystalline, therefore contain highly ordered assemblies
- well-defined ground state spin, S
- truly quantum spin systems

Synthesis

- synthesized by room temperature, solution methods
- enveloped in a protective shell of organic groups (ligands)
- □ truly soluble (rather than colloidal suspensions) in organic solvents
- the organic shell (ligands) around the magnetic core can be easily modified, providing control of separations between molecules, coupling with the environment, etc.

Major Potential Applications of SMMs

Digital Information Storage

- the storage of information at the molecular level as the orientation direction of the magnetization vector.
- each molecule stores one bit of information.
- estimated 10⁴ increase in storage density over present devices.
- requires ordered arrays of SMMs, either 2-D surfaces (present technology) or 3-D crystals (future technology).

Quantum Computing

the use of quantum bits (qubits) rather than classical bits as in present computation methods.
requires SMMs capable of existing in quantum superpositions of two (or more) states i.e. 1 and 0 instead of classical 1 or 0.
requires SMM to show appropriate quantum properties.

Experimental Identification of SMMs

They display the slow magnetization relaxation (reorientation) rates of single-domain superparamagnets, even though they are <u>much</u> smaller and the properties arise from a different origin (not long-range co-operativity)

Frequency-dependent out-of-phase AC susceptibility signals (χ_M)

Hysteresis loops (with steps due to quantum tunneling of the magnetization)

Quantum Tunneling of the Magnetization (QTM)

SMM's are true mesoscale particles. They exhibit the macroscale property of hysteresis, and the microscale property of QTM through the anisotropy barrier

Barrier $(U) = S^2|D|$ for integer S

= (S²-1/4)|D| for half-integer S Therefore, U < U_{eff}

Topics for this presentation:

- Crystalline arrays of Mn₁₂ SMMs, and their controlled modification.
- Faster-Relaxing Mn₁₂ SMMs: Jahn-Teller Isomerism
- Electron addition onto Mn₁₂ SMMs, and its effect on the properties
- New high-quality Mn₁₂ SMMs: the picture comes into focus.

The Mn₁₂ Family of Single-Molecule Magnets (SMMs)

 $Mn(O_2CMe)_2 + MnO_4^-$ in 60% acetic acid/ $H_2O \rightarrow$

 $[Mn_{12}O_{12}(O_2CMe)_{16}(H_2O)_4] \cdot 2AcOH \cdot 4H_2O$

(Lis, Acta Cryst. B,1980) [Mn₁₂Ac] Identified as a SMM in 1993. Mn₁₂Ac has axial symmetry (tetragonal space group /4(bar)), and has therefore been considered the best to study in detail.

 $[Mn_{12}O_{12}(O_2CR)_{16}(H_2O)_4] (Mn_{12}) \text{ complexes:} \\ S = 10 \\ D = -0.40 \text{ to } -0.50 \text{ cm}^{-1} (-0.58 \text{ to } -0.72 \text{ K}) \\ \text{Magnets below 3K}$

Volume of the $Mn_{12}O_{12}$ magnetic core ~ 0.1 nm³

Sessoli, Gatteschi, Caneschi, Novak, Nature 1993, 365, 141 Gatteschi, Sessoli, Christou, Hendrickson, et al. JACS, 1993,115, 1804

DC magnetization hysteresis loops

Tunneling Steps in a S = 10 Single-Molecule Magnet

Field is swept from –1 Tesla to + 1 Tesla.

Tunneling transitions are seen as steps, which correspond to a surge in the relaxation rate.

As expected from the Landau-Zener equation, the step size is inversely proportional to the sweep rate.

Modification of the Mn₁₂ Family of SMMs

1) Carboxylate Substitution

replacement of acetate with other carboxylate groups.
 add RCO₂H to Mn₁₂-Ac

 $[Mn_{12}O_{12}(O_2CMe)_{16}(H_2O)_4] + 16 RCO_2H \longrightarrow [Mn_{12}O_{12}(O_2CR)_{16}(H_2O)_4] + 16 MeCO_2H$

(J. Am. Chem. Soc. 1993, 115, 1804, and J. Am. Chem. Soc. 1995, 117, 301)

- The substitution is an equilibrium that is driven to 100% reaction by removing the generated acetic acid (MeCO₂H) as its toluene azeotrope under vacuum
- Many, many different carboxylate R groups have been used (big vs small, polar vs non-polar, isotopically-labelled, elementlabelled (e.g. C₆F₅), etc
- Allows control of Mn₁₂ solubility, crystallinity, redox potentials, etc

The Faster-Relaxing Variants of Mn₁₂ SMMs

-- even in pure Mn_{12} crystals, additional signals from a faster-relaxing (LT) species are almost always seen -- in Mn_{12} -Ac, the LT species is ~ 5%. In others, it can be much higher, and in some it is the majority species.

The U_{eff} typically differ by a factor of two

"Single-molecule magnets: control by a single solvent molecule of Jahn-Teller isomerism in [Mn₁₂O₁₂(O₂CCH₂Bu^t)₁₆(H₂O)₄]" Soler et al. *Chem. Commun.* 2003, 2672

The compound crystallizes from a MeNO₂/CH₂Cl₂ solvent mixture as Mn₁₂.MeNO₂.CH₂Cl₂

triclinic, P,

a = 15.814(2), *b* = 16.42(2), *c* = 27.434(3) Å α = 76.900(1), β = 78.220(1), γ = 78.210(1)^o, *Z* = 2, *V* = 6699.08 Å³

The compound crystallizes from a MeCN/CH₂Cl₂ solvent mixture as Mn₁₂.MeCN.CH₂Cl₂

triclinic, *P*, a = 15.757(1), b = 16.763(1), c = 27.183(1) Å, $\alpha = 77.444(1)$, $\beta = 77.490(1)$, $\gamma = 78.315(1)^{\circ}$, Z = 2, V = 6750.17 Å³

2. Site-Selective, Partial Carboxylate Substitution

 $[Mn_{12}O_{12}(O_2CR)_{16}(H_2O)_4] + x HL \longrightarrow [Mn_{12}O_{12}(O_2CR)_{16-x}(L)_x (H_2O)_4]$

Examples: $[Mn_{12}O_{12}(O_2CR)_{12}(NO_3)_4 (H_2O)_4]$ $[Mn_{12}O_{12}(O_2CR)_8 (O_3SPh)_8 (H_2O)_4]$ *Inorg. Chem.* 2001, *40*, 4199

 $[Mn_{12}O_{12}(O_2CR)_8(O_2CR')_8(H_2O)_4]$ $[Mn_{12}O_{12}(O_2CR)_8(O_2PPh_2)_8(H_2O)_4]$ Dalton Trans. 2003, 2243-2248

 <u>Electron Addition (Spin Injection)</u>
 Carboxylate variation alters the Mn₁₂ redox potentials (E), (related to the thermodynamic Gibbs free energy by ΔG² = -nFE²

i.e. ease of addition (or removal) of electrons)

-- determined by electrochemistry

Electrochemical data for $[Mn_{12}O_{12}(O_2CR)_{16}(H_2O)_4]$

R	E ₁ (V) ^a	E ₂ (V) ^b
CHCI ₂	0.91	0.61
C ₆ H ₃ (NO ₂) ₂ -2,4	0.74	0.45
C ₆ F ₅	0.64	0.46
CH ₂ CI	0.60	0.30
CH ₂ CH ₃	0.02	-0.50

a. First e⁻ addition

b. Second e⁻ addition

in CH₂Cl₂ solution vs. ferrocene

Electron Addition to Mn₁₂ : Bulk Isolation of Products

-- using iodide (I⁻) as a one-electron donor

 $[Mn_{12}O_{12}(O_{2}CR)_{16}(H_{2}O)_{4}] + I^{-} \longrightarrow [Mn_{12}O_{12}(O_{2}CR)_{16}(H_{2}O)_{4}]^{-} + \frac{1}{2}I_{2}$ $[Mn_{12}]^{-}$

 $[Mn_{12}O_{12}(O_{2}CR)_{16}(H_{2}O)_{4}] + 2I^{-} \longrightarrow [Mn_{12}O_{12}(O_{2}CR)_{16}(H_{2}O)_{4}]^{2^{-}} + I_{2}$ $[Mn_{12}]^{2^{-}}$

-- products can be made in multi-gram amounts, and isolated as pure, crystalline solids.

JACS 1995, 117, 301, and JACS, 2003, 135, 3576

Crystal Structures of Mn₁₂ and [Mn₁₂]⁻

8 Mn^{III}(●), 4 Mn^{IV}(●) **H₂O (○)**

Eppley et al. JACS, 1995, 117, 301

Crystal Structure of [Mn₁₂]²⁻

--- added electrons are localized on opposite sides of the Mn₁₂ molecule

--- the neutral H₂O ligands bind preferentially to the Mn^{II} atoms

¹H NMR Spectra of [Mn₁₂]²⁻ in CD₃CN Solution

 $[Mn_{12}O_{12}(O_2CCH_2CI)_{16}(H_2O)_x]^z$

 $[Mn_{12}O_{12}(O_2CCHCl_2)_{16}(H_2O)_4]^z$

Effective solution symmetry D_{2d}

Magnetic Properties of [Mn₁₂]^{1-, 2-}

R = CHCl ₂	[Mn ₁₂]	[Mn ₁₂] ¹⁻	[Mn ₁₂] ²⁻
S	10	19/2	10
D (K)	- <mark>0.65</mark>	-0.49	-0.39
U _{eff} (K)	66	57	32

AC Susceptibility

Out-of-Phase AC Susceptibility for Mn₁₂, [Mn₁₂]⁻ and [Mn₁₂]²⁻

 Mn_{12} χ_{M} " peak at 6 - 8 K

 $[Mn_{12}]^{-}$ χ_{M} " peak at 4 - 6 K

 $[Mn_{12}]^{2-1}$ χ_{M} " peak at 2 - 4 K

Soler, et al., JACS, 2003, 135, 3576

Out-of-phase AC Magnetic Susceptibility for (PPh₄)₂[Mn₁₂O₁₂(O₂CCHCl₂)₁₆(H₂O)₄]

Peak at 2.4 K

Arrhenius $\rightarrow U_{eff} = 18.5 \text{ K}$

$(\mathsf{PPh}_4)_2[\mathsf{Mn}_{12}]\bullet\mathsf{4CH}_2\mathsf{Cl}_2\bullet\mathsf{H}_2\mathsf{O}$

triclinic P V = 6969.79 Å³ Peak at 3.6 K Arrhenius $\rightarrow U_{eff} = 30.2$ K

(PPh₄)₂[Mn₁₂]•6CH₂Cl₂

Monoclinic $P2_1/c$ V = 7468.51Å³

(PPh₄)₂[Mn₁₂]•5CH₂Cl₂

Hysteresis Loops for $(PPh_4)_2[Mn_{12}O_{12}(O_2CHCI_2)_{16}(H_2O)_4]$

 $(PPh_4)_2[Mn_{12}] \cdot 4CH_2Cl_2 \cdot H_2O$ (plates)

 $(PPh_4)_2[Mn_{12}] \cdot 6CH_2Cl_2$ (needles)

Topics for this presentation:

- Crystalline arrays of Mn₁₂ SMMs, and their controlled modification.
- Faster-Relaxing Mn₁₂ SMMs: Jahn-Teller Isomerism
- Electron addition onto Mn₁₂ SMMs, and its effect on the properties
- New high-quality Mn₁₂ SMMs: the picture comes into focus.

A Mn₁₂ Complex with Tetragonal (Axial) Symmetry: $[Mn_{12}O_{12}(O_2CCH_2Br)_{16}(H_2O)_4]$ (Mn₁₂-BrAc)

 $[Mn_{12}O_{12}(O_2CMe)_{16}(H_2O)_4] + 16 BrCH_2CO_2H \longrightarrow [Mn_{12}O_{12}(O_2CCH_2Br)_{16}(H_2O)_4]$

+ 16 MeCO₂H

crystallizes as [Mn₁₂BrAc]·4CH₂Cl₂

tetragonal space group I42d

--- single type of molecule in the crystal.

--- in contrast to Mn₁₂Ac, where each molecule has strong H-bonding to 0,1, 2, 3 or 4 acetic acid molecules of crystallization (Cornia et al., Phys. Rev. Lett. 2002, 89, 257201)

Nicole Chakov

A New Mn_{12} Complex with Tetragonal (Axial) Symmetry: $[Mn_{12}O_{12}(O_2CCH_2Bu^t)_{16}(MeOH)_4]$ (Mn₁₂-tBuAc)

Mn ₁₂ Ac	Mn ₁₂ BrAc	Mn ₁₂ Bu ^t Ac
I4(bar)	<i>I</i> 42d	<i>I</i> 4(bar)

- Better even than Mn₁₂BrAc
- Less solvent of crystallization
- Bulky R group : well separated molecules
- Well aligned with cell axes

Muralee Murugesu

Magnetic Properties of [Mn₁₂O₁₂(O₂CCH₂Bu^t)₁₆(MeOH)₄] (Mn₁₂Bu^tAc) Dr. Muralee Murugesu

AC Susceptibility

0.18

 $(1/T)/K^{-1}$

0.20

0.22

3

0.14

0.16

Single-Crystal ⁵⁵Mn NMR Spectra of Mn₁₂Ac vs Mn₁₂BrAc with S₄ (Axial) Symmetry

Mn₁₂BrAc

Mn₁₂-Ac: tetragonal space group I4(bar) Mn₁₂-BrAc: tetragonal space group I42d

N. S. Dalal, S. O. Hill, G. Christou, et al. Inorg. Chem. 2005, 44, 2122. JACS, 2006, 128, 6975

A New Mn_{12} Complex with Tetragonal (Axial) Symmetry: $[Mn_{12}O_{12}(O_2CCH_2Bu^t)_{16}(MeOH)_4]$ ·MeOH (Mn_{12} -tBuAc)

Wernsdorfer, Murugesu, and Christou, P. R. L., 2006, 96, 057208

The Sharpness of the Hysteresis Loops in Mn₁₂-tBuAc allows Steps due to Excited State Tunneling to be seen

Wernsdorfer, Murugesu and Christou, Phys. Rev. Lett., 2006, 96, 057208

Summary: Researchers have thought for over 13 years that axial Mn₁₂-Ac is the best one to study, but it is not. More interesting physics is now being discovered with cleaner, truly axial Mn₁₂ SMMs