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Laboratoire de Physique Théorique de la matière Condensée
UMR 7600 of CNRS,

case 121, 4 Place Jussieu,
75252 Paris Cedex

email: claire.lhuillier@upmc.fr

June 2, 2006

Abstract

A description of different phases of two dimensional magnetic insu-
lators is given.

The first chapter is devoted to the understanding in an SU(2) in-
variant picture of the most standard antiferromagnetic scheme origi-
nating from Néel: this give light both on the spectra of molecular mag-
nets and on the symmetry breaking mechanism in the semi-classical
Néel phases. The description of the ground-state wave-functions in
term of Valence-Bond is emphasized. Different scenarii leading to
restoration of SU(2) symmetry are examined: in particular the pos-
sibility of a two step scenario with an intermediate nematic phase is
illustrated. The excitations of the different symmetry breaking phases
are described.

Different gapful quantum phases exist in two dimensions: the Va-
lence Bond Crystal phases (VBC) which have long range order in
local S=0 objects (either dimers in the usual Valence Bond accep-
tion or quadrumers..), but also Resonating Valence Bond Spin Liquids
(RVBSL), which have no long range order in any local order parameter
and an absence of susceptibility to any local probe. VBC have gapful
integer spin excitations, RVBSL on the contrary have deconfined spin-
1/2 excitations. Examples of these two kinds of quantum phases are
given in chapters 2 and 3.
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Chapter 1

SU(2) symmetry breaking
phases:
Ground-state wave-functions
and excitations in an SU(2)
invariant approach

In this chapter we want to uncover in a very simple quantum mechanical
SU(2) invariant point of view, the nature of the semi-classical symmetry
breaking phases and the mechanism of the SU(2) symmetry breaking. This
will shed light on the spectrum of nanomagnets, on the structure of the
ground-state wave function of the Néel states in term of valence-bonds and
on the possible scenarii leading from Néel states to SU(2) non breaking
phases.

1.1 A simple exactly solvable model

1.1.1 Introduction of a toy model: the rigid Macro-antiferromagnet

Let us consider the Heisenberg hamiltonian:

H = 2J
∑

<i,j>

si.sj (1.1)

where si, sj are spins 1/2, the sum < i, j > runs on pairs of next neighbor
sites and J measures the strength of the effective coupling.

On a lattice of N sites with periodic boundary conditions, this hamilto-
nian reads in reciprocal space:

H = 2J
∑

k∈Bz

γkS̃k.S̃−k. (1.2)
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In this expression:

S̃k =
1√
N

∑

i

si exp(−ik.ri) (1.3)

where ri is the coordinate of spin i, N the number of lattice sites and k runs
on the reciprocal points of the lattice in the first Brillouin zone (Bz). γk is
the structure factor of the lattice:

γk =
1

2

∑

i=1,2

cos(k.ei) (1.4)

with ej, (j = 1, 2), the unit vectors generating the 2-dimensional lattice.
For simplicity we will specialize to the square lattice case.1 On this

lattice the Néel state is invariant by 2-step translations associated to wave-
vectors 0 = (0, 0) and k0 = (π, π). Let us select these special components
in the Heisenberg Hamiltonian and rewrite it as:

H = H0 + V (1.6)

with
H0 = 2J(S̃2

0 − S̃k0
.S̃−k0

) (1.7)

V = 2J
∑

k∈Bz∗

γkS̃k.S̃−k (1.8)

where Bz∗ is to be understood as the first Brillouin zone minus the k = 0
and k0 points.

It is straightforward to show that:

H0 =
4J

N
(S2

tot − S2
A − S2

B)

=
8J

N
SA.SB (1.9)

where Stot is the total spin of the sample and SA,B the total spins of the A,
andB sublattices. We will call this model the rigid Macro-Antiferromagnet.2

1The same kind of toy model can be introduced in the 3-sublattice Néel state on a
triangular lattice: in that last case it involves the Fourier components of the spins at the
three soft points (which are the center and the two non equivalent corners of the Brillouin
zone) and reads:

Htri
0 =

9J

2N
(S2

tot − S
2
A − S

2
B − S

2
C) (1.5)

where SA,B,C are the total spins of the A, B, C sublattices. Such a model allows the
same developments as those done below except indeed the comments on the Lieb-Mattis
ordering theorem [1].

2You can recognize in H0 the model used by Lieb and Mattis in the demonstration
of the ordering theorem [2]. For bipartite lattices this theorem originally due to Hulthen
(1938)[3], Marshall (1955)[4] and strengthened by Lieb and Mattis (1962)[2] states that
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This model describes a problem with constant infinite range interactions
between spins on different sublattices and no interactions between spins on
the same sublattice. It has a correct thermodynamic limit, and can be solved
exactly.

1.1.2 Ground-state(s) and excitations of the rigid Macro-
Antiferromagnet

Hamiltonian H0 (Eq. 1.9) is an SU(2) invariant Hamiltonian which com-
mutes with S2

tot and Sz
tot. It also commutes with S2

A,B, which in this model
are conservative quantities (good quantum numbers). From now on, for
notation simplicity we will drop the underscript tot for the total spin.

Eigen-states of H0 are build from the addition of the two big spins SA,B

and have eigen-values:

E(S, SA, SB) =
4J

N
[S(S + 1) − SA(SA + 1) − SB(SB + 1)] (1.11)

The quantum numbers labelling these eigenstates on a sample with an (even)
number of sites N are:

the values of the sublattice magnetisations: SA, SB, ∈ [0, 1, ..,N/4],
the value of the total spin: S ∈ [|SA − SB|, ..., SA + SB],
and the value of its z component MS : ∈ [−S,−S + 1, ...., S − 1, S].

From now on I will note these eigenstates: |SA, SB, S, MS >.

The absolute ground-state

From Eq. 1.11 it appears that the absolute ground-state is obtained for the
maximum polarisation of the two sublattices SA = SB = N/4 and a total
spin S = 0.

• This ground-state

|0, 0 >= |SA = N/4, SB = N/4, S = 0,MS = 0 > (1.12)

is the S = 0, SU(2) invariant component of the usual Ising antiferro-
magnet wave-function:

|Ising A.F. >=
∏

i∈A, j∈B

|i , + > |j , − > . (1.13)

the absolute ground-state of the antiferromagnetic Heisenberg (1.1) (and of more general
antiferromagnetic models respecting the bipartition of the lattice) is unique and has total
spin zero. Moreover the ground-state energies in each S sector are ordered accordingly to
Stot:

∀S
′

tot > Stot E0(S
′

tot) > E0(Stot). (1.10)
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Usual the basic relations for angular momentum addition, the Ising
antiferromagnet wave-function can be written:

|Ising A.F. > =
∑

S,MS

< SA, SB , S,MS |SA,MA, SB ,MB > |SA, SB , S,MS >

=
∑

S,MS

(−1)MS

√
2S + 1

(

SA SB S
SA −SB MS

)

|SA, SB, S,MS > (1.14)

where SA = SB = N/4, MA = N/4, MB = −N/4.
< SA, SB , S,MS |SA,MA, SB ,MB > are known in elementary quantum
mechanics as the Clebsch-Gordan coefficients. 3

• The absolute ground-state wave-function (Eq.1.12) can also be written
as a linear superposition of products of valence-bonds (singlet pairs
of the individual spin-1/2). Let us do it by using the projectors on the
irreducible représentations (irreps) of the permutation group in terms
of Young tableaux.
The S = 0 wave functions belong to the irrep associated to the Young tableau

with N/2 columns and 2 lines. The wave-function given by (Eq.1.12) is totally

symmetric in the exchange of spins in any of the two sublattices (these sublattices

are ferromagnetically aligned) and, it is a S=0 wave function, antisymmetric in the

permutation of any pairs of spins belonging to different sublattices. As this wave-

function is unique (there is only one way to couple two given spins SA,SB in a given

total spin S), it may also be described by using first the antisymmetrizors on spins

of different sublattices, which creates a product of N/2 valence-bonds, followed by

the symmetrisation on all spins of each A and B sublattices.

This shows that Eq.1.12 can also be written as an equal weight su-
perposition of all the products of valence-bonds that could be drawn
between the A and B sublattices. This wave-function belongs to the
variational sub-space studied by Liang, Douçot and Anderson in 1988
[5]: with the special property that the weights of all bonds, whatever
their length are equal.

Ground-states of all S sectors

From Eq. 1.11 it appears that the ground-state E0(S) of the sector with
total spin S is the state |SA, SB , S,MS > with maximum sublattice magne-
tizations N/4. These eigen-states are also the SU(2) invariant components
of the Ising Antiferromagnet (Eq. 1.14).

3These coefficients are the coefficients of the unitary transformation which transforms
the uncoupled sublattice spins SA,B to the SU(2) invariant coupled combinations. They
are related to the Wigner “3j” symbols (second line) that can be calculated by elementary
algebra, and are tabulated in books and in computer libraries.
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The energies of these low energy states obey the following relation:

E0(S) = −J
2

(N + 4) +
4J

N
[S(S + 1)] (1.15)

They collapse to the absolute ground-state as O(S(S+1)
N

). On a finite
size lattice the classical Néel state (1.14) is a non stationary state of H0

(1.9). But, its precession rate decreases as O( 1
N ) with the system size and

becomes infinitely slow in the thermodynamic limit. This property is the
basis of the SU(2) symmetry breaking in the Néel states.

In the following I will call this family of levels the ”Anderson tower of
states” in honor to P.W. Anderson 1952 famous paper on spin-waves in
antiferromagnets [6] where their necessary existence is discussed for the first
time (?) in a tiny footnote at the end of the paper. 4

This approach and its extensions to more complex Néel order param-
eters show that the multiplicity of the Néel ground-state subspace
in the thermodynamic limit is O(Nα), where α is the number of
sublattices of the classical Néel state[1, 8]. This gives a non extensive
entropy of the ground-state at T = 0 in agreement with Nernst theorem.

A last important remark: the homogeneous spin susceptibility is
always dominated by the largest spin states of the Anderson tower: that is
states with total spin O(

√
N). Most of the macroscopic measurement will

equally be dominated by these levels. In bulk materials a state with total
spin

√
N has a very large spin, it is essentially a classical object but its

magnetization by site: m = Stot/
N
2 ∝ 1√

N
, that is essentially zero in the

thermodynamic limit.

Excitations

In this model an excited state is obtained by flipping a single spin of a sublat-
tice (∆SA,B = −1 and ∆Sz = +1, arrow in Fig.1.1). From equation (1.11)
one sees that these excitations are highly degenerate, localized and have an
energy:

Eex = 2J

[

1 +
4(S + 1)

N

]

. (1.16)

For any system size these excitations are gapful and O(J).
In spite of the SU(2) invariant feature of the model, its low energy

excitations are similar to those of the Ising model. And in spite of the

possible continuous symmetry breaking, there is no Goldsdtone modes. It is

a consequence of the infinite range of the interactions.

4In our first paper[7] we have called these levels QDJS (for quasi degenerate joint
states). I was told that nuclear physicists have also their own words to describe the same
phenomenon.
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Figure 1.1: Typical spectrum of a finite size collinear Ising magnet. The
tower of eigen-levels joined by the continuous line and noted |0〉 is the An-
derson tower of states needed to form a symmetry breaking Ising ordered
ground-state (Eq. 1.19): such a state is non stationary on a finite size sample.
The second set |1〉 (dashed line) is associated with the lowest excitations,
which are highly degenerate and non dispersive.

Conclusion

H0 describes a classical rigid antiferromagnet in an SU(2) invariant frame-
work: its spectrum has the very simple structure schematized in Fig. 1.1. In
the thermodynamic limit this magnet can be described either in an SU(2)
invariant language with the help of the |SA, SB , S,MS > states or with the
coherent classical Néel states pointing along the u direction:

|ClassicalNeelA.F.u >= eiSz
totφeiSy

totθ|IsingA.F. > (1.17)

where θ and φ are the Euler angles of u.5 In the thermodynamic limit,
the symmetry breaking point of view is as valid as the SU(2) invariant
approach.

5These states form an (overcomplete) basis of the thermodynamic ground-state mul-
tiplicity. The two basis are connected by exact transformation laws, Eq.(1.14) and its
inverse:

|N/4, N/4, S, MS >= (2S + 1)

Z

dτD†
s(φ, θ)|Cl. Néel w.f.;u >, (1.18)

where the differential integration volume reads dτ = 1

4π
dφd(cosθ), where φ ∈ [0, 2π],

θ ∈ [0, π] and DS is the rotation matrix in the S subspace.
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1.2 From the classical to the semi-classical Néel
antiferromagnet

Modification of this picture in an Heisenberg magnet with next neighbor ex-
change comes from the effect of the perturbation V described in Eq. 1.8. V
does not commute with S2

A and S2
B: at first order in perturbation each com-

ponent of V couples the ground-states of H0 of each S sector to states where
the sublattice magnetizations are decreased by one unit in some modulated
way: the first effect of the perturbation is thus to reduce the sublattice
magnetizations.

1.2.1 Adiabatic contination scenario from the classical rigid
antiferro-magnet to the semi-classical Néel state of the
Heisenberg model

The semi-classical Néel state, if it exists, emerges from the dressing of the
Anserson tower of states of the toy model by the quantum fluctuations pro-
duced by V. The adiabatic continuation from one ground-state multiplicity
to the other implies the qualitative conservation of the structure and of the
spectrum of the Anderson tower of states of the macroscopic ground-state:
i.e.

• Exact conservation of the number and spatial symmetries of the low
lying states in each S sector,

• Scaling of these levels as O(JS(S+1)
N ) with respect to the ground-state,

• Robustness in each of these states of a macroscopic sublattice magne-

tization:
√

< |S2
A| > ∝ O(N)). 6

If there is an adiabatic continuation between the two models the quantum
Néel wave-function will read:

|Qu. Néel w.f. >=
∑

S,MS

(−1)MS

√
2S + 1

(

SA SB S
SA −SB MS

)

˜|S,MS >0 (1.19)

where the kets ˜|S,MS >0 are now the exact low lying states of the Anderson
tower of H (Eq. 1.1).

To check if the adiabatic continuation fails or not, there are 2 possible
routes, exact diagonalisations or perturbation theory, which in fact reinforce
each other. A correct interpretation of the exact diagonalization data implies
a relevant study of the finite size effects. We will therefore develop the

6As an example, all these criteria have been thoroughly checked in the Néel ordered
phase of the Heisenberg model on the triangular lattice[7, 1]
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qualitative feature of the finite size scaling laws using well known results of
spin wave theory. 7

1.2.2 Finite size scalings

Let us recall the main results of the spin-wave calculation. (For the deriva-
tion of the spin-wave approach in antiferromagnets, see text-books [15, 16,
17].)

Departing from the Ising configuration (Eq.1.13), the transverse terms
of the Heisenberg Hamiltonian create ∆Sz = 1 spin flips, which are mobile
excitations.

• In an harmonic approximation these excitations are simply described
as bosons, with frequencies:

ωq = 2J
√

1 − γ2
q (1.20)

where γq is the structure factor of the lattice defined in Eq.(1.4). The
spin flips excitations are then dispersive, their frequency goes to zero
when going to the two soft points k = 0, k0. Around these points the
dispersion law is linear in k (resp. (k − k0)).

• The zero point energy of these excitations (which are oscillator- like)
renormalizes the Ising classical energy of the ground-state. To first
order, this spin wave calculation gives the ground-state energy of the
Heisenberg Hamiltonian on the square lattice as:

Esw = −N
2
z
J

4
−NJ +

∑

q∈BZ∗

ωq

2
(1.21)

where z is the coordination number of the lattice.

• These “ quantum fluctuations” also renormalize the sublattice magne-
tization. The order parameter m reads:

msw =
2

NS
< sw−gs|Sz

A|sw−gs >≃ 1− 1

N

∑

q∈BZ∗

[

1

ωq

− 1

]

. (1.22)

The renormalization of the order parameter is dominated by the fluc-
tuations in the low energy modes. The linear asymptotic behavior of

7More sophisticated approaches [9, 10, 11, 12, 13, 14] would lead to the same qualitative
results with more efforts. Having explicited the equivalence between the SU(2) invariant
Anderson tower of states and the symmetry breaking states, we can indeed extract the
finite size scaling laws from the technically more convenient point of view. Moreover
our approach shows that renormalization by quantum fluctuations primarily acts on the
macroscopic sublattices spins: by the way the spin-wave approach takes in this point of
view a deeper justification than in other usual introductions.

12



Coordination 2 < Si.Sj >
Lattices number per bond M/Mcl

dimer 1 -1.5
1 square 2 -1

1 D Chain 2 -0.886 0
honeycomb [18] 3 -0.726 0.44 bipartite
sq-hex-dod. [19] 3 -0.721 0.63 lattices

square [20] 4 -0.669 0.60
classical value -0.5 1

one triangle 2 -0.5

kagome [21] 4 -0.437 0 frustrating
triangular [1] 6 -0.363 .50 lattices
classical value -0.25 1

1 tetrahedron 3 -0.5

checker-board [22] 6 -0.343 0 frustr. latt.

Table 1.1: Quantum energy per bond and sublattice magnetization in the
ground-state of the spin-1/2 Heisenberg Hamiltonian on various simple cells
and lattices. The sq-hex-dod. is a bipartite lattice formed with squares,
hexagons and dodecagons.

ωq around the soft points, implies that the spin-waves correction to
the order parameter diverges in 1D. It gives finite corrections at T = 0
on most 2-dimensional lattices (square, triangular, hexagonal). 8 This
scenario is fully supported by exact diagonalizations as displayed in
Table 1.1.

• Finite size effects: On a finite L×L lattice, the allowed wave vectors
are quantized and ∝ 2π

L . This infra-red cut-off of the long wave-length
fluctuations is progressively relaxed as the size of the sample goes to
∞. As ωq is linear in q around the soft points, the ground-state energy
Esw (Eq. 1.21) and the order parameter msw (Eq. 1.22) differ from the
L→ ∞ limits by factors of order O( 1

L).

Let us also emphasize that on a finite lattice the energy needed to
create the softest excitation is of order J

L ∝ J
N1/d .

8The exceptions: the checker-board and the kagome lattice will be studied in forth-
coming sections.
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1.2.3 Self-consistency magnon description in the SU(2) in-
variant picture.

If the structure of the tower of states is essentially preserved by the quan-
tum fluctuations due to V, the semi-classical picture of coherent states is
preserved, the spin-wave approach is a reasonable one and the essential re-
sults of this approach should appear in the full spectra of Eq.(1.1). Beyond
the criteria already described in subsection 1.2.1 to support the SU(2) sym-
metry breaking in the macroscopic ground-state, the following structure and
size effects characterize the magnons in the SU(2) invariant picture:

• The softest magnon with wave-vector 2π
L is described by a second tower

of states issued from the tower of excited states of the Ising model with
one spin-flip (Eq. 1.16) (line |1 > of Fig. 1.2), and the levels in this
second tower of states equally collapse as 1/N in the thermodynamic
limit.

• But contrary to the Ising model, these states are now dispersive and
the lowest excitation is now distant from the ground-state tower of
states by an energy of the order of J

L : it is the Goldstone mode of the
broken SU(2) symmetry.

Some of these properties are summarized in the supposed-to-be spectrum
of a Néel antiferromagnet described in Fig. 1.2 . This is to be compared to
exact spectra of the Heisenberg Hamiltonian on a square lattice (Fig. 1.3)[23]
or on an hexagonal lattice (Figs. 1.4, 1.5, 1.6 )[18].

A new light on the Mermin-Wagner theorem
The levels of the Anderson towers (of the macroscopic ground-state and

of the magnons), collapse as O(1/N). The ground-state multiplicity is sep-
arated from the softest magnon multiplicity by an energy O(1/L). If d ≥ 2,
the SU(2) symmetry breaking could be achieved without ambiguity and the
semi-classical picture is justified. On the other hand if d = 1, there is no
way to disentangle the different classes of eigen-states and the picture breaks
down. This approach gives thus a new light on the Mermin-Wagner theo-
rem which denies the existence of Néel long range order in 1 dimensional
magnets.

This global understanding of the spectra of finite size samples of antifer-
romagnets is a very useful tool to analyze exact spectra of spin models that
can be obtained with present computer facilities 9. It may probably help to
understand the time behavior of nano-scale SU(2) invariant antiferromag-
nets [25, 26, 27, 28].

9Historically the first authors to have looked for the Anderson tower of states were
probably A. Sütö and P. Fazekas in 1977 [24], and with the modern computational facilities
M. Gross, E. Sanchez-Velasco and E. Siggia [9, 10].
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Figure 1.2: Typical spectrum of a finite size collinear antiferromagnet with
Néel order. The tower of eigen-levels joined by the continuous line and noted
|0〉 is the Anderson tower of states needed to form a symmetry breaking Néel
ordered ground-state (Eq. 1.19): such a state is non stationary on a finite
size sample. The second set |1〉 (dashed line) is associated with the softest
magnon of the sample.

15



M X 

Figure 1.3: Results of exact diagonalizations of the Antiferromagnetic
Heisenberg model on the square lattice: eigen-energies vs eigen-values of
S2. The dashed-line is a guide to the eyes through the levels of the Ander-
son towers of state of the macroscopic ground-state. The dotted line joins
the states associated to the first magnon. In the ground-state tower there
is one eigenlevel for each S (as expected for a collinear antiferromagnet).
Depending on the parity of the total spin it is a k = 0 state or k = (π, π)
state, invariant in C4 rotations.
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K

Figure 1.4: Antiferromagnetic Heisenberg model on the honeycomb lattice:
eigen-energies vs eigen-values of S2. The dashed-line is a guide to the eyes
for the QDJS. The dotted line joins the states associated to the first magnon.
There is one QDJS for each S (as expected for a collinear antiferromagnet):
they are k = 0 states, invariant under a 2π/3 rotation around an hexagon
center, even (odd) under inversion, odd (even) under a reflection with respect
to an axis going through nearest neighbor hexagon centers for S even (odd)
(taken from ref. [18]).
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Figure 1.5: AF Heisenberg model on the honeycomb lattice, scaling of the
QDJS with S and N for N = 18, 24, 26, 28, 32 (taken from ref. [18]).

Figure 1.6: AF Heisenberg model on the honeycomb lattice, (a) energy per

site e0 versus N− 3
2 (b) spin-gap: The dashed line is a linear fit in 1/N :

for the sizes of interest the restriction to the leading term of the finite size
expansion is insufficient. The full line is a fit to eq. [12, 14]: ∆(N) =

1
4χN (1 − β c

ρ
√

N
) + O( 1

N2 ) where χ is the spin susceptibility, c is the spin-

wave velocity, ρ the spin stiffness and β is a number of order one (taken
from ref. [18]).
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1.3 When the adiabatic continuation scenario fails

1.3.1 Order from disorder selection

Thermal Order by Disorder selection in classical models

The concept of “order by disorder” was introduced in 1980 by Villain and
co-workers[29] in the study of the fully frustrated Ising model on the square
lattice.10 At T = 0 this model is disordered, with a residual entropy per
spin S0 = 1√

N
ln 2. Thermal fluctuations select ordered ferrimagnetic config-

urations, whence the name of ”order by disorder” or ”order from disorder”.
During the nineties, several authors have studied a somewhat less dras-

tic problem in classical frustrated vector models : it is the selection of a
special kind of long range order among a larger family of ordered solutions
classically degenerate at T=0 [30, 31, 32, 33, 34, 35, 36]. In the classical
models, the selection by thermal fluctuations of the simplest order, is due to
a larger density of low lying excitations around these solutions, whence an
increased Boltzmann weight of the corresponding domains of phase space
and a thermal (entropic) selection of order.

T = 0 order from disorder selection in quantum systems

A large density of low lying excitations also explains the selection of specific
spin ground-states when going from the T = 0 classical vectorial spin models
to their quantum counterpart. Let us consider the example of the J1 − J2

model on the triangular lattice. This Hamiltonian reads:

H = 2J1

∑

<i,j>

Si.Sj + 2J2

∑

<<i,k>>

Si.Sk (1.24)

where J1 and J2 = αJ1 are positive and the first and second sums run on
the first and second neighbors, respectively. For classical spins [34], and

10In this model the next neighbor couplings along all the rows are ferromagnetic as
well as those on the odd columns (named A in the following). The couplings on the even
columns (named B) are antiferromagnetic. It is assumed that

0 < |JAB | < JBB < |JAA|. (1.23)

The ground-states of this model have A columns (resp B) ferromagnetically (resp. an-
tiferromagnetically) ordered. For a system with a number of sites N = 0 [mod 4], the

degeneracy of this ground-state is 2
√

N , its entropy per spin S0 = 1√
N

Ln2 is negligible
in the thermodynamic limit. At T = 0 the ground-state has no average magnetization
and is disordered. The picture changes when thermal fluctuations are introduced: it is
readily seen that a B chain sandwiched between two A chains with parallel spins has lower
excitations than a B chain sandwiched between two A chains with anti-parallel spins.
This gives a larger Boltzmann weight to the ferrimagnetically ordered system. Villain and
co-workers have been able to show exactly that the system is indeed ferrimagnetic at low
T . They were equally able to show that site dilution (introducing non magnetic species)
was in a certain domain of composition and temperature able to select the same ordered
pattern, whence the name of “order by disorder”.
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1/8 < α < 1, the competing interactions leads to a continuous degeneracy
of the ground-state described in Fig. 1.7. The study of the excitations of
these various ground-states, shows a larger density of low lying excitations
around the collinear 2-sublattice solutions. This property is the signature of
a weaker restoring force toward this configuration (larger well width in phase
space). Insofar as the semi-classical spin-wave approach is valid, this implies
that the zero point quantum energy

∑

q∈BZ∗
ωq

2 of Eq. 1.21 is smaller for this
solution, which will thus be energetically selected by “quantum” fluctuations
(for more details see the original papers by Chubukov and Jolicoeur [35] and
Korshunov [36], Deutscher and Everts [37]).

Lecheminant et al. have given a direct illustration of the partial restora-
tion of symmetry through the effects of quantum fluctuations on the An-
derson tower of states [38]. The 4-sublattice Néel order is embedded in an
Anderson tower with a multiplicity of order O(N4) called {4Ẽ}. These lev-
els appears to be the low lying levels on the exact spectra of small samples
(see the spectrum of the N = 16 spins sample in Fig. 1.8). But with the
increase of the sample size, quantum fluctuations with longer wave-length
favor the special set of levels embodying the 2-sublattice Néel order {2Ẽ}
(bars in Fig. 1.9). The other levels evaporate gradually and don’t collapse
to the macroscopic ground-state in the thermodynamic limit.

The selection of order is, in this case, much less drastic than in the
original problem of Villain. It amounts essentially in an enlarging of the
symmetry of the classical ground-state through quantum fluctuations. As it
has been underlined previously such a problem is readily accessible to spin-
waves calculations. We will now move to more drastic enlargements of the
ground-state symmetry through quantum fluctuations, which can no more
be tackled by spin-wave calculations.

1.3.2 A partial restoration of the SU(2) symmetry by quan-
tum fluctuations: the p-nematic magnet

Interplay of frustration and quantum fluctuations may lead to more surpris-
ing quantum ground-state.

The ring exchange model

The following example is drawn from a work by A. Läuchli el al.[39]. The
SU(2) invariant Hamiltonian involves a first neighbor Heisenberg term and
cyclic ring exchange on the plaquettes of a square lattice:

H = K
∑

t t

t t

(P1...4 + h.c) + J
∑

t t

Si.Sj (1.25)
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Figure 1.7: Top: 4-sublattice classical ground-state. Spins in the sublattices
A and B, as well as spins in C and D, make an angle 2θ. The plane of the
spins of A and B makes an angle φ with the plane of the spins of C and
D. Bottom: the collinear solutions with the three possible arrangements (in
this case, classical spins in sublattices A and B are antiparallel).

21



Figure 1.8: Top: spectrum of J1 − J2 model on the triangular lattice for
the N = 16 sample. Bottom: zoom on the difference between the exact
spectrum and the energies E0(S) of the low lying levels of the toy model
associated to the present problem (see Lecheminant [38]). The ground-state
multiplicity {4Ẽ} is well separated from the magnons.

22



Figure 1.9: Zooms on the N = 16 and N = 28 Anderson tower of states of
the J1−J2 model on the triangular lattice (after Lecheminant [38]). A global
contribution ∝ E0(S) is subtracted from the exact spectrum. The bars
represent eigenstates which belong both to {2Ẽ} and {4Ẽ}. The triangles
indicate states which belong to {4Ẽ} but not to {2Ẽ}. With increasing sizes,
the subset {2Ẽ} is stabilized and separates from the pure 4-sublattice order.
For N = 28 the two states of {2Ẽ} with even S are quasi degenerate and
cannot be distinguished at the scale of the figure.
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P1...4 is the cyclic permutation of the 4 spins sitting around a square plaque-
tte, and the various sums run respectively on the plaquettes and bonds of
the lattice. Expression of the 4-spin permutation in terms of spin operators
leads to:

H = 4K
∑

t t

t t

[(S1.S2)(S3.S4) + (S1.S4)(S2.S3) − (S1.S3)(S2.S4)] (1.26)

+ (J + 2K)
∑

t t

Si.Sj +K
∑

��t
t

Si.Sj + (KN)/4.

For Jeff = J + 2K = 0, the physics of the quartic model is tightly
related to the physics of the vectorial chirality on the square plaquettes.
The vectorial chirality around a square plaquette is defined as:

C = S1 ∧ S2 + S2 ∧ S3 + S3 ∧ S4 + S4 ∧ S1 (1.27)

and it square reads:

C2 = −2 [(S1.S2)(S3.S4) + (S1.S4)(S2.S3) − 2(S1.S3)(S2.S4)] (1.28)

−1

2
[S1.S2 + S2.S3 + S3.S4 + S4.S1] − 2 [S1.S3 + S2.S4] +

3

2
.

The full hamiltonian (Eq.1.26) can be written as:

H = −2K
∑

t t

t t

C2 + V (1.29)

where the perturbation V is:

V = +4K
∑

t t

t t

(S1.S3)(S2.S4) + 3K
∑

��t
t

Si.Sj − 2K
∑

t t

Si.Sj + 13K N/4

(1.30)

Classical phase diagram

The maximization of the vectorial chirality leads in the classical limit to an
orthogonal state: i.e. a state with 4 sublattices, planar long range order and
orthogonal spins on neighboring sites. The orthogonal state is the classi-
cal ground-state of Eq. 1.26 for J = −2K. When J moves away from the
value −2K, Jeff frustrates the orthogonal state by introducing an effec-
tive ferromagnetic second neighbor interaction. For a large enough negative
Jeff , the classical system is driven to the ferromagnetic phase, while an
antiferromagnetic Jeff drives it to the standard (π, π) Néel phase.
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Ferromagnet

Neel

K

J

Staggered Dimer

Spin

Nematic

θ

Columnar Dimer

orthogonal

four sublattice

AFM

?

Figure 1.10: Phase diagram of the K−J ring exchange model on the square
lattice, from Läuchli et al.[39]. In the range of parameters in white, (with a
questionmark), Shannon et al.[40] have found an SU(2) symmetry breaking
n-nematic phase.
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Quantum phase diagram

The orthogonal state is also the quantum ground-state of Eq. 1.26 for
J = −2K. But action of perturbations leads to intermediate phases be-
fore recovering either the ferromagnetic phase, or the (π, π) Néel phase (see
phase diagram in Fig. 1.10). We will first discuss the p-nematic phase ob-
tained by destabilization of the 4 sub-lattice order by an antiferromagnetic
first neighbor interaction.

The p-nematic phase

In this phase there is no long range order in spin-spin correlations, but there
is (π, π) long range order in the vectorial chirality C defined in Eq.1.27. The
magnetization per spin is zero, but the current of spin around the square
plaquettes remains ordered. This phase takes its name from the nature of
the order parameter, which is no more a vector (an operator linear in spin)
but a tensor (quartic in spin). 11 Such an ordered phase

• breaks the spin rotational symmetry of the original hamiltonian: in the
nematic state, the spins are disordered but they live in a plane. Its
first excitations are Goldstone modes: pseudo-spin waves which only
differ from the usual ones by subtle selection rules (see next item).

• It also breaks the inversion symmetry (as a simple magnetic moment)
but, contrary to simple magnetic moments, it does not break time
reversal symmetry.

All these properties can be immediately disclosed from the analysis of the
spectra and of their finite size scaling displayed in Fig.1.11. Contrary to the
4-sublattice order which totally breaks the spin rotational symmetry, in the
nematic state the rotational symmetry in the spin plane is unbroken (U(1)
symmetry is conserved). Evolution from the 4-sublattice phase to the vec-
torial chiral phase corresponds to a partial restoration of SU(2) symmetry.
This enlargement of the symmetry is accompagnied by a decrease of the
number of Goldstone modes from 3 to 2 (see [39] for details)

The scenario describing the evolution from the orthogonal 4-sublattice
order to this nematic state can be described in simple words as follows. The
Jeff Heisenberg term frustrates the 4-sublattice order. Associated to the
disordering effect of quantum fluctuations it tends to kill the 4-sublattice
macroscopic magnetic moment, but the quartic term which remains domi-
nant protect the vectorial chirality. By the fact, the quantum fluctuations

11To be more precise it is an irreducible rank-1 tensor, that is a pseudo vector. This
denomination nematic was introduced by Andreev and Grishchuk [41] and further used
by Chandra and Coleman[42]. In the n-nematic studied below the order parameter is the
irreducible symmetric tensor of rank-2: the order parameter is a director, a symmetry
encountered in liquid crystals.
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Figure 1.11: Low lying levels of the exact spectra of the orthogonal 4-
sublattice Néel state (θ = 0.85π) (left) and of the nematic phase θ = 0.31π
(right) versus S(S+1) the eigenvalue of the square of the total spin. The
different symbols are associated to the different IRs of the rotation group
D4: upright triangle, A1, square, A2, downwards triangle, B1, tripod, B2,
cross, E. The levels between the two dashed lines in the left figure are the
levels of the Anderson tower of states explicited in ref. [39]. There are 2S+1
distinct levels for each value of the total spin S, because of the full symme-
try breaking of SU(2). In the nematic phase on the contrary SU(2) is only
broken to U(1), and there is only one (degenerate) S level in the Anderson
tower. In the insets, one can see that in both phases, these levels collapse as
in 1/N to the ground-state: supporting the continuous symmetry breaking
schemes.
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Figure 1.12: From the orthogonal 4-sublattice Néel state (left) to the nematic
phase (right).

increase more rapidly in the plane of spins than perpendicular to it, and the
plane of spins remains locked, albeit the spin disorder perpendicular to the
vectorial chirality (see the cartoon given in Fig.1.12).

It may be noticed that usual spin-approaches fail to disclose this symme-

try breaking phase.

Further increase of the antiferromagnetic frustration overcomes the pro-
tecting effect of the quartic term on the vectorial chirality, the plane of spins
unlocks under the conjugate effects of frustration and quantum fluctuations
and the system is driven to a fully SU(2) invariant staggered VBC studied
in the next section and chapter.

The n-nematic phase

The transition from the ferromagnetic phase to the 4-sublattice Néel phase
also involves intermediate phases in the quantum case. From the ferromag-
netic phase and under the influence of the quartic term which frustrates
the ferromagnet the system passes through an SU(2) symmetry breaking
phase without spin order on any site. The order parameter is a director,
that is a symmetric tensor of rank 2 build from two neighboring spins. This
phase breaks SU(2) and its first excitations are modes associated to ∆S = 2
excitations (see [40] for more details).

1.3.3 Full destruction of the semi-classical phases by quan-
tum fluctuations: VBC and RVB phases

As shown in Fig. 1.10, the two SU(2) symmetry breaking phases the chiral
p-nematic phase and the (π, π) Néel phase are separated by a phase that we
call a Valence Bond Crystal. In this phase there is no long range order in
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spin 12. But there is (π, π) long range order in the pattern of singlet
bonds: whence the name of Valence Bond Crystal. This phase does not
break SU(2) symmetry, but breaks the lattice symmetry (both translation
and C4). Its first excitations are gapped ∆S = 1 modes. Valence Bond
crystals will be the subject of the next lecture.

Valence Bond Crystals are sometimes classified as spin liquids inasmuch
as there is no long range order in spins. We use exclusively the name of Spin
Liquids, or better of Resonating Valence Bond Spin Liquids (RVB in
the following) for phases which do not break any local symmetry.
13

Resonating Valence Bond Spin Liquids will be the subject of the last
lecture.

1.3.4 Some omissions, and relevant refs.

A few points of importance have been omitted in this first chapter.
First the question of order by disorder in systems where the degeneracy

of the classical ground-state is so large that there is a residual entropy per
spin at T = 0. It is the case of the Heisenberg model on the kagome or
pyrochlore lattices. The answer is probably not unique (as will be seen in
next chapter where we study the model on the 2-dimensional or checker
board lattice), and probably depends on the value of the quantum spin in
a unit cell of the lattice. This point has been extensively analyzed in ([47]).
To our knowledge nothing radically new appears on the subject since that
review. This remains a very difficult issue.

The second point of importance concerns the nature of the quantum
phase transitions between these different phases. Senthil, Vishwanath, Ba-
lents, Sachdev and Fisher have recently proposed a new scenario to describe
the excitations at the quantum critical point between the colinear Néel or-
der and the Valence Bond Crystal[48]. In this scenario, beyond the Landau
paradigm, unconfined spin-1/2 excitations become the dominant gapless ex-
citations. The above mentioned ring exchange model on the square lattice
would be an excellent model to check this field theoretical approach. To our
knowledge nothing has been done up to now in this direction.

....

12nor in any tensorial order parameter of rank non zero built with the original spins
13It has been advocated, by Read, Sachdev and collaborators[43, 44, 45, 46] on the basis

of the study of quantum fluctuations around mean field saddle points solutions of large
N models (Sp(N)) that destruction of collinear order should systematically give rise to
these VBC phases, whereas the pure Resonating Valence Bond Spin Liquids (RVB in the
following), which do not break any local symmetry, were to be expected in quantum models
where the classical counterparts have non collinear order. Up to now exact diagonalizations
of SU(2) models up to now strongly support this assumption. For more details, see the
above-mentionned refs. The review by Misguich et al. [47] gives a quick summary of the.
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1.4 Complement-1 A simple conceptual approach
of the translational symmetry breaking in a

solid

For a while we exclude any calculations and just rely on very simple and basic
concepts of condensed matter physics and quantum mechanics to derive the
“necessary” structure of the spectra of ordered condensed matter in finite
size samples. For the sake of simplicity, we begin with the problem of the
solid phase. We successively expose the fundamental classical hypothesis
underlying the theory of solids. Quantization of this picture enlightens the
translational symmetry breaking mechanism and finite size effects give a
new light on the absence of solid order in 1-dimensional physics.

1.4.1 An essential classical hypothesis

Let us consider a finite sample of solid with N atoms of individual mass m.
The Hamiltonian of this piece of solid contains a kinetic energy term and an
interaction term U(ri − rj), which essentially depends on distances between
the N atoms, and is translation invariant. Nevertheless any piece of solid in
nature breaks translational symmetry!

The first step in the description in classical phase space of the dynamics
of this object with 2dN degrees of freedom, consists in sorting these variables
in two sets:

• the center of mass variables: Rc.o.m and Pc.o.m, the dynamics of which
is a pure kinetic term K:

K =
P2

2Nm
(1.31)

• and the 2d(N − 1) internal variables, which obey a dynamic with
interactions:

Hint =
∑

i∈[1,..,N ]

[

pi
2

2m
+ U(ri − rj)

]

(1.32)

Then invoking the inertia principle, the analysis of the problem focuses
on the Galilean frame, where the center of mass is at rest. In this frame,
the internal excitations are analyzed in first approximation as modes of
vibrations: the phonons, which present a dispersion law linear in k for small
wave vectors k.

In so doing, an essential dichotomy is introduced between the global
variable and its dynamics on one hand and the internal excitations on the
other: this dichotomy is at the basis of the concept of an ordered phase [49].
A technical asymmetry is also introduced in the treatment of the dynamics
of these two sets of variables: the center of mass dynamics is described in

30



a classical framework which explicitly breaks the translation invariance of
the total Hamiltonian of the solid K+Hint. On the other hand the internal
excitations are looked at in a translationally invariant (eventually quantum)
point of view. This point of view may seem inconsistent in particular when
looking at a finite sized, eventually small, piece of solid.

Taking as a definition of the solid phase the essential distinction between
the global variable and the internal ones, we will show that the technical
asymmetry in the treatment of these variables can be easily overcome, thus
explaining both the localization of a piece of solid in real space, and the
influence of space dimensionality on the definition of this solid.

1.4.2 Quantization of the classical approach, finite size spec-
tra, thermodynamic limit and translational symmetry
breaking

In order not to break artificially the translational symmetry of the problem
we consider a solid with periodic boundary conditions.

If we take for granted that it is legitimate to disconnect the center of
mass dynamics from the internal excitations we may consider a solid at
T = 0 with no internal excitations: the vacuum of phonons that we will
write |0 >.

The translationally invariant eigen-states of K are the plane waves with
wave-vectors k where kx,y,z = nx,y,z

2π
L , L is the linear length of the sample

and nx,y,z non zero integers. Their eigen-values are of the general form:

~2k2

2mN
. (1.33)

The total energy of the solid in these states is thus of the form:

E0(k) =
~2k2

2mN
+ Eg, (1.34)

where Eg is a constant measuring the zero point energy of the internal
degrees of freedom. These eigen-states are shown in Fig. 1.13 connected by
the red continuous line noted |0 >.

In order to localize the center of mass it is necessary to form a wave-
packet with eigen-states of K showing a large distribution of wave-vectors k:
the largest the k-distribution be, the better the localization of the center of
mass. Such a wave-packet is non stationary for a finite size, but its evolution
rate goes to zero as O(1/N). Localization of the center of mass is thus a
costless operation in the thermodynamic limit.

Let us look now to the first excitation of the solid with one phonon of
wave vector kmin = 2π/L. This state can typically be written in a symmetry
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Figure 1.13: Typical spectrum of a finite size solid. The tower of eigen-levels
joined by the continuous line and noted |0〉 is the Anderson tower of states
needed to form a symmetry breaking vacuum of phonons of the solid: such
a state is non stationary on a finite size sample. The second set |1〉 (dashed
line) is associated with the lowest phonon.

breaking picture as:

|1 >= exp





∑

j

ikmin.rj



 |0 > (1.35)

It thus involves a linear superposition of eigenstates of K+Hint with a dis-
tribution of wave vectors displaced by kmin with respect to the distribution
of the localized ground-state |0 >. This second set of excitations is displayed
in Fig. 1.13 with a dashed line noted |1 > joining the different eigen-states.
The softest phonon has an energy proportional to kmin ∝ L−1 ∝ N−1/d

which should be added to the ground-state energy (1.34) giving eigen-states
with eigen-energies:

E1(k) =
~2k2

2mN
+ Eg + ~ck, (1.36)

where c is the sound velocity. Due to the structure of equation (1.36) the
line joining the different translation invariant states of this soft phonon is
parallel to the ground-state line |0 >. This explains the supposed-to-be
structure of the low lying levels of a finite size solid exhibited in Fig. 1.13.
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1.4.3 Thermodynamic limit, stability of the solid and self-
consistency of the approach

The consistency of the semi-classical picture implies that the localization
of the center of mass could be done whatever the degree of excitations of
phonons: looking to the finite size effects this appears to be the case if
the dimension of space if larger or equal to 2. In these situations, for large
enough sizes there appears two different scales of energy: the Anderson tower
of states of the ground-state collapses as N−1 to the absolute ground-state
whereas the softest phonon collapses on the ground-state only as N−1/d. In
this limit, the dichotomy between the dynamics of the global variable and
the internal variables is totally justified. On the other hand in 1 dimension it
is quantum mechanically inconsistent to separate global degrees of freedom
from internal ones: these two types of variables having dynamics that cannot
be disentangled.

1.5 Complement-2: SU(2) symmetry breaking in

the Néel antiferromagnet

Let us now develop the analogy between the solid states and the antiferro-
magnetic ones.

• The global variables of the solid are Rc.o.m and the conjugate variable
Pc.o.m. In the collinear antiferromagnetic case the global variables
of position of the magnet are the two Euler angles (θ, φ) allowing to
point the direction of the sublattice magnetization in spin space. Their
conjugate variable is the total spin operator S.

• The free motion of the center of mass is governed by the Hamiltonian
K (the quadratic form of this kinetic energy being related to the ho-
mogeneity of space). By analogy we expect the kinetic energy term
describing the free precession of the sublattice magnetization to be of
the form: Kspin = S2

tot/2van
14. In such a point of view the constant a

is just a multiplicative term: we know from other sources (fluctuation
dissipation theorem or macroscopic approach of the magnet) that this
is up to a constant the homogeneous spin susceptibility.

• The eigen-states describing the free precession of the order parameter
in the vacuum of magnons are thus states with total spin S (ranging

14A three sublattice Néel order has a more complicated order parameter: the three Euler
angles are needed to localize the 3 sublattice magnetizations: and the macroscopic object
is no more a rigid rotator as in the case of the collinear Néel order but a (symmetric)
top. There is in that last case an extra internal spin kinetic energy term and as already
explained in the previous section the Hibert space of the problem is larger. See ref. [1] for
example or the quantum mechanical theory of symmetric top molecules.
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from 0 to N/2), and eigen-energies:

E0(S(S + 1)) =
~2S(S + 1)

2χN
+ Eg (1.37)

They form the set |0 > of Fig. 1.2. By forming a wave-packet out of
this set one can localize the direction of the sublattice magnetization
and break SU(2) symmetry.

• The discussion of the first excitations above the vacuum of magnon
completely parallelizes that of the phonons excitations (same disper-
sion law and same finite size scaling law). The eigen-energies of the
states embedded in the softest magnon (referred as |1 > in Fig. 1.2)
are thus of the form:

E1(S(S + 1)) =
~2S(S + 1)

2χN
+ Eg + ~cskmin (1.38)

where cs is the spin wave velocity.

• The possibility of a spin rotational symmetry breaking at the thermo-
dynamic limit is embodied in the finite size behavior of the low lying
levels of the spectra (Fig. 1.2). In dimension d ≥ 2 the eigen-states
of the sets |0 > (resp. |1 >) collapse on their S = Smin component
as O(N−1), more rapidly than the decrease in energy of the softest
magnon which is O(N−1/2). In dimension 2 and higher, the SU(2)
breaking mechanism prevails on the formation of magnon excitations
justifying the classical approach and the dichotomy between global
classical variables and internal excitations.

• These finite size scalings of the Anderson tower of states and of the
true physical excitations (the magnons) give a new light on the Mermin
Wagner theorem which denies the existence of Néel long range order
in 1 dimensional magnets.
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Chapter 2

Valence Bond Crystals

In this chapter we will concentrate on situations where there is no SU(2)
symmetry breaking, no long range order in spin-spins correlations (which
decrease exponantially with distance), BUT long range order in dimer
or larger S = 0 units: we will call these phases generically Valence Bond
Crystals (VBC).

Except at a quantum critical point, all excitations of a VBC are gapped.
Depending on the lattice geometry, such a wave function can sponta-

neously break some lattice symmetry (spontaneous VBC) or can remain
fully symmetric (explicit VBC).

2.1 1-dimensional VBC

Such ground-states are well known in 1-dimensional problems as for example
in the spin-1/2 A.F. J1 − J2 model:

H = J1

∑

<ij>

Si.Sj + J2

∑

<<ij>>

Si.Sj (2.1)

where the first (resp. second) sums run on first (resp. second) neighbors. In
1-d, for J2/J1 > 0.24, the ground-state is dimerized and there is a gap to the
first excitations: this is the simplest case of a VBC. In fact for J2/J1 = 0.5
(Majumdar and Ghosh point) the doubly degenerate ground-states are exact
product of valence bonds:[50, 17]

|MG± >=

N/2
∏

n=1

|(2n, 2n ± 1) > . (2.2)

Here and in the following we call valence bond a pair of spins in a singlet
state, and note it:

|(i, j) >=
1√
2
{ |i,+ > |j,− > −|i,− > |j,+ > } . (2.3)
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Other 1-D (the Heisenberg chain with alternate coupling) or quasi 1-D
systems (ladders) also exhibit valence bond long range order and can be
classified as VBC (see the revue by Lecheminant in the volume ’Frustrated
Spin Systems (Diep editor) [51]).

First excitations are usually gapped, they are in general integer spin ex-
citations appearing as modes, separated from a continuum of two-particle
excitations. There are some exceptions: the J1 − J2 model where the exci-
tations are scattering pairs of spin-1/2 solitons forming a continuum (this
is quite specific of the 1-D system), or frustrated ladders [52], where excita-
tions appear as a continuum of dynamical pairs of singlet or triplet domain
walls.

2.2 A quick glance on two-dimensional VBC

2.2.1 The J1 − J2 model on the square lattice

The more studied example and still the more debated! (For a more detailed
approach see Misguich [47])

In a classical approach, the ground-state of Eq. (2.1) on a square lattice
has a soft mode at (π, π) for J2/J1 < 0.5. At J2/J1 = 0.5, the (π, π) order
is degenerate with 4-sublattice order and collinear (π, 0) or (0, π) order. For
J2/J1 > 0.5, quantum fluctuations select the collinear (π, 0) or (0, π) order
by the phenomenon of “order by disorder” (see Fig. 2.1).

In a naive approach, comparing the energies of classical Néel solutions
to valence bond covering ones, we would conclude that any valence bond
covering solution is more stable than any classical Néel order in a large
range of parameters around J2/J1 = 0.5. In fact “quantum fluctuations”
stabilize the Néel states and the window for an exotic phase is smaller than
indicated in Fig. 2.1. The nature of the quantum phase(s) on the square
lattice at J2/J1 = 0.5 is still hotly debated [53, 54, 55, 56, 57, 58]1.

1At this point of maximum frustration, Néel order is destroyed but the exact nature
of the phase is uncertain: columnar order [53, 55], 4-spin plaquette order [54, 57] or RVB
spin liquid [58]? In view of exact spectra for sizes up to N=36, it seems that the 4-spin
S=0 plaquette order is the less plausible (because the k = (π, π) states necessary for
the 2-fold symmetry breaking of this state is very high in the spectrum). We expect a
4-fold symmetry breaking in the columnar state as well as in the RVB state ([59] and
refs. therein). The gaps from the ground-state to the plausible candidates for these 4-fold
symmetry breakings are still very large in the N=36 sample. We are thus lead to conclude
that the N=36 sample is too small to give informative issue on the dilemma: columnar
state or RVB state. This strongly weakens the variational argument of ref. [58].
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Figure 2.1: Schematization of different variational solutions of the J1 − J2

model on the square lattice
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2.2.2 More consensual examples: from strong coupling solu-
tions to explicit VBC

When the Hamiltonian has some inequivalent bonds and an integer spin in
the unit cell (even number of spin-1

2 for instance)2 the system can take full
advantage of the strong bonds and minimize the effects of the frustrating
ones.

The Shastry-Sutherland model and the 1/5 depleted square lattice are in
this class. Two spin-1

2 experimental examples of 2D (explicit) VBC have re-
cently attracted attention: CaV4O9[60, 61, 62, 63, 64, 65] and SrCu2(BO3)2.[66,
67, 68, 69, 70, 71, 72, 73, 74, 75]. See the original papers or [47] for more
details.

In such cases the explicit VBC is the “natural” strong coupling solution.
One can build a simple Hamiltonian in which the bonds which are not oc-
cupied by the singlet objects are turned off. The resulting model is a set of
small decoupled clusters (dimers or larger plaquettes) and the ground-state
is a trivial product of singlets. Importantly, this strong coupling limit has
the same lattice symmetry as the original one. Going back to the original
Hamiltonian no quantum phase transition is encountered when going from

the trivial singlet product up to the real interacting ground-state.

2.2.3 Spontaneous VBC

In contrast to the previous example, there exist situations, where frustration
makes regular pattern of singlet objects more favorable than other solutions
but there is no unique elected position for the 2n-mers and a symmetry
breaking must take place in order to form a VBC. This is what we call
Spontaneous VBC. Models with an half-odd-integer spin in the unit cell
cannot realize a VBC unless they spontaneously enlarge their unit cell.

The J1 − J2 model around J2 − J1 ∼ 0.5 is the usual first example of
spontaneous VBC. Fortunately there are other examples less difficult for
theoreticians.

The two phases adjacent to the (π, π) Néel phase in the ring exchange
model on the square lattice (studied in the previous chapter) are two good
examples of Valence Bond Crystals, where the pattern of valence bonds is
either columnar or staggered.

For fun, and further discussion of correlated issues, we will now describe
in details a more exotic clear cut Valence Bond Crystal with a larger basic
unit: the Heisenberg model on the checkerboard lattice [76, 22] (noted in
the following HCKB).

2As it is the case in the alternate spin Peierls chain
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Figure 2.2: The checkerboard lattice: the spins sit at the vertices shown by
bullets, all couplings are identical, u1,u2 are the unit vectors of the Bravais
lattice.

2.3 The Heisenberg model on the checker-board

lattice: an example of a Valence Bond Crystal

The checker-board lattice is made of corner sharing tetrahedrons, with all
bonds equal: this a 2-dimensional slice of a pyrochlore lattice. The under-
lying Bravais lattice is a square lattice and there are two spins per unit cell
(Fig. 2.2).

2.3.1 Classical ground-states

The Heisenberg Hamiltonian on such a lattice is highly degenerate in the
classical limit. Due to the special form of the lattice this Hamiltonian can
be rewritten as the sum of the square of the total spin of corner sharing
units α :

H = J
∑

(i,j) bonds

Si.Sj ≡
J

2

∑

α units

Sα
2 − NJ

4
. (2.4)

A classical ground-state is obtained whenever ∀α Sα = 0. Such ground-
states have a continuous local degeneracy and an energy −(NJ)/4. This
is much higher than the valence bond covering energy, which is −(3NJ)/8.
As we will see below, there is no memory of these classical solutions in the
quantum ground-states and no selection of order out of disorder.

2.3.2 The Quantum HCKB model: Spin Gap

The first salient feature of the Heisenberg model on the checker-board lattice
is the existence of a large spin gap (Fig. 2.3). This indicates that the ground-
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Figure 2.3: Gap between the absolute ground-state and the first S=1 exci-
tation of the HCKB model versus sample sizes.

state does not break the SU(2) symmetry of the Hamiltonian, and as a
corollary we expect that the spin-spin correlations decrease exponentially to
zero at large distance (which seems well verified, see ref. [22]).

2.3.3 Degeneracy of the ground-state and space symmetry
breaking in the thermodynamic limit

The low lying levels of the spectra of the HCKB model in the singlet space
are displayed in Fig. 2.4.

In this figure, one reads that the first excited singlet state very plausibly
collapses to the absolute ground-state, whereas a finite gap to the third S=0
level (perhaps smaller than the spin gap) build on with sample size. This
pleads in favor of a 2-fold degeneracy of the absolute ground-state in the
thermodynamic limit.

The absolute ground-state is in the trivial representation of the lattice
symmetry group. Its wave function is invariant in any translation and in any
operation ofD4 (group of π/2 rotations around point O and axial symmetries
with respect to axes u1 and u2 ). The S=0 excited state which collapses on
it in the thermodynamic limit has a wave vector (π, π), and is odd under
π/2 rotations and axial symmetries. In the thermodynamic limit the 2-fold
degenerate ground-state can thus exhibit a spontaneous symmetry breaking
with a doubling of the unit cell.
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Figure 2.4: Gaps to the first (open up triangles) and second (black squares)
level of the singlet sector. For the studied samples these two “excited”
singlet levels are in the singlet-triplet gap (See Fig. 2.3).

Such a restricted symmetry breaking does not allow a columnar or stag-
gered configuration of dimers: both of these states have at least a 4-fold
degeneracy (Fig. 2.5). The simplest Valence Bond Crystals that allow

Figure 2.5: Columnar and staggered configuration of dimers (fat links) on
the checkerboard lattice: such symmetry breaking configurations are 4-fold
degenerate in the thermodynamic limit.

the above-mentioned symmetry breaking are described by product wave-
functions of S=0 4-spin plaquettes.

A further analysis of the space symmetries of the doublet ground-state
done by Fouet and coworkers [22] shows that the basic unit of the g.-s. is a
4-spin S=0 plaquette sitting on void squares (B configuration of Fig. 2.6),
with wave-function:
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Figure 2.6: S=0 4-spin plaquette valence-bond crystals on the checkerboard
lattice: fat links indicate 4 spins involved in a singlet.

|ψ+ >= |α, δ > |γ, β > +|α, β > |γ, δ >, (2.5)

where |α, γ > is the VB singlet state on sites α and γ:

|α, γ >= (|α ↑, γ ↓> −|α ↓, γ ↑>)/
√

2. (2.6)

A simple remark could be done: the symmetric-plaquette state (Eq. 2.5)
can be rewritten as the product of two triplets along the diagonals of the
square. This configuration of spins is not energetically optimal on the
squares with antiferromagnetic crossed links (A configuration) but is favored
in B configuration. The variational energy per spin of the product wave-
function of ψ+- states in B configuration is Evar(B

+) = −0.53, whereas the
exact energy per spin is Eex ∼ −0.514 ± 0.006. The variational w-f is a
very good approximation of the exact ground-state, as can be seen also on
dimer-dimer and plaquette-plaquette correlations [22].

2.3.4 Excitations: raw data and qualitative description of
the first excitations

Triplet excitations are gapped (gap of the order of 0.7) and very weakly
dispersive. Singlet excitations too are gapped; they are much more dispersive
than the triplet excitations and less energetic (gap of the order of 0.25). See
Fig. 2.7.

There is a very simple variational description of the triplet excitations:
let us consider the 4-spin plaquettes B of the ground-state. The S=0 ground-
state is formed from the coupling of two triplets along the diagonals. There
are four S=1 states on such a plaquette. The lowest S=1 excitation simply
results from the S=1 coupling of the two diagonal triplets. The gap to this

3This is to be compared to the variational energy per spin of a pure dimer covering
which is only: - 0.375
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Figure 2.7: Left: Dispersion relations of the triplet (left) and singlet exci-
tations (right) of the Heisenberg model on the checkerboard lattice versus
|k|/|k0| with k0 = (π, π). The insets show the correspondence between the
colors of the symbols and the wave vectors in the Brillouin zone. The hori-
zontal dashed line in the singlet excitations graph indicates the spin-gap.

variational excitation is 1. The Bloch waves built on such excitations are
non dispersive. Up to a renormalization of the gap of the order of 33%, this
picture appears as a good qualitative description of the true S=1 excitations
of the HCKB model, which are massive, quasi localized excitations with an
energy gap ∼ 0.7.

The singlet excitations are more intricate. Fouet et al. argue that these
excitations may be associated to the reorganization of two symmetric ψ+

states on two neighboring B positions. More precisely the excitation which
promotes the two pairs of spins (α, δ) and (β, γ) into triplet states and then
couples them in a singlet has a gap 1 with respect to the ground-state. To
first order in a strong coupling expansion this excitation is non dispersive
but it can acquire dispersion at higher order. The exact S=0 excitations
are thus certainly a bit more extended and complex that this first order
approximation. Berg et al. [77] have used a more sophisticated method
(determination of an effective hamiltonian by a real space renormalisation
method called CORE), and plead for domain walls between the two degen-
erate ground-states as the lowest excitations in the S = 0 sector.

This simple analysis of the singlet and triplet excitations of the HCKB
model supports the idea that the excitations are simple integer spin modes
or continua that could be observed in Raman, RPE, ESR or NMR spectra.
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2.4 Valence Bond Solids

The concept was introduced by Affleck, Kennedy, Lieb and Tasaki (AKLT).[78,
79] The VBS wave-function can be constructed whenever the spin S on a
site is a multiple of one half the coordination number z: 2S = 0 mod z.

Let us consider the simplest case 2S = z. In that case the local spin S
can be seen as the symmetric combination of 2S (fictitious) spin-1

2 . On each
bond of the lattice one can make a singlet between two fictitious spins-1

2 .
Such a product of singlets does not belong to the physical Hilbert space
of the original spin-S model but to a much larger space. The VBS wave-
function is defined as the projection of the singlet-product state onto the
physical space. This projection amounts to symmetrize (for all lattice sites)
the wave-function with respect to the fictitious spins to force them into a
physical spin-S state. By construction the VBS wave-function is a spin
singlet and breaks no lattice symmetry. By extension we may say that a
system is in a VBS phase if its ground-state can be adiabatically transformed
into the VBS wave-function without crossing a phase transition.

Simple Hamiltonians with short ranged and SU(2)-symmetric interac-
tions for which the VBS is an exact ground-state can be constructed with
the use of sum of projectors[78, 79]).

As the VBC, models in the VBS phase have a gap to all excitations4

but their wave-functions are slightly more complex and their order param-
eter is non-local. The order of VBS is associated to long-ranged singlet-
singlet correlations in the fictitious spins. Expressing such observable in
terms of the physical spins leads to a non-local quantity called string order

parameter.[80, 81] Contrary to explicit VBC, VBS have fractionalized de-
grees of freedom at the edges of the system with open boundary
conditions. These are simply associated to the unpaired fictitious spins.
To our knowledge these properties have not been explored in quantum 2D
systems.

The spin-1 Heisenberg or Haldane chain is the prototype of VBS in
1D. Such a state has a unique ground-state, a gap in the excitations and
exponentially decreasing spin-spin and dimer-dimer correlations.

A spin-3
2 specific SU(2)-invariant model on the honeycomb lattice[78, 79]

is another example of 2D VBS. The spin-1 Heisenberg model on the kagome
lattice was proposed to realize a VBS-like ground-state[82] in which singlets
form on every hexagon without any spontaneous symmetry breaking (hexag-
onal singlet solid).5 A similar approach was carried out for the spin-1 py-

4This may however not always be true when the coordination number of the lattice is
large.[78] In such cases the VBS wave-function is still a spin singlet but has long-ranged
spin-spin correlations. We do not consider such cases here.

5Each kagome site belongs to two hexagons. Each physical spin-1 can be split into
two spin- 1

2
, each of them being involved in the formation of a singlet on one neighboring

hexagon.
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rochlore Heisenberg model.[83] In that case a lattice distortion was invoked
to lift the degeneracy between the two singlet states of each tetrahedron.

2.5 Summary of the properties of VBC phases

The generic features of VBC (whatever the dimensionality of the lattice)
are:

• A spin gap, no SU(2) symmetry breaking and short-ranged spin-spin
correlations,

• Long-ranged order in dimer-dimer and/or larger S = 0 plaquettes. The
coupling of this order to lattice distortions is probable in experimental
realizations of spontaneous VBC.

• In spontaneous VBC phases the ground-state is degenerate. From the
theoretical point of view the discrete symmetry of the order parameter
of the VBC which spontaneously breaks a lattice symmetry may give
birth to a finite temperature Ising-like transition.[84] Simultaneity be-
tween this transition and a possible structural transition is likely when
the couplings of the spins to the lattice degrees of freedom (phonons)
is considered.

• VBC have gapped excitations, in the S = 0 sector as well as in other S
sectors. A wide zoology of modes is to be expected as well as continua
associated to multi-particle excitations or scattering of domain walls
(in the case of a spontaneous symmetry breaking of the ground-state).
In two dimensions all these excitations have integer spins (the ordered
back-ground inducing a confinement of the spin-1

2 excitations)

Frustration on the square lattice or more generally on bipartite lattices is
often overcome by VBC phases. No theorem forbids the appearance of VBC
in triangular geometries but there is up to now no examples of such phases
in pure spin-1

2 models (in next sections, examples will be given within the
framework of quantum dimer models).

It has been advocated in the large-N approaches[43, 44, 45, 46] that,
in two dimensions, classical collinear spin-spin correlations generically lead
to VBC or VBS and only non-collinear spin-spin correlations can give birth
to RVB SL with unconfined spin-1

2 excitations. The present knowledge of
SU(2) phase diagrams supports this prediction. The VBC found so far nu-
merically in SU(2) spin models appear to be in regions of parameter space
where the spin-spin correlations are characterized by some short-ranged
collinear order in the large-S limit. The J1–J2 model on the honeycomb
lattice has a classical incommensurate phase in the regime of high frus-
tration and there are some evidences that in the quantum phase diagram
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the collinear phase is separated from the columnar VBC phase by a RVB
SL.[18] The multiple-spin exchange (MSE) model on the triangular lattice
is also believed to be a RVB SL[85] and the corresponding classical ground-
states generically have non-coplanar spin configurations. Capriotti et al.[58]
argued that the spin-1

2 square lattice J1-J2 model could be a RVB SL. If
confirmed, this would be the first counter-example to the general rule ex-
plained above. The Heisenberg model on the pyrochlore lattice might be an
other counter-example[77].

2.6 A simple model of VBC with a critical point:
the hard core quantum dimer model of Rokhsar

and Kivelson on the square lattice

Looking for a model with a resonating valence bond ground-state, Rokhsar
and Kivelson introduced in 1988 a quantum hard core model on the square
lattice [86]. Their motivation was the description of systems with strongly
coupled real-space Cooper pairs. At half filling these next-neighbor Cooper
pairs can be seen as next-neighbor valence-bonds. Pauli principle and Coulomb
interaction imply that these valence-bonds are spin 0, hard core objects. In-
sofar as the spin gap is large enough, it can be speculated that the manifold
of low energy states is spanned by the linearly independent set of nearest
neighbor valence-bond coverings6.

2.6.1 Hilbert space and Hamiltonian of quantum dimer mod-
els

The Hilbert space of the ”quantum dimer” models is build from the differ-
ent non overlapping dimer coverings of the lattice. In that context dimers
are not exactly nearest neighbor valence bonds, insofar as 2 configurations
with dimers in different positions are orthogonal. But the dimer coverings
are supposed to be in one-to-one correspondance with the orthogonalized
configurations of nearest neighbor valence-bonds.

The dynamics of the low lying singlet excitations7 of this model are
described by the Hamiltonian Hdimer:

Hdimer =
∑

Plaquette

[
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(2.7)
See the original paper [86], or ref. [47] for the discussion of the derivation
of this effective Hamiltonian from a more realistic Heisenberg or Hubbard
model.

6It has been shown that such set form a family of non-orthogonal but linearly indepen-
dent states [87, 59].

7By construction spin excitations are outside the scope of this modelization
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 on the square lattice ’88
 Rokhsar−Kivelson hard core quantum dimer model 

H  =  −  t + ...      + V + + 

 V / t

 VBC  VBC

Similar model on the hexagonal lattice: Moessner and Sondhi ’01

 R. K. Critical Point

1~−0.2 ?

Figure 2.8: Phase diagram of the Rokhsar Kivelson model on the square
lattice

The first term of Eq. 2.7 describes the spatial flip of two parallel dimers
from horizontal to vertical position and vice-versa, it could also be seen as a
cyclic permutation of the two dimers around a square: it is a kinetic energy
term which favors resonances between different configurations of parallel
dimers (J is always > 0). The second term is a potential energy term likely
to be repulsive in the original electron model. The ground-state for infinitely
large |V |

J is a Valence Bond Crystal, either staggered (for large V
J > 0), or

columnar (for large V
J < 0). See Fig. 2.8.

2.6.2 Topological structure of the Hilbert space of the QDM
model on the square lattice

The eigenstates of Hdimer can be classified according to their winding num-
bers (Ωx,Ωy) across the 2-torus of the square sample with periodic bound-
ary conditions. There are many equivalent ways to define these winding
numbers. Let us follow RK. They draw the transition graph of a dimer
configuration C relative to a reference configuration C0 (which may be the
columnar configuration) as the superposition of the dimer coverings of the
two configurations C and C0. The dimers in C are directed from one sublat-
tice to the other and reversely for the dimers of C0. The transition graph
thus appears as a graph of oriented loops. The winding number Ωx (resp.
Ωy) measures the net number of loops (clockwise minus counter-clockwise)
encircling the torus in the x (resp. y direction). The Hamiltonian does
not couple subspaces with different winding numbers. These pairs of wind-
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ing numbers define Ns disconnected topological subspaces (where Ns is the
number of lattice sites).

For V ≥ J ≥ 0, Hdimer is positive semi-definite, the ground-state is
unique at zero energy and nodeless (Frobenius theorem). Demons: A lower
bond for the ground-state energy is given by a minimization of the Hamil-
tonian on each plaquette individually. If the given plaquette has no parallel
dimer (non flippable plaquette), its energy is zero and if it has parallel dimers
it has a potential energy V and at best a kinetic energy of −J . We can thus
write a lower bond energy of the global system, which is proportional to the
number of flippable plaquettes nflip, as min [0, (V − J)nflip].

2.6.3 Phase Diagram of the RK model

• The four staggered configurations are zero-energy eigenstates of Hdimer.
As they saturate the low energy bond, they are the ground-states for
V ≥ J ≥ 0. They can be classified in two different topological classes in
which they are the only representatives. They have a zero energy and
any configuration of other topological subspaces has a larger strictly
positive energy (at least of order O(L) in the limit V

J → ∞ ).

• At the point V
J = 1 the model is exactly solvable. There is in each

topological subspace a ground-state with zero energy. It is the equal
amplitude superposition of all the configurations of that sector. i)
Simple computation shows that these states are zero-energy states of
Hdimer. ii) Since all off-diagonal elements are non-positive the ground-
state is unique and nodeless (Frobenius property, Marshall theorem).
The equal amplitude states are thus the unique ground-states in their
respective topological sectors. We will call these states the RK states.

• It has been shown by Kohmoto and Shapir [88], that the spin-spin
correlations in this state decrease exponentially.

• An important property: any dimer correlation functions in the RK
state can be computed from an exact mapping to the classical statis-
tical problem of dimer coverings first solved by M. E. Fisher and J.
Stephenson [89]. From this work one can conclude that the dimer-
dimer correlation functions at V

J = 1, decreases algebraically with dis-
tance (as r−2). This property implies that the first excitations above
the ground-states are gapless.

• On the basis of the continuity in the energy between the staggered
phase and the RK states, one may speculate that the RK point is the
quantum critical end of the staggered VBC phase. But the excitations
of the staggered VBC are non local and have energy of order O(N+0.5)
in the V

J → ∞ limit. To sustain the above point of view one should
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explain how the kinetic term can dress these excitations so that they
become gapless when V

J → 1. In fact the more probable hypothesis is
a first order phase transition between the RK phase and the staggered
one. Such a question could perhaps be answered with Monte Carlo
simulations.

• The ground-state wave-function at this RK point has a property which
is considered as constitutive of a RVB spin liquid: that is resonances
between all dimer coverings. It must be underlined here that this res-
onance phenomenon at the RK point does not bring any stabilization
of the equal amplitude superposition ground-state when compared to
the neighboring staggered VBC phase.

• RK then argue that for V
J < 1, there is, separated by a first order phase

transition, a new phase which might be a “true” resonating Valence
Bond Spin Liquid 8. The characterization of this phase is for the
moment rather loose: RK argument is variational and rather week.
The first calculation by Sachdev on a 36 lattice [90], gives evidence
for a VBC columnar state for V

J < 0.5 and not a clear conclusion
nearer from the RK point. Extending the calculations to 64 sites, and
using various estimators, Leung and co-workers [91] estimated that
long range columnar order probably exists up to the RK point, with
the restriction that up to V

J ∼ −0.2 the order is very plausibly purely
columnar, whereas in the range −0.2 < V

J < 1 the order could reduce
to a 4-spin S=0 plaquette order. 9 The present consensus[92, 93] is for
crystalline order everywhere except at the RK critical point.

In view of these results for the QDM model on the square lattice, of
most studies on the J1 − J2 model, and of the SU(N) studies on the same
lattice [94, 43], one may be tempted to conclude that VBC is the paradigm
of the quantum ground-state on square and possibly bipartite lattices. This
might be untrue [58, 18], but the fact is that the triangular based lattices
(see next chapters) seem much more favorable to Resonating Valence Bond
Spin Liquids.

8i.e. a phase where the resonances between different dimer coverings are essential to
its stabilization and are so important that there is a gap to the first excitations and any
correlation functions: either spin-spin, dimer-dimer or higher order plaquette-plaquette
correlation functions decrease exponentially with distance.

9This conclusion is not consistent with the degeneracy the authors claim for the ground-
state. The nature of the phase for V

J
< 1 remains an interesting but technically difficult

open question.
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Chapter 3

Resonating Valence Bond
Spin Liquids

The Resonating Valence Bond Spin Liquid is a quantum concept introduced
in 1973 by P. W. Anderson [95], following the line of thought of Linus Pauling
for molecules. When the semi-classical Néel states or simple VBC are very
far to satisfy each individual bond, Anderson speculated that the macro-
scopic system could take advantage of the quantum resonances between the
exponential number of valence bond coverings to lower its ground-state en-
ergy. Such states have no long range order in any local order parameter
whence the name of Spin Liquid: it is a Resonating Valence Bond Spin
Liquid (abbreviated as RVB Spin Liquid or RVBSL in the following).

Spinons: As noted above the RVB phase has a gap to collective exci-
tations, which is equally true of VBC. The major difference insofar between
VBC and RVB Spin Liquids is the existence in this new quantum phase of
deconfined spin-1/2 excitations: the spinons. If you break a Valence Bond
in a VBC phase and try to separate the two single spins from each other
the energy of the system increases as the length of the string of misaligned
dimers which appears between the two single spins (take as an example
the staggered or the columnar phase of the QDM). This creates an elastic
restoring force which binds the two spin-1/2 together: in such a Valence
Bond Crystals excitations have always an integer spin (∆S = 0 or 1). We
thus infer that in the RVB Spin Liquid state, where the correlations between
local operators are short range and any disordered configuration as probable
as an other, the restoring force between two single spins beyond a certain
distance will be negligible and the spin-1/2 (“spinons”) will be deconfined.
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3.1 Introduction: short range versus long range
Resonating Valence Bond wave-functions

Resonating Valence Bond wave-functions encompass a large class of wave-
functions beyond the equal amplitude superposition of next neighbor valence
bond coverings that we encounter at the RK point in the last chapter.

It is easy to verify that the whole set of valence bond coverings (without
any restriction on the length of the valence bonds) is an overcomplete basis
of the S = 0 subspace of the spin system (compare the numbers of these
coverings to the size of the S = 0 subspace for a N site lattice).

Let us suppose that we have designed a family E of linearly independent
valence bond coverings Ci, a general RVB wave-function will be written as:

|RV B >=
∑

Ci∈E
A(Ci)|Ci > (3.1)

where |Ci > are products of valence bond wave-functions (with a sign con-
ventionally fixed, respecting the lattice topology).

In variational calculations, one generally use restricted forms of Eq. 3.1,
where the amplitude A(Ci) of a given configuration Ci is written as the
product of amplitudes h(k, l) for each valence bond (k, l) present in Ci.

Two situations have been studied:
i) either long range RVB wave functions where the function h(k, l) de-

pends algebraically on the distance rkl between sites k and l (at least for
large distances):

h(k, l) =
Cst

rσ
kl

(3.2)

Liang, Douçot et Anderson [5] have shown that such wave functions have
Néel long range order in the Heisenberg model on the square lattice if σ < 5
and no Néel long range order for σ > 5 1. Capriotti and co-workers [58]
have used a p-wave BCS wave-function for the J1 − J2 model on the square
lattice, which has no long range order in valence bonds.

ii) or the short range Valence Bond w.-f. where the amplitudes h(k, l)
are not necessarily strictly restricted to next neighbors but decrease at least
exponentially with distance (most of the following is concerned with that
kind of wave functions). By construction such functions cannot describe
Néel long range order, as Néel order has long range correlations between
spins on the same sublattices. As we have seen in the previous chapter,
this family encompasses the quantum critical behavior of the QDM model
on the square lattice. Valence Bond Crystals can equally be described in
this basis. BUT in the VBC case a few ordered configurations of dimers
have a dominant weight in the thermodynamic limit. Many properties of

1The ground-state of the rigid macro-antiferromagnet studied in the first chapter enters
this class of wave functions with h uniform and of infinite range
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these wave-functions have been studied theoretically ([96, 97, 98, 87, 59] and
references therein), we will see some of them in the following.

In this chapter we will first describe with some length the properties of
the QDM on the triangular lattice, to compare to the solution of the same
model on the square lattice. We will then move to the exactly solvable QDM
on the kagomé lattice introduced by Misguich, Pasquier and Serban[99, 100],
which allows an itimate understanding of the vison wave-functions. A special
attention will be given to the topological degeneracy of the ground-state, and
to the existence of deconfined spin-1/2 “spinons” excitations, which is the
most important experimental signature of a RVB Spin Liquid state.

3.2 The Quantum Dimer Model on the triangular
lattice

The QDM model on the triangular lattice has been studied by Moessner
and Sondhi in 2001 [93], when they realized that the dimer-dimer corre-
lation function on this lattice was not algebraically decreasing as on the
square lattice but exponentially decreasing with distance. The model on the
triangular lattice comprises the same ingredients as on the square lattice: a
potential energy term between parallel pairs of dimers and a kinetic energy
term which does a cyclic permutation of parallel dimers on 4-spin plaquettes
(involving two triangular units).

Hdimer =
∑

Plaquettes

[

−J
(∣

∣

∣ � �r

r

r

r
〉 〈

r r

r r
∣

∣

∣
+ h.c.

)

+ V
(∣

∣

∣ � �r

r

r

r
〉 〈

� �r

r

r

r
∣

∣

∣
+

∣

∣

∣ r r

r r
〉〈

r r

r r
∣

∣

∣

)]

(3.3)
The sum over plaquettes runs on the three kinds of plaquettes with orien-
tations at 60 degrees from each other.

J can be assumed to be positive 2: it enforces resonance effects. V can be
positive (repulsion between dimers) or attractive. The conditions of validity
are the same as those of the model on the square lattice: it is supposed
that the spin gap is large enough so that the first excitations are in the
singlet sector. Insofar as the spin gap is large, the spin-spin correlations
are short range which is consistent with the restriction to the subspace of
nearest-neighbor Valence Bonds.

The properties of the lattice affect the properties of the QDM model on
two central points:

• In the triangular case due to the higher entanglement of the lattice by
the two-dimer parmutaion coupling, there are only 4 different topolog-
ical sectors classified according to the parity of the winding numbers:

2This was not obvious a priori and is important in the following as it insures that the
Hamiltonian is positive semi-definite for V ≥ J ≥ 0
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(even, even), (even, odd), (odd, even), (odd, odd). (The dimer-flip
term can change the winding numbers, not their parities).

• At temperature much larger than J and V , the classical square lat-
tice problem has algebraically decreasing dimer-dimer correlations,
whereas on the triangular lattice these correlations decrease exponen-
tially [93].

As in the square lattice case, at the point J = V the model is exactly
solvable. The ground-states here too are the equal amplitude superpositions
of all dimer coverings in each topological sector. ( demonstration identical
to the square lattice case). As in the square lattice case, these RVB states
are degenerate with the 6 staggered configurations, which are ground-states
for any V/J ≥ 1 (see Fig. 3.1).

The sum over all configurations of the equal amplitude wave-functions is
equivalent to the classical dimer problem (up to the question of the staggered
phase which has a negligible statistical weight in the problem): thus the
dimer-dimer correlations decrease exponentially with distance at the point
J = V . Monte-Carlo simulations [93] have shown that this phase extents
at least in the range 2/3 < V/J ≤ 1. It terminates at V/J = 1, with
a first order transition to the staggered phase (seen in the Monte Carlo
simulations as hysteretic behaviors). The dimer-dimer correlation function
is very short range in all the above-mentioned range of parameter, and
very weakly dependent on temperature, which is suggestive of a gap in the
singlet spectrum. It’s the description of a true RVB Spin Liquid phase
with exponentially decreasing spin-spin and dimer-dimer correlations, and
translational invariance of the ground-state (all four topological ground-
states, with equal amplitude wave-functions are in the same k = (0, 0) sector
of the impulsion [59]).

Topological degeneracy and quantum bits The 4-fold degeneracy
of the g.-s. of a RVB on a 2-torus is a specific topological property of the true
RVB Spin Liquid, associated to the genus of the surface on which the spins
are living. On a cylinder such a g.-s. is doubly degenerate, a priori the most
perfect illustration of quantum bit protected from any local perturbation
and thus from most of the causes of decoherence. A. Kitaev was the first to
discuss this subject [101]. Ioffe and collaborators [102] studied the effect of
disorder on this topological bit. Misguich and coll. [103] discussed the time
duration of a process of writing and reading such a q-bit and how finite size
effects may be used to achieve this operation.

Two more complex evidences of RVB Spin Liquids phases had been ob-
tained before the exhibition of this simple toy model: the first in 1992 in a
large N Sp(N) model by Sachdev [104], the second in a more realistic SU(2)
spin model by Misguich and coworkers [105, 85] (3)

3See also cond-mat/0502464 : Lecture notes on Frustrated Quantum Magnets ” Ecole
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H  =  −  t + ...      + V + + + ...

 V / t
0 1

12  x   12 SRRVBVBC VBC

Figure 3.1: The phase diagram of the Quantum Hard Core Dimer problem
on the triangular lattice after Moessner and Sondhi [93]

3.3 Solvable QDM on the kagome lattice

An exactly solvable QDM on the kagome lattice was introduced G. Mis-
guich, D. Serban and V. Pasquier [99]. It offers a very simple and explicit
realization of the ideas discussed above (visons, topological order etc.). In
this section I strictly follow the presentation of Misguich [47], and include
it here for completeness.

3.3.1 Hamiltonian

The kagome lattice QDM introduced in Ref. [99] contains only kinetic terms
and has no external parameter. The Hamiltonian reads:

H = −
∑

h

σx(h) (3.4)

where σx(h) =

32
∑

α=1

|dα(h)〉
〈

d̄α(h)
∣

∣ + H.c (3.5)

The sum runs over the 32 loops on the lattice which enclose a single hexagon
and around which dimers can be moved (see Table 3.1 for the 8 inequivalent
loops). The shortest loop is the hexagon itself, it involves 3 dimers. 4,
5 and 6-dimers moves are also possible by including 2, 4 and 6 additional
triangles (the loop length must be even). The largest loop is the star. For
each loop α we associate the two ways dimers can be placed along that
loop: |dα(h)〉 and

∣

∣d̄α(h)
〉

. Notice that σx(h) measures the relative phases

de troisieme cycle de Suisse Romande” (2002)

54



Table 3.1: The 8 different classes of loops which can surround an hexagon
of the kagome lattice. Including all possible symmetries we find 32 possible
loops. The first column indicates the number of dimers involved in the
coherent motion around the hexagon.
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of dimer configurations displaying respectively the dα(h) and d̄α(h) patterns
in the wave function.

3.3.2 RK ground-state

As for the QDM discussed previously the ground-state of this Hamiltonian
is the equal amplitude superposition of all dimer coverings belonging to a
given topological sector (as on the triangular lattice there are four sectors).
This can be readily shown by writing H as a sum of projectors:

H = −Nh +
∑

h

32
∑

α=1

[

|dα(h)〉 −
∣

∣d̄α(h)
〉 ] [

〈dα(h)| −
〈

d̄α(h)
∣

∣

]

(3.6)

where Nh is the number of hexagons on the lattice. When expanding the
products the diagonal terms give a simple constant since

32
∑

α=1

|dα〉 〈dα| +
∣

∣d̄α

〉 〈

d̄α

∣

∣ = 1 (3.7)

This reflects the fact that, for any dimerization, the dimers on hexagon h
match one and only one of the 2 × 32 patterns

{

dα, d̄α

}

.
Unlike the square or triangular case, the RK ground-states |0〉 =

∑

c∈Ω |c〉
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Figure 3.2: A dimer covering on the kagome lattice and the corresponding
arrows. Dashed lines: honeycomb lattice.

are not degenerate with some staggered VBC.4 This means that the Hamil-
tonian of Eq. 3.4 is not at a phase transition to a VBC. As we will explain
it is inside a liquid RVB phase.

The RK wave-function can be viewed as dimer condensate. It is similar to
the ground-state of liquid 4He which has the same positive amplitude for any
configuration and its permuted images.[106, 107] An important difference,
however, is that the QDM state is incompressible and cannot sustain acoustic
phonons. This can be related to the fact that the U(1) symmetry of the Bose
liquid is absent in the QDM on non-bipartite lattices. It is replaced instead
by a discrete Z2 gauge symmetry (see §3.3.7 below).

3.3.3 Ising pseudo-spin variables

The kinetic energy operators σx defined in Eq. 3.5 commute with each other.
This is obvious when two such operators act on remote hexagons but it also
holds for neighboring ones. This property can easily be demonstrated with
the help of the arrow representation of dimer coverings introduced by Zeng
and Elser.[108] This mapping of kagome dimerizations to arrows on the
bonds of the honeycomb lattice is illustrated Fig. 3.2. Each arrow has two
possible directions: it points toward the interior of one of the two neighboring
triangles. If site i belongs to a dimer (i, j) its arrow must point toward the
triangle the site j belongs to. A dimer covering can be constructed from any
arrow configuration provided that the number of outgoing arrows is odd (1
or 3) on every triangle.

The operators σx have a particularly simple meaning in terms of the
arrow degrees of freedom: σx(h) flips the 6 arrows sitting on h.5 It is then

4Because resonances loops of length up to 12 are present the dynamics is ergodic in
each of the four topological sectors.[99]

5Flipping all the arrows around any closed loop (such as around an hexagon) pre-
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clear that the σx commute and that σx(h)2 = 1. In fact these operators can
be used as Ising pseudo-spin variables and the Hamiltonian now describes
non-interacting pseudo-spins in a uniform magnetic field pointing in the x
direction. In the ground-state we have σx(h) = 1 on every hexagon.

3.3.4 Dimer-dimer correlations

The ground-state is the most possible disordered dimer liquid as the dimer-
dimer correlations strictly vanish beyond a few lattice spacings. Such corre-
lations can be computed by the Pfaffian method. On the kagome lattice the
determinant of the Kasteleyn matrix (which is directly related to the parti-
tion function of the classical dimers problem) is exactly constant in Fourier
space. Since dimer-dimer correlations are obtained from the Fourier trans-
form of the inverse of this determinant, they turn out to be strictly zero be-
yond a few lattice spacings (as soon as the two bonds do not touch a common
triangle).[99] This result can also be obtained by a simpler argument[99, 100]
using the σx operators. This result is related to the kagome geometry.6 This
absence of long-ranged dimer-dimer correlations demonstrates that the RK
state is a dimer liquid and that it breaks no lattice symmetry.

On the triangular lattice, even at high temperature, dimer-dimer correla-
tions decay exponentially with distance but these correlations remain finite

at any distance. On the square lattice such correlations are even larger be-
cause they decay only as a power law. This means that the infinite hard-core
dimer repulsion makes QDM non-trivial even at infinite temperature; dimers
cannot be free when they are fully-packed. From this point of view we see
that the kagome lattice is particular: it is as close as possible to a free dimer
gas, except for non-trivial correlations over a few lattice spacings. This is
a reason why dimer coverings on the kagome lattice can be handled with
independent pseudo-spin variables and why the RK state on this lattice is
the most possible disordered RVB liquid.

3.3.5 Visons excitations

The σx operators can be simultaneously diagonalized but they must satisfy
the global constraint

∏

h σ
x(h) = 1 since this product flips every arrow twice.

It must therefore leave all dimerizations unchanged. The lowest excitations
have therefore an energy 4 above the ground-state and they are made of
a pair of hexagons a and b in a σx(a) = σx(b) = −1 state. a and b are
the locations of two Ising vortices (or visons[109, 110]). As remarked before
this means that the relative phases of the configurations with dα(h) and

serves the local constraint imposed on arrow configurations. Flipping the arrows around
a topologically non-trivial loop changes the topological sector.

6The model of Eq. 3.4 can be generalized to any lattice made of corner-sharing
triangles.[99]
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d̄α(h) patterns have now changed sign. The corresponding wave-function is
obtained in the following way. Consider a string Ω which goes from a to b
(see Fig. 3.3) and let Ω(a, b) be the operator which measures the parity ±1 of
the number of dimers crossing that string. Ω(a, b) commutes with all σx(h),
except for the ends of the string: σx(a)Ω(a, b) = −Ω(a, b)σx(a). A dimer
move changes the sign of Ω(a, b) if and only if the associated loop crosses
the string an odd number of times, which can only be done by surrounding
one end of the string. This shows that Ω(a, b) flips the σx in a and b.7

As the RK ground state |0〉, Ω(a, b)|0〉 is a linear combination of all dimer
configurations belonging to one sector. However the amplitudes are now 1
and −1 depending on the number of dimers crossing Ω. This wave-function
therefore has nodes, it is an excited state of energy 4 with two vortices in a
and b. It is easy to see that a different choice Ω′ for the string connecting a
and b gives the same state up to a global sign which depends on the parity
of the number of kagome sites enclosed by Ω ∪ Ω′.

These vortex excitations carry a Z2 charge since attempting to put two
vortices on the same hexagon does not change the state. Such excitations
are not local in terms of the dimer degrees of freedom. Indeed, determining
the sign of a given dimerization in a state with two visons which are far
apart requires the knowledge of the dimer locations along the whole string
connecting the two vortex cores. In this model the visons appear to be static
and non-interacting. This is a particularity of this solvable model but the
existence of gapped vison excitations is believed to be a robust property of
RVB liquids. In more realistic models the visons will acquire a dynamics
and a dispersion relation but will remain gapped.8 They will also have some
interactions with each other but should remain deconfined. This property
is particularly clear in the kagome QDM: visons are necessarily created by
pairs but the energy is independent of their relative distances.

The Ising vortices also offer a simple picture of the topological degen-
eracy. Consider a ground-state |+〉 of the model which lives in the sector
where the winding number Ωy (with respect to some arbitrary but fixed
dimerization) is even. Another ground-state |−〉 is obtained in the odd-Ωy

sector. Now consider the combination |0〉 = |+〉+|−〉 and apply the operator
Ω(0, Lx) corresponding to a closed loop surrounding the torus in the x direc-
tion. This amounts to creating a pair of nearby visons at the origin, taking
one of them around the torus in the x direction and annihilating them. This
can also be viewed as the creation of a vison in one hole of the torus (with
no energy cost). It is simple to check that Ω(0, Lx)|0〉 = |+〉 − |−〉 (up
to an irrelevant global sign). This provides a simple relation between the
vison-pair creation operator and the existence of two topologically distinct

7Up to a global sign (reference dependent) Ω(a, b) is equal to σz(a)σz(b) where the σz

operators are those introduced by Zeng and Elser.
8It is possible to add potential energy terms to Eq. 3.4 to drive the system outside of

the liquid phase and this transition corresponds to a vison condensation.
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a

Ω

b

a

Ω

Figure 3.3: A pair of visons (located in a and b) is created by applying to
the RK wave-function a factor (−1) for each dimer crossing the string Ω.
The dimerization shown there on the left appears in the linear superposition
of the two-vison state with the sign −1 whereas the one on the right has the
sign +1.

ground-states |+〉 + |−〉 and |+〉 − |−〉.

3.3.6 Spinons deconfinement

We always assume that dimers represent “dressed” singlet valence-bonds.
Since the Hilbert space is made of fully-packed dimer coverings the model
of Eq. 3.4 only describes spin-singlet states. However, as any QDM, it
can be extended to include static holes or spinons. Configurations with
unpaired sites (spinon or holon) are now allowed but the kinetic terms of the
original Hamiltonian which loop passes on an empty site gives zero. Consider
a system with two static spinons in x and y. As on the square[86] and
triangular lattices[93] at the RK point the exact ground-state |x, y〉 remains
the sum of all dimer coverings and the ground-state energy is independent of
the distance between the two spinons (except at very short distance if they
belong to a common hexagon). This is a first indication that RVB spin liquid
has deconfined spin-1

2 excitations (spinons). In the QDM language these
excitations are simply unpaired sites in a dimer liquid background. Such
unpaired sites are necessarily created by pairs but they can then propagate
freely (no attractive potential) when they are sufficiently far apart.

Another calculation allows to test the deconfinement properties of a
dimer liquid. We consider the state |ψ〉 =

∑

r 6=0 |0, r〉 where |0, r〉 is the
(un-normalized) state with two spinons in 0 and r. The probability to find
a spinon in r in the |ψ〉 can be obtained by the relatively involved calcula-
tion of the monomer correlation9 with Pfaffians. One the square lattice this
probability goes to zero as 1/

√
r.[89] This shows that the second spinon is

(quasi-) confined in the vicinity of the first one on the square lattice because

9Ratio of number of dimer coverings with two holes in 0 and r to the number without
hole.
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escaping far away represents a large “entropy” cost in the dimer background.
On the triangular lattice it goes exponentially to a constant.[111] This result
is a signature of deconfinement. In fact the same signature can be obtained
on the kagome lattice without any technical calculation since the monomer
correlation is exactly 1/4 at any distance.footnoteThis follows from the in-
dependence of the arrow variables, see §V.B of Ref.[100].

If unpaired sites are allowed one can describe spinons or holons. Unfor-
tunately in the presence of simple kinetic energy terms for these objects the
model can no longer be solved. However one can consider a static spinon and
its interaction with visons: when the spinon is adiabatically taken around a
vison the dimers are shifted along a path encircling the vison. Because the
vison wave-function is particularly simple in this model it is easy to check
that this multiplies the wave-function by a factor −1. This is the signature
of a long-ranged statistical interaction[98, 112] between visons and spinons
(or holons). In more realistic models, as long as the visons are gapped ex-
citations the spinons are expected to be deconfined. On the other hand
if the visons condense their long-ranged statistical interaction with spinons
frustrates their motion. This is no longer true if they propagate in pairs,
in which case they are not sensitive any more to visons (see Ref. [99] for
an extension of the present QDM with a vison condensation). This sim-
ple physical picture illustrates the relation between vison condensation and
spinon confinement.

3.3.7 Z2 gauge theory

The forces responsible for confinement are usually associated to gauge fields
and their fluctuations. Whereas U(1) compact gauge theories are generically
confining in 2 + 1 dimensions,[113, 114] Z2 gauge theories are known to
possess deconfined phases.[115] For this reason some attention has been
paid to the connexions between Z2 theories and fractionalized phases in 2D
electronic systems.[109]

It is known[116] that QDM can be obtained as special limits of Z2 gauge
theories, the gauge variable being the dimer number on a bond. However,
on the kagome lattice this connexion can be made exact and completely ex-
plicit since there is a one to one correspondence between dimer coverings and
physical states (i.e. gauge-invariant) of a Z2 gauge theory.[99] In this map-
ping the gauge fields are Ising variables living on the link of the honeycomb
lattice (i.e. kagome sites) and are constructed from the arrows described
previously. As for the constraints of gauge invariance they correspond to
the odd parity of the number of outgoing arrows on every triangles. The
σx operator used to define a solvable QDM translate into a gauge-invariant
plaquette operator for the gauge degrees of freedom (product of the Ising
gauge variables around an hexagon). With this mapping the visons appear
to be vortices in the Z2 gauge field and the solvable model of Eq. 3.4 maps
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to the deconfined phase of the gauge theory.

3.4 Summary of properties of RVB Spin liquids

• A RVB Spin liquid is a phase which does not break either SU(2) sym-
metry nor any spatial symmetries of the lattice. Its ground-state is
unique up to a topological degeneracy which exists only in systems
with an odd number of spin-1/2 in the unit cell, living on a 2-torus
(more generally the degeneracy is 2g, with g the genus of the torus). In
that sense it is awkward to call such a phase a disordered phase! None
of the classical ideas associated to disorder are relevant to understand
the properties of this RVB Spin Liquid phase. If we have to compare
it to a liquid phase it is more the superfluid phase of 4He that we
should have in mind!

• All correlation functions in local observables have only short range
order, and consequently the susceptibility associated to any local ob-
servable is zero a T=0. In its ground-state this phase is an ideal q-bit
(See A. Kitaev Lectures).

• This phase has a gap for all excitations, either in the singlet or the
triplet sectors and it supports fractionalized excitations (the “spinons”).
The first excitations in the singlet sector correspond in the gauge the-
ory language to the bosons of the gauge field that Senthil and M. P.
A. Fisher call ”visons” [117, 118]. Due to the properties of the ex-
citations we expect them to form continua in the spin sectors. The
neutron experiment of Coldea and co-workers on Cs2CuCl4 is perhaps
the first experimental proof of such a state [119].

• An RVB spin liquid state is expected in presence of competing and
frustrating interactions. The bandwidth in which this phenomenon
can be observed is in general strongly reduced and often only a small
fraction of the original couplings: the case of the MSE system at J1 =
−2 and J4 = 1 (the point where all the results given here have been
calculated) is in some sense rather exceptional, as at this point the
spin gap is almost as large as the cyclic 4-spin exchange.
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