

Manipulating Matter, Charge, and Spin at the Spatial Limit

Hari Manoharan

Department of Physics Geballe Laboratory for Advanced Materials Stanford University

Les Houches Summer School on Quantum Magnetism 2006

Detection and Manipulation of Atomic Scale Magnetism

Lecture 1

Quantum Mirages and Kondo Lattices

Lecture 2

• Atoms, Spins, and Superpositions

Lecture 3

"But I am not afraid to consider the final question as to whether, ultimately—in the great future we can arrange the atoms the way we want; the very *atoms*, all the way down!

What would happen if we could arrange the atoms one by one the way we want them?"

- Richard Feynman, 1959

. . . Or Not

www.manoharan.or

"The individual particle is not a well-defined permanent entity of detectable identity or sameness.

We *never* experiment with just *one* electron or atom or (small) molecule. In thought experiments we sometimes assume that we do; this invariably entails ridiculous consequences." . . . Or Not

www.manoharan.or

"The individual particle is not a well-defined permanent entity of detectable identity or sameness.

We *never* experiment with just *one* electron or atom or (small) molecule. In thought experiments we sometimes assume that we do; this invariably entails ridiculous consequences."

- Erwin Schrödinger, 1952

Quantum Mirage

www.manoharan.org

Phantom atoms

Clinical genomics Classifying cancers Ball lightning An earthy origin? The fossil record Asgood as it's long

Manoharan et al. Nature (2000).

H. C. MANOHARAN • DEPARTMENT OF PHYSICS • GEBALLE LABORATORY FOR ADVANCED MATERIALS • STANFORD UNIVERSITY @ 2002

Y-A-A

www.manoharan.org

SCANNING PROBE MICROSCOPES

Microscope resolving power

* Light microscope includes phase contrast and fluorescence microscopes. Electron microscope includes transmisson electron microscope.

(Adapted from www.nobel.se)

Scanning Tunneling Microscopy (STM)

Scanning "X" Microscopy

(Adapted from www.nobel.se)

Tip Detail

www.manoharan.org

10x current increase for every Å

Tunneling Landmarks

Lilienfeld: Observation of field emission from metals	(1922)
Oppenheimer: I onize H by electron tunneling	(1928)
Fowler-Nordheim: Explanation of field emission	(1928)
Zener: Theory of interband tunneling in solids	(1934)
Chynoweth: Observation of Zener tunn. in semiconductors	(1957)
Giaever: Measure superconducting gap	(1960)
Josephson: Cooper pair tunneling	(1962)
IETS, Spin-polarized, etc.	

Apparatus Landmarks

• Müller:

Field Emission Microscope

• Young:

Topografiner & Vacuum Tunneling

(1971)

(1937)

• Binnig & Rohrer:

Scanning Tunneling Microscope

(1982)

1.0.1.0

Vibration Isolation (a.k.a. "The Pit and the Pendulum")

Three cascaded stages to achieve nG/Hz^{1/2}

Experimental Apparatus

www.manoharan.org

• 4 K / 1 K / 0.5 K UHV Scanning Probe Microscope

Tunneling Equations

$$I(\mathbf{r}) = \frac{2\pi e}{\hbar} \sum_{t,\nu} |M_{t,\nu}(\mathbf{r})|^2 f(\epsilon_t)$$

 $\times [1 - f(\epsilon_{\nu})] \delta(\epsilon_t + eV - \epsilon_{\nu})$
 $I(\mathbf{r}) \propto \int_0^{eV} \varrho_t(\epsilon) \text{LDOS}(\mathbf{r}, \epsilon) d\epsilon$
 $\text{LDOS}(\mathbf{r}, \epsilon) = \sum_{\nu} |\psi_{\nu}(\mathbf{r})|^2 \delta(\epsilon - E_{\nu})$
 $I(\mathbf{r}) \propto \int_0^{eV} \text{LDOS}(\mathbf{r}, \epsilon) d\epsilon$
 $\frac{dI}{dV}(\mathbf{r}, \epsilon) \propto \text{LDOS}(\mathbf{r}, \epsilon)$

www.manoharan.org

EXPLORING THE ATOMIC REALM

Cast of Characters: Cu(111) and Co

www.manoharan.org

300 Å square topo

After surface prep

300 Å square topo

Electron Standing Waves

www.manoharan.or

Near Step edge, Corral, other defects Clean Cu(111)

-.44V 0.0V

Cast of Characters: Cu(111) and Co

www.manoharan.org

300 Å square topo

After surface prep

300 Å square topo

Cast of Characters: Co Atom

Cast of Characters: CO Molecule

www.manoharan.or

www.manoharan.org

CHARGE: THE OLD WAY

SPIN: THE NEW FRONTIER

www.manoharan.or

Quantized degrees of freedom

Looking "Inside" a Particle

www.manoharan.ol

Quantized degrees of freedom

Charge

Looking "Inside" a Particle

www.manoharan.or

Quantized degrees of freedom

The Kondo Resonance

The Kondo Resonance: Co Atom on Cu(111)

The Kondo effect comes about from spin-flip scattering between the free electrons of a metal and the local moment of a magnetic impurity. This scattering leads to a highly correlated manybody groundstate where the conduction electrons form a spin-polarized "cloud" around the magnetic impurity. The Kondo cloud forms at temperatures below a characteristic "Kondo temperature", and leads to anomalous behavior in the transport properties and magnetic susceptability of dilute magnetic alloys (and some rare-earth compounds). The low-energy excitations of a Kondo impurity result in a narrow resonance at the Fermi energy of the host metal.

The Kondo Effect

www.manoharan.org

Kondo effect and STM

- Co on Au(111) [Madhavan *et al.*, Science **280**, 567 (1998)].
- Ce on Ag(111)
 [Li *et al.*, PRL **80**, 2893 (1998)].

Fano resonance

www.manoharan.org

Fit tunnel spectrum to Fano resonance

Fano Lineshape

The Kondo Resonance: Co Atom Flyover

[dI / dV] / [dI / dV]_{V=0}

Tip 1.4 r =Со 0 Å Cu(111) 1 Å 1.3 2 Å 1.2 3Å 4 Å 1.1 5 Å 6 Å 1.0 10 Å -10 10 20 -20 0

Sample Bias V (mV)

Imaging the Kondo Resonance

- Single Cobalt atom
- Simultaneously acquired 35 Å square images

Topograph (V = 5 mV)

dI/dV map

(*V* = ±5 mV)

Kondo Imaging: Co vs CO

1 cobalt atom + 1 carbon monoxide molecule
Simultaneously acquired 35 Å square images

Topograph (V = 5 mV)

dI/dV map (V = 5 mV)

Kondo Imaging for Atom Identification

www.manoharan.org

- 2 Cobalt atoms + 1 Sulfur atom
- Simultaneously acquired 27 Å square images

Topograph (V = 10 mV)

(*V* = 10 mV)

www.manoharan.org

ATOMS WHERE YOU WANT THEM

Elliptical Resonator Design

www.manoharan.org

Path length: $F_1 P + P F_2 = 2a$

Eccentricity: $e^2 = 1 - b^2/a^2$

a = 71.3 Å *e* = 1/2

170 Å

• e = 0.500, a = 71.3 Å elliptical electron resonator

• e = 0.786, a = 71.3 Å elliptical electron resonator

180 Å

180 Å

Empty Elliptical Resonator

- e = 1/2, a = 71.3 Å
- Simultaneously acquired 150 Å square images

Topograph (V = 10 mV)

dI/dV map (V = 10 mV)

The Quantum Mirage

• e = 1/2, a = 71.3 Å elliptical resonator

Topograph

dI/dV difference map

Spectroscopy on Atom and Mirage

Eigenmode Calculations

• e = 1/2, a = 71.3 Å elliptical resonator

www.manoharan.org

• e = 1/2, a = 71.3 Å elliptical resonator

Eigenmode Modeling

www.manoharan.org

- e = 1/2, a = 71.3 Å elliptical resonator
- Solve Schrödinger equation with hard-wall boundary

dI/dV difference map

(Eigenstate 42)

Elliptical Resonator Design

Path length: $F_1 P + P F_2 = 2a$

Eccentricity: $e^2 = 1 - b^2/a^2$

160 Å

a = 71.3 Å *e* = 0.786

The Quantum Mirage

• e = 0.786, a = 71.3 Å elliptical resonator

Topograph

dI/dV difference map

Eigenmode Modeling

www.manoharan.org

- *e* = 0.786, *a* = 71.3 Å elliptical resonator
 Solve Schrödinger equation with hard-wall boundary

dI/dV difference map

Calculated Eigenmode at $E_{\rm F}$

(Eigenstate 28)

Single Channel Information Transport

Phil. Trans. Royal Soc. A 362, 1135 (2004).

Multi Channel Information Transport Phil. Trans. Royal Soc. A 362, 1135 (2004).

Truth Table

	In	Out
L-R	0	0
UD	0	0

Topograph

dl/dV difference

	In	Out
L-R	1	1
ΨD	0	0

In

0

1

1

L-R

UD

_	In	Out	
L-R	1	1	
UD	1	1	

Eigenvalue Spectrum

www.manoharan.or

Eigenmodes

www.manoharan.or

• *e* = 1/2, *a* = 71.3 Å elliptical resonator

• e = 1/2, a = 71.3 Å elliptical resonator

www.manoharan.or

• e = 1/2, a = 71.3 Å elliptical resonator

Eigenmodes: Even Modes Left

www.manoharan.ol

• e = 1/2, a = 71.3 Å elliptical resonator

www.manoharan.o.

• e = 1/2, a = 71.3 Å elliptical resonator

Eigenvalue Spectrum

www.manoharan.or

Good Eigenmodes

www.manoharan.org

• The Team

web: mota.stanford.edu

• The Funding
NSFONRDOESloan
FoundationResearch
ChevronKETI/
MOCLEImage: Signer Si

• The Team

web: mota.stanford.edu

MOTA subgroup: • Laila Mattos (Kondo lattices)

• The Team

web: mota.stanford.edu

www.manoharan.ol

MOTA subgroup:
Laila Mattos (Kondo lattices)
Chris Moon (State manipulation)

• The Team

web: mota.stanford.edu

www.manoharan.o

- *MOTA subgroup:* • Laila Mattos
- (Kondo lattices)
- Chris Moon
 (State manipulation)
- Brian Foster
- Gabriel Zeltzer
- Richard Harris

