
PCE STAMP:  LECTURE 2
A CASE STUDY 

in 
QUANTUM RELAXATION, 

COHERENCE, & DECOHERENCE 
In this lecture we fill out some of the general theoretical discussion of the first 
lecture, by examining in some detail a particular physical system. This is the Fe-8 
molecular magnetic system, which has the great advantages of (i) being well 
understood at the microscopic level, and (ii) well-characterised experimentally –
it has been until recently a kind of ‘Rosetta stone’ for the testing of theory by 
experiment.   

One can analyse this system both at the level of individual molecules, where we
deal at low T with a prototype magnetic qubit coupled to its environment, or in 
crystalline arrays, where we deal with an interacting ‘spin net’ of qubits coupled 
to an environment.

In both cases there are various important parameter regimes of interest, involving 
the relative strengths of (i) the quantum energy ∆ο, driving the coherent spin 
dynamics; (ii) the decoherence energy ξο, characterising the coupling to the bath; 
and (iii) in the case of a spin net, the interqubit coupling Vo.  



2.1:  A CASE STUDY – the EFFECTIVE 
HAMILTONIAN for the Fe-8 MOLECULE

In order to focus the discussion, it is terribly important to see how theory gives 
a really detailed treatment of a real system, proceeding all the way from the 
abstract general formulation to detailed quantitative experimental predictions 
& comparison with experiment. In this lecture we concentrate on systems 
relevant to the construction of ‘magnetic qubit’ networks.

The Fe-8 molecule is ideal for this purpose, for 2 reasons. First: it can be analysed
theoretically in very great detail, and essentially ALL relevant parameters can 
be determined quantitatively both theoretically and experimentally. Second: 
chemists have been able to prepare very well-characterised and pure samples 
of this system, so experiment and theory can be brought into intimate contact, 
& theory tested very thoroughly. This makes the Fe-8 system a kind of ‘Rosetta 
stone’ for the field (NB: recently very pure samples of the Mn-12 molecule have 
been prepared, without the usual Jahn-Teller distorted isomers – see lectures of 
Christou). 

In what follows the detailed effective Hamiltonian for the Fe-8 system is derived 
quantitatively, including all relevant low-T excitations. We also make passing 
remarks about some of the other systems of interest, including the Mn-12 system 
and the LiHoxY1-xF4.



Q. NANOMAGNETS: the GS Model

Chemists and physicists like to try and reduce the 
Hamiltonian of a nanomagnet to a simple ‘Giant 
Spin’ Model. This often works quite well, but only 
for certain systems (here we show the Mn-12 
system): 

See, eg.



EXAMPLES of GIANT SPIN MODEL

(1) Transition-Metal 
based SMM’s

(2) Rare Earth 
Salts

Single-molecule magnets (SMM)

Mn12 S = 10

Fe8 S = 10

V15 S = 1/2

Ni12 S = 12

Giant spins

We are interested in 
systems which truncate 
to a low-E doublet

Ho ions in LiYF4 host



The TOPOLOGICAL SPIN PHASE
The Lagrangian for a constrained 
system like a spin is linear in the 
time derivative: 

Here A is the vector potential of a monopole at the centre of the 
unit spin sphere (Bloch sphere). 

The monopole charge is quantized: 

This result has interesting consequences. One obvious one comes 
from considering the action: 

When calculating the action, we typically integrate around a 
closed circuit on the Bloch sphere- then the integral over the 
‘kinetic’ or ‘topological’ term gives a pure number:

Here the unit vector                                         just describes the spin dynamics on the Bloch sphere.  

We immediately see that the total topological phase             is just proportional to the area swept out by 
the moving spin on the sphere. This is the famous Berry phase for a spin. 

One elegant consequence of this is seen in the dynamics of a spin in a 
tunneling potential, where one can essentially do a 2-slit experiment 
with tunneling spins – this is shown on the enxt page 



TUNNELING PATHS for SPINS 
on the BLOCH SPHERE

TOP: Tunneling paths for a spin on the Bloch sphere; 
the red paths are in zero applied field, and green in a 
strong field along the hard axis. The potential is biaxial
– high energy is shaded dark. RIGHT: The tunneling 
amplitude between the minimum energy states, as a 
function of transverse field.



The Fe-8 MOLECULE

Fe8 S = 10

Low-T Quantum regime- effective Hamiltonian  
(T < 0.36 K):

Longitudinal bias:

Eigenstates: 

Which also defines orthonormal states:

Feynman Paths on the spin sphere forFeynman Paths on the spin sphere for
a biaxial potential. Application of a a biaxial potential. Application of a 

field pulls the paths towards the fieldfield pulls the paths towards the field



INSTANTON DERIVATION of Heff

We begin by defining ‘coherent states’ for the central spin, 
which at the energy minima have form
and                          We have an action for the giant spin of 
form

in zero field

The transition amplitude between the 2 states is 

We begin by ignoring fluctuations about the least 
action paths, so we can 
Now write the Lagrangian as  

In a typical tunneling problem                     and we get 
the solution                                   
with

There are 2 possible paths, which we label by η = 1, −1. 
The action for these is  

Thus we finally get a tunneling form for the effective 
Hamiltonian:

All this is easily generalized to 
finite applied field



Formal Derivation of
“CENTRAL SPIN”

Effective hamiltonian
(i)    Start with the k-th bath spin, and define the 

vector field

 γk(τ)  =  hk mk + ωk lk(τ)

which varies as shown; the bath spin trajectory  
between the 2 end points can be calculated if we 
know the central spin trajectory. We also add 
the bath interspin interactions, to 
get the terms:

(ii) Now define the “transfer matrix”

where the scalar φk & the vector  αk are both complex.

This finally gives: 



HYPERFINE  COUPLING to spin bath   (NUCLEAR SPINS) 
Hyperfine coupling:

Define the set of fields:

Static component is:

Component which flips is:

This gives the ‘diagonal’ terms in a ‘central spin’
Hamiltonian:

Some of the couplings 
in Fe-8 (at H=0)



DERIVATION OF ‘NON-DIAGONAL’ COUPLING to BATH

See
Suppose we now add a small magnetic field to the original problem. This then adds a 
small term to term to the Lagrangian of form

The change            in the action is then                     

which is easily found to be 

Now let us consider the problem when we have an extra bath spin interacting with the 
giant central spin, so we have a contribution to action of form 

which upon linearization gives

with the field acting on the bath spin:

If we now write this as:

We then easily find
Thus we 
finally get 
the term:



Structure of NUCLEAR MULTIPLET in Fe-8
There are 215 nuclear sites in the molecule

Total width of gaussian multiplet: 

Transitions between states of different 
total polarisation (T1 process) driven 
mainly by molecular tunneling)

(NB: This decreases with increasing applied field)
For Fe-8 at H=0,  width is ~7 mK
(depends on isotopic concentrations)

For all practical purposes the effective Hamiltonian for a single molecule (& 
indeed any qubit) coupled to the spin bath is then: 



SPIN-PHONON COUPLINGS
In general we expect a coupling

between Giant Spin & phonons, which we write as
(a product of spin and phonon operators).

Key parameters: Debye energy 
the longitudinal sound velocity

Define symmetric and antisymmetric strains:

All properties can be written in terms of 
matrix elements

The dominant couplings for Fe-8, particularly 
in high transverse field, are

and simple arguments show that

NB: One finds that for simple estimations it 
is sufficient to write this in the form:

where



2.2: QUICK NOTE on DYNAMICS 
of

SPIN-BOSON & CENTRAL SPIN
MODELS

This material is optional, and for those interested in how detailed calculations 
of the dynamics are done. There are review articles on the dynamics of both 
the spin-boson and central spin models.  For those who only want a summary 
of the results, go to the next section in this lecture (section 2.3).

The 2 reviews in question are:



Dynamics of Spin-Boson System
The easiest way to solve for the dynamics of  the spin-boson model is in a path integral 
formulation. The qubit density matrix 
propagator is written as an integral 
over an “influence functional” :  

The influence functional is defined as 

For an oscillator bath:

with bath propagator: 

For a qubit the path reduces to

Thence



Dynamics of Central Spin model  
(Qubit coupled to spin bath)

The propagators contain the following averages

Topological 
phase average

Orthogonality
average

Bias average

The reduced density matrix, after the 
spin bath is integrated out, is given quite 
generally by:

Eg., for a single qubit, 
we get the return probability:

NB: can also deal with external noise



Dynamics of Central Spin Model- some key points
The easiest way to solve for the dynamics 
of problems like this (going back to the 
Kondo problem) is a path integral 
formulation. The effective Hamiltonian has 
both diagonal (D) and non-diagonal (ND) 
couplings in the qubit variables. A typical 
path is shown at right. 

The standard way of doing such path integrals assumes a weak coupling to each 
environmental mode, assumed to be an oscillator- one then writes it as an integral over 
an “influence 
functional” (a 
la Feynman).  

The problem when one couples a qubit to a spin bath is that this assumption is no 
longer generally true- very often the coupling between the qubit and each bath spin  is 
quite strong (indeed, with magnets, it can be much bigger even than ∆ο).  Thus with a 
Hamiltonian like the 
Central spin model 
(we recall again the 
Hamiltonian here), 
we cannot use the 
influence functional 
technique.



Precessional Decoherence- derivation

The most important physical effects are contained in the above 
reduced Hamiltonian. To handle this we introduce a unitary 

rotation between the 2 field directions

The constraint of long 
nuclear T1 means 
polarisation group M 
does not change- implemented 
in a path integral with a 
projection operator ΠM

The dynamics of the qubit
reduced density matrix are 
found by summing over paths, 
using the angle βk (the angle 
between the fields γk

+ and γk
- ) 

as expansion parameter. 
Physically, the bath spins 

precess around the 2 qubit
fields, and the integration 
picks up the precessional
phase (top right)  

The 2 qubit fields



The path integral splits 
into contributions for 
each M. They have the 
effective action of a set 
of interacting instantons

The effective interactions 
can be mapped to a set 
of fake charges to produce an action 
having the structure of a “spherical 
model” involving a spin S

The key step is to then reduce this 
to a sum over Bessel functions 
associated with each polarisation
group.



We can now reduce the time 
evolution of the qubit
density matrix to a sum 
over independently relaxing 
polarisation groups. 

The interesting thing 
here is that each group has 
its own effective tunneling 
matrix element  ∆M (x). 

But.. ∆M (x) has to be phase-averaged over a phase variable x. This variable represents 
the accumulated precessional phase of the spin 
bath. The total dephasing effect of this average is 
parametrised by the dimensionless  κ. 

This parameter tells us the total effect of the 
mismatch between the 2 fields from the qubit on the 
bath spins (which is parametrised for each bath spin 
by the angle βk).  The total effect is reminiscent of the
reduction of transition rates embodied in the Frank-Condon or Anderson orthogonality
reduction factors.

Finally, we have to perform a thermal 
average over different polarisation groups.



2.3: QUICK SUMMARY of PREDICTIONS 
for the 

DYNAMICS 
of a 

SINGLE QUANTUM NANOMAGNET

Here we summarize the results of calculations of the dynamics of individual qubits
in both (i) the ‘quantum relaxation’ regime (where decoherence/dissipation from 
the bath dominate the dynamics, ie, where ∆ο<< ξο); & in the quantum regime, where
∆ο>> ξο ,  and the system behaves coherently for long periods. We also make a few 
remarks on how this applies to Fe-8 and to LiHoxY1-xF4 . 



Quantum RelaxationQuantum Relaxation
of a singleof a single

NANOMAGNETNANOMAGNET

Structure of
Nuclear spin
Multiplet

Our Hamiltonian:

When ∆ <<Eo (linewidth of the nuclear 
multiplet states around each magbit
level), the magbit relaxes via 
incoherent tunneling. The nuclear bias 
acts like a rapidly varying noise field, 
causing the magbit to move rapidly in 
and out of resonance, PROVIDED

|gµBSHo| <  Eo

Tunneling now proceeds over a range Eo of bias, governed 
by the NUCLEAR SPINmultiplet. The relaxation rate is 

Γ ∼  ∆2/Εο              for a single qubit.

Fluctuating noise field
Nuclear spin diffusion paths

NV Prokof’ev, PCE Stamp, J
Low Temp Phys 104, 143 (1996)



DYNAMICS  of  SPIN BATH DECOHERENCE

At first glance a solution of this seems very forbidding. However it turns out that 
one can solve for the reduced density matrix of the central spin exactly, in the 
interesting parameter regimes. From this soltn the decoherence mechanisms 
are easy to identify:
(i) Noise decoherence: Random phases added to different Feynman paths by 

the noise field.                        
(ii) Precessional decoherence: the 

phase accumulated by environmental 
spins between qubit flips.
(iii) Topological Decoherence: The 

phase induced in the environmental 
spin dynamics by the qubit flip itself 

USUALLY THE 2ND MECHANISM 
(PRECESSIONAL DECOHERENCE)

is DOMINANTNoise decoherence source Precessional
decoherence



The COHERENCE WINDOW
In solid-state qubit systems, the coherence window arises because of the large separation 
of energy scales typically existing between spin and oscillator baths. This coherence window 
exists in ALL solid-state systems- we look here at magnetic systems 
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If we now fix the operating frequency ∆
of the qubits to lie well below the high 
phonon frequencies, but well above the
characteristic nuclear spin frequencies 
(given by hyperfine couplings, then the 
phonons are too fast to cause decoherence, 
& the nuclear spins too slow.   

Log (τd
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M Dube, PCE Stamp, Chem Phys 268, 257 (2001)
PCE Stamp, J Q Comp & Computing 4, 20 (2003)

PCE Stamp, IS Tupitsyn, Phys Rev B69, 014401 (2004)
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DECOHERENCEDECOHERENCE
in the in the 

FeFe--8 Molecule8 Molecule
At low applied transverse 
Fields, decoherence
switches on very fast-
expect incoherent spin 
relaxation:

Stamp, P.C.E., Tupitsyn, I.S.,   
Phys Rev B69,  014401 (2004)

However, at high fields, system can be 
in coherence window, in which qubit
dynamics is too fast for nuclear spins to 
follow, but still much slower than phonons

This frequency window we call the 
coherence window- note that typically



NUCLEAR SPIN BATH in MAGNETIC 
SYSTEMS: The LiHoxY1-xF4 system

This system is usually treated as the
archetypal Quantum Ising system:

However the Ho nuclear spin actually plays 
a profound role in the physics: 

(1) It blocks transitions until we get to very high fields (see left)

(2) The only way to understand the quantum spin glass phase is 
by incorporating the nuclear spins (and also the transverse 
dipolar terms); see below right 

(3) The decoherence is completely governed by the 
nuclear spins down to the lowest temperatures 
(phonon effects disappear below roughly 250 mK) 

Stamp, P.C.E., Tupitsyn, I.S.,   
Phys Rev B69,  014401 (2004)

AND TO BE PUBLISHED
M Schechter, PCE Stamp, 
PRL 95, 267208 (2005) 



2.4: DYNAMICS
of an 

INTERACTING SPIN NET
coupled to an 
ENVIRONMENT

Until now no experiments have been performed on single magnetic qubits – they 
are too small to observe directly (this may well soon change). However many 
experiments have been done on spin nets of magnetic molecules, where the 
interactions tend to be dipolar. As emphasized in Christou’s lectures, the great 
advantage one has in experiments on interacting magnetic molecules is the extreme 
precision with which the parameters are known and can be controlled. 

Until the end of the 1990’s experiments were being interpreted entirely incorrectly, 
in terms of non-interacting molecules – the fact that the magnetic relaxation actually 
looked more like that of a spin glass was ignored! However one can give a more or 
less complete analysis of the dynamics of the quantum relaxation regime – this was 
done in the period 1993-1998. Since then the quantum relaxation experiments have 
yielded much information on the way in which the nuclear spins, the phonons, and 
the dipolar interactions control the dynamics. 

The coherent quantum regime, where the dynamics is controlled by the interplay 
between dipolar interactions and the quantum parameter ∆ο , is much less well 
understood. This is the quantum Ising model, but with an environment; & remember 
that we are not interested in simple properties like the phase diagram, but in the 
FULL DYNAMICS, including the N-qubit entanglement dynamics. 



Different Regimes for the 
Spin Net System

Vo

∆ο

Decoherent
regime

Quantum 
regime

In contrast to the single qubit problem, where we 
only had 2 low-T regimes (either coherent quantum 
or incoherent quantum relaxation), the spin net 
offers a range of possibilities:

(i)  DIPOLE INTERACTION-DOMINATED REGIME: If 
one ignores the environment, this Quantum Ising

system simply localises into a glass if  Vo>∆ο. 
However the environment has a profound effect -
even extremely small ξο will delocalise the spins, & 
give quantum relaxation. If we increase the quantum 
parameter so that ∆ο>> ξο (but still ∆ο< Vo) then very 
complex multi-spin entangled dynamics ensues.

(ii) DECOHERENT RELAXATION REGIME: Even with strong 
decoherence/dissipation, the inter-spin correlations strongly affect 

the relaxational dynamics. Again, the system is never frozen, even if ∆ο<< ξο .

(iii) COHERENT QUANTUM REGIME: This is the most interesting but the most difficult to 
understand – we are dealing with the full quantum computation problem, with N-spin 

entanglement on the table. The smallest environmental coupling eventually destroys 
coherent dynamics – higher spin entanglement is the first to go. Many features of the 
dynamics here are not understood at all – this is a frontier problem of great importance. 
It is commonly assumed in the quantum information literature that for weak decoherence
one can ignore all but uncorrelated errors (ie., single-spin decoherence coming from 
Interactions between individual qubits & the environment). As we shall see below this is 
not in general correct.       

Dipole
Interaction
regime

ξο



QUANTUM RELAXATION REGIME: Derivation of Kinetic Eqtn. 
In both the dipolar-dominated regime and the environment-dominated regime, the 
dynamics is incoherent if ∆ο is small. The we can use a classical kinetic equation. 

The kinetic eqtn for the magnetic qubit distribution Pα (ξ, r) is a BBGKY one, coupling it to the 
2-qubit distribution P2. Here r is the position of the qubit, α = +,− is the polarisation of the 
qubit along the z-axis, and ξ is the longitudinal field at r.

In this kinetic equation the interaction U(r-r’) is dipolar, and the relaxation rate τ−1
Ν is 

the inelastic, nuclear spin-mediated, single qubit tunneling flip rate, as a function of 
the local bias field. As discussed before, this relaxation operates over a large bias 
range ξο where typically ξο ∼ Eo ( and Eo is the width 
of the nuclear spin muliplet introduced before) 

The BBGKY hierarchy can be truncated with the kinetic equation above if the initial 2-qubit 
distribution factorizes. This happens if the system is either (i) initially polarized, or (ii) initially 
strongly annealed. Then we have:

The kinetic equation can then be solved, and
gives the square root short-time behaviour:



Quantum Relaxation inQuantum Relaxation in
aa ““Spin NetSpin Net”” ofof

InteractingInteracting MAGBITSMAGBITS

At first glance the problem of a whole net of magbits, with
long-range “frustrating” dipole interactions between them,
looks insuperable. But actually the short-time dynamics 
can be solved analytically, in the quantum relaxation regime! 
This is because the dipole fields around the sample vary slowly 
in time compared to the fluctuating hyperfine fields. This leads
to universal analytic predictions:

(1) Only magbits near resonance  make incoherent flips 
As tunneling occurs, the resonant surfaces move & 
disintegrate- then, for ANY sample shape

δM(t) ~  [t/τQ]1/2 τQ ~  (∆2Τ2) Εο
2N(ξ=εH)/W

where W is the width of the dipolar field distribution, 
and N(ξ) is the density of the distribution over bias.

(2) Tunneling digs a “hole” in this distribution, with initial 
width Eo, and a characteristic spreading with time- so it 
depends again on the nuclear hyperfine couplings. 

NV Prokof’ev, PCE Stamp, PRL
80, 5794 (1998)

Vij >> Eo >  ∆

Μ(ξ)

ξ

IS Tupitsyn, PCE Stamp



HOLE  DIGGING  up close

We look at the time evolution of the INTERNAL DISTRIBUTION OF BIAS FIELDS M(ξ,t) 
(recall that ξ is the longitudinal bias field. A key feature of the theory is ‘Hole-digging’
in this distribution; the tunneling spins deplete the distribution. Only spins in resonance 
can tunnel, and this happens in a field range 2ξ0 (ie., controlled by the nuclear hyperfine 
interactions). The time evolution is non-trivial because the dipolar interactions scatter 
spins back into the hole (giving the square root time relaxation).   



Quantum RelaxationQuantum Relaxation
Experiments in Experiments in 

Magnetic MoleculesMagnetic Molecules

R. Giraud et al., PRL 87, 057203 (2001)

In the rare earth compound
LiHoxY1-xF4 the hyperfine
coupling on the Ho sites is
so strong that one sees the 
hyperfine structure directly 
in the quantum relaxation
rate. For dilute spins  (x <<1)
one looks at the relaxation 
of individual Ho ions- and 
sees the nuclear multiplet
structure directly!  

Wernsdorfer et al, PRL 82, 3903 
(1999);  and

PRL 84, 2965 (2000); and 
Science 284, 133 (1999)

Experiments by 4 different groups have verified all these predictions.
These results on Fe-8 (of the Wernsdorfer group) show the square root 
relaxation, and the hole digging in the internal field distribution,
Inferred from the square root relaxation rate. The hole width, and its

variation with isotopes, agrees with 
theory. Finally, the relaxation rate 
oscillates with transverse field as 
expected for the Aharonov-Bohm
oscillations in spin space.



COHERENT DYNAMICS of the 
DIPOLAR SPIN NET

The dipolar spin net is of great interest to solid-state 
theorists because it represents the behaviour of a large 
class of systems with “frustrating” interactions  (spin 
glasses, ordinary dipolarglasses).  It is also a fascinating 
toy model for quantum computation:

H  =  Σj (∆j τj
x + εj τj

z)   +   Σij Vij
dip τi

z τj
z

+   HNN(Ik)   +    Hφ(xq)     
+   interactions

For magnetic systems this leads to the picture at right.  

Almost all experiments so far have been done in the region where ∆ο is small- whether the 
dynamics is dipolar-dominated or single molecule, it is INCOHERENT QUANTUM RELAXATION. 

The next great challenge is the dynamics in the QUANTUM COHERENCE REGIME

Actually this is terribly complex, because we have to deal with entanglement between 
qubits up to the N-qubit density matrix. A lot of what has been written in the literature 
on this is just completely wrong.

Here I just describe the results for the single example of the Fe-8 system. Here one 
finds that the most important source of decoherence arises from CORRELATED ERRORS
COMING FROM THE INTER-QUBIT INTERACTIONS.



RESULTS for DECOHERENCE in the Fe-8 SPIN NET
A very startling result emerges when one looks at the low-T decoherence in a dipolar 
spin net.  Even for rather low T, te decoherence is dominated by correlated errors (ie., 
coming from pairs of qubits). This runs contrary to all the quantum information dogma. 

A. Morello, P.C.E. Stamp and I.S. Tupitsyn, cond-mat/0605709 (2006)
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Here we see results 
for the Fe-8 system. 
Note that at low T 
we can still get very 
high coherence:

optimal coherent
operation point
at T = 50 mK

Q ∼ 107
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A. Morello, P.C.E. Stamp and I.S. Tupitsyn, cond-mat/0605709 (2006)

PROPOSED EXPERIMENT to observe COHERENCE in Fe-8

For details see the paper (ref below).


