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MORE ABSTRACT MODELS of DECOHERENCE:
QUANTUM WALKS 

& 
TOPOLOGICAL FIELD THEORIES



4.1: QUANTUM WALKS & QUANTUM INFORMATION

We now want to look in a more general way at the whole issue of large scale 
quantum effects (interference, entanglement, coherence, etc.) and the 
influence of quantum fluctuations and decoherence on these.

The first way we shall do this is by looking at ‘quantum walks’, and the 
influence of decoherence on these. Quantum walks refer to the dynamics of a 
particle on some arbitrary mathematical graph. Their importance is twofold. 
First, they can be mapped to a very large class of quantum information 
processing systems. Second, they can be used to generate new kinds of 
quantum information processing algorithm. The whole field of quantum walks 
is rather new, and there is still elementary basic work to be done.  One of the 
most interesting things is the investigation of decoherence on quantum walks.  
Here I briefly describe some recent results in this field, and their implications 
for large-scale quantum phenomena



Remarks on NETWORKS- the QUANTUM WALK

Computer scientists have been interested in RANDOM WALKS 
on various mathematical GRAPHS, for many years. These 
allow a general analysis of decision trees, search algorithms, 
and indeed general computer programmes (a Turing machine 
can be viewed as a walk).  One of the most important 
applications of this has been to error correction- which is 
central to modern software.

Starting with papers by Aharonov et al (1994), & Farhi & Gutmann (1998), the same kind 
of analysis has been applied to QUANTUM COMPUTATION.  It is easy to show that many 
quantum computations can be modeled as QUANTUM WALKs on some graph.  The problem 
then becomes one of QUANTUM DIFFUSION on this graph, and one easily finds either 
power-law or exponential speed-up, depending on the graph. Great hopes have been 
pinned on this new development- it allows very general analyses, and offers hope of new 
kinds of algorithm, and new kinds of quantum error correction- and new ‘circuit designs’.

Thus we are interested in simple walks described by 
Hamiltonians like

which can be mapped to a variety of gate Hamiltonians, 
spin Hamiltonians, and interacting qubit networks. Most 
of all we want to understand how decoherence affects 
the quantum walk dynamics; ie., we couple oscillator 
and spin baths to the walker. 



A VARIETY of MAPPINGS
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One can make a lot of useful mappings between 
qubit Hamiltonians, Hamiltonians for spin chains 
and other spin networks, quantum gate systems, 
and quantum walk Hamiltonians. This is very 
useful in the exploration of different quantum 
algorithms and quantum information processing 
hierarchies. 

One of the most important goals in this field is to try and 
produce new kinds of quantum algorithm. So far the 2 most 
important ones are the Shor and Grover algorithms. The hope 
is that new representations, like the quantum walk, will allow 
us to do this. 

Another important use of quantum walks is the possibility of more easily 
studying decoherence in different quantum information processing systems. 
The mappings above allow us to easily move between different 
representations of this, and to easily study the dynamics of quantum 
information processing. 

Initial results by various groups have been very interesting – they have 
helped clarify the conditions under which one gets accelerated dynamics 
(notably on hyperlattices like the one at left).



DECOHERENCE & QUANTUM WALKS – a MODEL EXAMPLE

To see the usefulness of the analysis of decoherence, 
let’s look at a simple but interesting example.  We look 

at a d-dimensional hyperlattice, and add a 
transverse coupling to a spin bath: 
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FREE QUANTUM BEHAVIOUR
Suppose initial state is at origin: So that:

Then, since One gets 

More generally, we can start with a wave-packet: 

which gives

Thus, quite generally one has and that

Now this is to contrasted with diffusive behaviour:

and 



DECOHERENCE DYNAMICS 
For the decoherent Quantum Walk Hamiltonian

Or, for an initial wave-packet

Now this produces a very surprising result:

BUT….

In other words, the particle spends more time near the origin than classical diffusion 
would predict, BUT it also has a BALLISTIC 
part (in the long-time limit)!!

More detailed 
evaluation of 
the integrals 
fills this picture out:

Density matrix after time t such that z=2∆t >>R2, 
with z = 2000 and R=10. Long-range part is 
ballistic, short-range part is sub-diffusive.



2.2: Analysis of a Topological Field Theory
The 

DISSIPATIVE  W.A.H. MODEL

We are interested in topological field theories because they possess ‘hidden’
topological quantum numbers which are conserved even when the system is 
subject to quite severe perturbations. A model of central interest is the 
‘dissipative W.A.H. model’ (named after Wannier, Az’bel, & Hofstadter’). This is 
produced by synthesizing elements from 2 simpler models which are very 
interesting on their own: the W.A.H. model (non-interacting charged particles 
moving on a 2-d lattice in a uniform magnetic field), and the ‘Schmid model’
(a particle moving in a periodic potential, coupled to an oscillator bath). 
Combining these gives a model in which W.A.H. particles couple dissipatively 
to an oscillator bath. This model is believed to have an SL(2,Z) symmetry, in 
common with some other field theories which attempt to describe the 
Fractional Quantum Hall liquid, certain systems of interacting quantum wires, 
and possibly Josephson junction arrays. However the model was actually 
originally introduced by string theorists (Callan et al.) to deal with a class of 
open string theories, and it is still of central interest in string theory. It is of 
potential interest for topological quantum computation.  

In what follows I first describe key results for the W.A.H. and Schmid models 
on their own, and then go on to discuss results for the dynamics of the 
dissipative WAH model. It is found that there are some important outstanding 
problems here – in particular, the older results of the string theorists seem to 
conflict with more recent results.           



The W.A.H. MODEL

The Hamiltonian involves a set of 
charged fermions moving on a 
periodic lattice- interactions between 
the fermions are ignored. The 
charges couple to a uniform flux 
through the lattice plaquettes.

Often one looks at a square 
lattice, although it turns out 
much depends on the lattice 
symmetry.

One key dimensionless parameter in the problem is 
the FLUX per plaquette, in units of the flux quantum



The crucial effect of the applied field is in the extra phase accumulated 
around each  lattice plaquette- these phases of course interfere with each other. 
To see this we choose the Landau gauge: 

Then , wrting the 
Schrodinger eqtn as a 
difference eqtn. around 
a plaquette, we have:

In terms of reduced variables (where Eo is 
just the bandwidth) we can then 
write the solution in the form:

The Schrodinger eqtn. 
takes the iterative form:

Solutions exist provided:

This is just a condition on the flux- it must be rational:



The HOFSTADTER BUTTERFLY

The graph shows the ‘support’ of the density of states- provided α is rational



The recursive nature of the Schrodinger eqtn is then directly responsible for 
the recursive form of the density of states. One has a nested pattern in which 
the entire form is repeated in any subset (reflecting of course the structure of 
the rational numbers). The ‘shape’ of the nesting pattern depends on the lattice 
structure. For a finite lattice the adjustment of levels between very close values 
of flux is effected by level crossing between band edges.  For infinite lattices 
this happens infinitely fast. In finite lattices, EDGE states are crucial.



Another way of looking 
at W.A.H. (Chern #)



II: Schmid model- particle 
coupled to oscillator bath

In the Schmid model a particle moves on a 1-d 
periodic lattice, but is now coupled to an 
oscillator bath. It is then interesting 
to apply a weak field. 

The quantity of
crucial interest is then the particle
mobility (hopefully well-defined!).

The particle-bath interaction is bilinear in the coordiantes of the two. The 
individual couplings are weak (delocalised modes), but their cumulative 
effect on the particle depends on the form 
of the Feynman-Vernon/Caldeira-Leggett 
‘spectral density’, defined as follows: 

In this study we choose an ‘Ohmic’ spectral form: 



The Schmid model is a very rich field theory. We 
first separate the action into 2 terms:

The ‘bare’ action contains the 
interactions with the bath- this 
is the Caldeira-Leggett action:

The ‘interaction’ term is the periodic potential: 

The reasons for making this choice will become clear.

The bare action is a simple quadratic form:

The propagator describes quantum Brownian motion:

A crucial feature of the Ohmic form is that we get 
a logarithmic interaction generated between states 
of the particle separated by long time intervals- leading to IR divergence 
at low energy in the particle dynamics.



To understand this model we start with
the partition function, written as a path 
integral over trajectories 

(1)    EXPANSION in POTENTIAL

Let us assume that we can expand in g:

In the action we easily get:

We can consider the {ej} to be classical charges located at {τj}. We deal with 
the standard ‘Coulomb gas’; the partition function is only well-defined if the 
system is globally neutral. We give it a charge density

We then have:

with the usual normalisation



(2)  DUAL INSTANTON EXPANSION

The WKB/instanton expansion is valid in the 
regime where

The particle then tunnels between wells through
large barriers- this is the large g limit. We can
write the trajectory in the form at right:

We then have an action with interactions between local ‘instanton charges’: 

Again, we require global charge neutrality:

Again, we have long-range log interactions:

(here, ωο is the ‘bounce frequency’, and  



DUALITY We now see that the duality can be written:

provided we make the following change: 

PHASE DIAGRAM
This system is governed by the extremely 

well-known ‘Kosterlitz-Thouless’ scaling. The
2 phases differ in the ‘mobility’ of the particle, defined in terms of the 
partition function by

The KT scaling theory then shows that one has a 
localised phase at T = 0 when α > 1, and a delocalised 
phase when α < 1. This general conclusion can also 
be arrived at by direct calculation.

The duality appears in the mobility in 
the following form:  

REFERENCES

This model has recently been re-evaluated, with some interesting exact solutions:
M Hasselfield, T Lee, GW Semenoff, PCE Stamp:  hep-th/0512219  (Ann Phys, in press)



III: W.A.H. + Boson Field/
Oscillator bath/gauge fluctns

So now we arrive at the model we really want to study. This problem is produced by 
combining the 2 previous problems- we have a 2-d WAH lattice with particles coupled 
to an oscillator bath:

There are now TWO dimensionless couplings in 
the problem- to the external field, and to the bath:



The effective Hamiltonian is also written as:

H  =   - t Σij [ ci cj  exp {iAij} + H.c. ]                   ……. “WAH” lattice
+  ΣnΣq  λq Rn . xq          +    Hosc ({xq})  …… coupled to 

oscillators

(i)  the the WAH (Wannier-Azbel-Hofstadter) Hamiltonian describes the motion of 

spinless fermions on a 2-d square lattice, with a flux  φ per plaquette (coming
from the gauge term  Aij).

(ii)  The particles at positions Rn couple to a set of oscillators.

This can be related to many systems- from 2-d J. Junction arrays in
an external field to flux phases in HTc systems, to one kind of open 
string theory.  It is also a model for the dynamics of information
propagation in a QUIP array, with simple flux carrying the info.

There are also many connections with other models of interest in
mathematical physics and statistical physics. 



EXAMPLE: 
Superconducting arrays

The bare action is:

Plus coupling to Qparticles, 
photons, etc:

Interaction kernel 
(shunt resistance is RN):

Another EXAMPLE:  3-wire junctions

C. Chamon, M. Oshikawa, I Affleck, PRL  91, 206403 (2004)



Another EXAMPLE:  FQHE

Resulting Phase diagram
(Lutken & Ross (1993)RG flow  (Laughlin (1984); 

Lutken & Ross (1992-4))

Another phase diagram
(Zhang, Lee, Kivelson (1994) Expt (Kravchenko,

Coleridge,..)



The  TOPOLOGICAL QUANTUM COMPUTER
Kitaev, 1997
Freedman et al (2003, 2004)

Basic idea is to try and construct some 
lattice realisation of an anyon system, & use 
the anyons to do quantum computation. The
preliminary theory indicates almost no decoherence 

Problem is that so far, the 
only realisations of this 
involve very strange spin 
Hamiltonians- which can 
only be analysed using 
topological methods.



ACTION for the DISSIPATIVE WAH MODEL

The action is an obvious generalisation:

The propagator now has a typical ‘Quantum Hall’ form:

Mij   satisfies the following relations:



Mapping of the line α=1
under z 1/(1 + inz)

PHASE DIAGRAM ?

Arguments leading to this phase 
diagram based mainly on duality, 
& assumption of localisation for 
strong coupling to bosonic bath. 

The duality is now that of the 
generalised vector Coulomb gas, 
in the complex z- plane.

Proposed phase diagram
(Callan & Freed, 1992)



DIRECT CALCULATION of µ (Chen & Stamp)

We add a finite external field:

We wish to calculate directly the time evolution of the reduced density matrix 
of the particle. It is convenient 
to write this in Wigner form: 



RESULTS of DIRECT CALCULATION

We get exact results on a particular circle in the phase 
plane- the one for which  K = 1/2

The reason is that on this circle, one finds 
that both the long- and short-range parts of the 
interaction permit a ‘dipole’ phase, in which 
the system form close dipoles, with the dipolar 
widely separated.  This happens nowhere else.

One then may immediately evaluate the 
dynamics, which is well-defined. If we write 
this in terms of a mobility we have the simple 
results shown:



RESULTS on CIRCLE  K = 1/2 The results can be summarized as shown 
in the figure. For a set of points on the circle 
the system is localised. At all other points 
on the circle,  it is delocalised.This behaviour is quite different from the 

previous results! The explanation is almost
certainly the existence 
of ‘hidden fixed points’ .

The behaviour on 
this circle should be 
testable in 
experiments.



SOME DETAILS of the CALCULATION

In the next 6 pages some details of the calculations are given, for specialists. 
The dynamics of the density matrix is calculated using path integral methods. We define 
the propagator for the density matrix as follows:

This propagator is written 
as a path integral along a 
Keldysh contour:

All effects of the bath are 
contained in Feynman’s 
influence functional, which 
averages over the bath 
dynamics, entangled with 
that of the particle:

The ‘reactive’ part & the 
‘decoherence’ part of the 
influence functional depend 
on the spectral function:



Influence of the periodic potential

We do a weak potential expansion, using the standard trick

Without the lattice potential, the path integral contains paths obeying the 
simple Q Langevin eqtn:

The potential then adds a set of ‘delta-fn. kicks’:



One can calculate the dynamics now in a quite direct way, not by calculating 
an autocorrelation function but rather by evaluating the long-time behaviour of 
the density matrix.  

If one evaluates the long-time behaviour of the Wigner function one then 
finds the following, after expanding again in the potential (cf. Schmid problem):

We now go to some rather detailed exact results for this velocity, in the 
next 3 slides ….



LONGITUDINAL COMPONENT:



TRANSVERSE 
COMPONENT:



DIAGONAL & CROSS-CORRELATORS:

It turns out from these exact results that not all of the conclusions 
which come from a simple analysis of the long-time scaling are 
confirmed. In particular we do not get the same phase diagram
as Callan et al., but instead the results that were summarized 
a few pages back, for the circle K = ½.



SOME OLDER REFERENCES



SUMMARY of COURSE
1. We have seen how in the quest for large-scale quantum phenomena in magnetic 

systems, one ends up looking at phenomena very different from those occurring 
in superfluids or superconductors. In particular one has to look at models of 
coupled 2-level systems, often dipolar-coupled; and some of the really interesting 
effects come form magnetic solitons. Topology and topological phase in spin space 
play an important role, for solitons, interacting spin qubits, and in decoherence. 
Decoherence enters in a very sophisticated way, and one needs to employ rather 
new models for decoherence, and to describe low-T quantum environments. Issues 
of principle can be very important: in particular one has to deal with environments 
that are far from equilibrium, where linear response and fluctuation-dissipation 
theorems are rather meaningless.  

2.    In applications to experiment the question of what sort of environment one is 
dealing with becomes terribly important. The ‘spin bath’, describing localised 
modes, plays a central role because most of the important low-energy 
environmental modes are of this type.  In dealing with tunneling phenomena one 
finds that without this spin bath, very little would be seen – it is the nuclear spins 
that ‘liberate’ tunneling, which would otherwise be blocked. On the other hand 
most coherence phenomena are rapidly destroyed by the spin bath, even though it 
causes little or no dissipation.  A whole variety of large-scale quantum phenomena 
involving tunneling spins and tunneling topological solitons have been seen, and 
agreement with theoretical predictions is pretty good.

3. New models in the field are considerable interest. These include models of 
‘quantum walks’, as well as models describing topological quantum fluids. These
models are of very general interest, in magnetism and elsewhere

THANKS TO ALL PARTICIPANTS, and HAVE A GOOD SUMMER !!
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