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Pseudogap and high-temperature superconductivity from weak to strong coupling.

Towards quantitative theory.

A.-M.S. Tremblay, B. Kyung, D. Sénéchal
Département de physique and RQMP, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada

(Dated: November 2005)

This is a short review of the theoretical work on the two-dimensional Hubbard model performed
in Sherbrooke in the last few years. It is written on the occasion of the twentieth anniversary of
the discovery of high-temperature superconductivity. We discuss several approaches, how they were
benchmarked and how they agree sufficiently with each other that we can trust that the results are
accurate solutions of the Hubbard model. Then comparisons are made with experiment. We show
that the Hubbard model does exhibit d-wave superconductivity and antiferromagnetism essentially
where they are observed for both hole and electron-doped cuprates. We also show that the pseudo-
gap phenomenon comes out of these calculations. In the case of electron-doped high temperature
superconductors, comparisons with angle-resolved photoemission experiments are nearly quantita-
tive. The value of the pseudogap temperature observed for these compounds in recent photoemission
experiments has been predicted by theory before it was observed experimentally. Additional exper-
imental confirmation would be useful. The theoretical methods that are surveyed include mostly
the Two-Particle Self-Consistent Approach, Variational Cluster Perturbation Theory (or variational
cluster approximation), and Cellular Dynamical Mean-Field Theory.
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I. INTRODUCTION

In the first days of the discovery of high-temperature
superconductivity, Anderson1 suggested that the two-
dimensional Hubbard model held the key to the phe-
nomenon. Despite its apparent simplicity, the two-
dimensional Hubbard model is a formidable challenge for
theorists. The dimension is not low enough that an exact
solution is available, as in one dimension. The dimension
is not high enough that some mean-field theory, like Dy-
namical Mean Field Theory2,3 (DMFT), valid in infinite
dimension, can come to the rescue. In two dimensions,
both quantum and thermal fluctuations are important.
In addition, as we shall see, it turns out that the real
materials are in a situation where both potential and
kinetic energy are comparable. We cannot begin with
the wave picture (kinetic energy dominated, or so-called
“weak coupling”) and do perturbation theory, and we
cannot begin from the particle picture (potential energy
dominated, or so-called “strong coupling”) and do per-
turbation theory. In fact, even if one starts from the
wave picture, perturbation theory is not trivial in two
dimensions, as we shall see. Variational approaches on
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FIG. 1: The dx2−y2 and extended s-wave susceptibilities ob-
tained from QMC simulations for U = 4t and a 4 × 4 lattice.
The solid lines are the non-interacting results. From Ref. 5.
The low temperature downturn of d-wave however seems to
come from a mistreatment of the sign problem (D.J. Scalapino
private communication).

the ground state have been proposed,4 but even if they
capture key aspects of the ground state, they say little
about one-particle excitations.

Even before the discovery of high-temperature super-
conductivity, it was suggested that antiferromagnetic
fluctuations present in the Hubbard model could lead to
d-wave superconductivity,6–8 a sort of generalization of
the Kohn-Luttinger mechanism9 analogous to the super-
fluidity mediated by ferromagnetic spin fluctuations in
3He.10 Nevertheless, early Quantum Monte Carlo (QMC)
simulations5 gave rather discouraging results, as illus-
trated in Fig. 1. In QMC, low temperatures are in-
accessible because of the sign problem. At accessible
temperatures, the d-wave pair susceptibility is smaller
than the non-interacting one, instead of diverging. Since
the observed phenomenon appears at temperatures that
are about ten times smaller than what is accessible with
QMC, the problem was left open. Detailed analysis of
the irreducible vertex45 deduced from QMC did suggest
the importance of d-wave pairing, but other numerical
work12 concluded that long-range d-wave order is ab-
sent, despite the fact that slave-boson approaches13,14

and many subsequent work suggested otherwise. The
situation on the numerical side is changing since more
recent variational,4 Dynamical Cluster Approximation15

and exact diagonalization16 results now point towards the
existence of d-wave superconductivity in the Hubbard
model. Even more recently, new numerical approaches
are making an even more convincing case.17–19

After twenty years, we should be as quantitative as
possible. How should we proceed to investigate a model
without a small parameter? We will try to follow this
path: (1) Identify important physical principles and laws
to constrain non-perturbative approximation schemes,
starting from both weak (kinetic energy dominated)
and strong (potential energy dominated) coupling. (2)
Benchmark the various approaches as much as possi-
ble against exact (or numerically accurate) results. (3)
Check that weak and strong coupling approaches agree
at intermediate coupling. (4) Compare with experiment.

In brief, we are trying to answer the question, “Is
the Hubbard model rich enough to contain the essential
physics of the cuprates, both hole and electron doped?”
The answer is made possible by new theoretical ap-
proaches, increased computing power, and the reassur-
ance that theoretical approaches, numerical and analyti-
cal, give consistent results at intermediate coupling even
if the starting points are very different.

This paper is a review of the work we have done in
Sherbrooke on this subject. In the short space provided,
this review will not cover all of our work. Needless to
say, we will be unfair to the work of many other groups,
even though we will try to refer to the work of others
that is directly relevant to ours. We do not wish to make
priority claims and we apologize to the authors that may
feel unfairly treated.

Section II will introduce the methodology: First a
method that is valid at weak to intermediate coupling,
the Two-Particle Self-Consistent approach (TPSC), and
then various quantum cluster methods that are better
at strong coupling, namely Cluster Perturbation Theory
(CPT), the Variational Cluster Approximation (VCA)
also known as Variational Cluster Perturbation Theory
(VCPT), and Cellular Dynamical Mean Field Theory
(CDMFT) with a brief mention of the Dynamical Cluster
Approximation (DCA). In all cases, we will mention the
main comparisons with exact or numerically accurate re-
sults that have been used to benchmark the approaches.
In Sect. III we give some of the results, mostly on the
pseudogap and the phase diagram of high-temperature
superconductors. More importantly perhaps, we show
the consistency of the results obtained by both weak- and
strong-coupling approaches when they are used at inter-
mediate coupling. Finally, we compare with experiment
in section IV.

II. METHODOLOGY

We consider the Hubbard model

H = −
∑

i,j,σ

tijc
†
iσcjσ + U

∑

i

ni↑ni↓ (1)

where c†iσ (ciσ) are creation and annihilation operators

for electrons of spin σ, niσ = c†iσciσ is the density of
spin σ electrons, tij = t∗ji is the hopping amplitude,
and U is the on-site Coulomb repulsion. In general, we
write t, t′, t′′ respectively for the first-, second- and third-
nearest neighbor hopping amplitudes.

In the following subsections, we first discuss how to ap-
proach the problem from the weak coupling perspective
and then from the strong coupling point of view. The ap-
proaches that we will use in the end are non-perturbative,
but in general they are more accurate either at weak or
strong coupling.
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A. Weak coupling approach

Even at weak coupling, the Hubbard model presents
difficulties specific to two dimensions. The time-honored
Random Phase Approximation (RPA) has the advantage
of satisfying conservation laws, but it violates the Pauli
principle and the Mermin-Wagner-Hohenberg-Coleman
(or Mermin-Wagner, for short) theorem. This theorem
states that a continuous symmetry cannot be broken
at finite temperature in two dimensions. RPA gives a
finite-temperature phase transition. The Pauli principle
means, in particular, that 〈ni↑ni↑〉 = 〈ni↑〉 in a model
with only one orbital per site. This is violated by RPA
since it can be satisfied only if all possible exchanges
of electron lines are allowed (more on this in the fol-
lowing section). Since the square of the density at a
given site is given by 〈(ni↑ +ni↓)

2〉 = 2〈n↑n↑〉+2〈n↑n↓〉,
violating the Pauli condition 〈ni↑ni↑〉 = 〈ni↑〉 will in
general lead to large errors in double occupancy, a
key quantity in the Hubbard model since it is propor-
tional to the potential energy. Another popular ap-
proach is the Moriya20 self-consistent spin-fluctuation
approach21 that uses a Hubbard-Stratonovich transfor-
mation and a 〈φ4〉 ∼ φ2〈φ2〉 factorization. This satis-
fies the Mermin-Wagner theorem but, unfortunately, vi-
olates the Pauli principle and introduces an unknown
mode-coupling constant as well as an unknown renor-
malized U in the second-order term. The conserving
approximation known as Fluctuation Exchange (FLEX)
approximation22 is an Eliashberg-type theory that is con-
serving but violates the Pauli principle, assumes a Migdal
theorem and does not reproduce the pseudogap phe-
nomenon observed in QMC. More detailed criticism of
this and other approaches may be found in Refs. 23,24.
Finally, the renormalization group25–29 has the great ad-
vantage of being an unbiased method to look for instabil-
ities towards various ordered phases. However, it is quite
difficult to implement in two dimensions because of the
proliferation of coupling constants, and, to our knowl-
edge, no one has yet implemented a two-loop calcula-
tion without introducing additional approximations.30,31

Such a two-loop calculation is necessary to observe the
pseudogap phenomenon.

1. Two-Particle Self-consistent approach (TPSC)

The TPSC approach, originally proposed by Vilk,
Tremblay and collaborators,33,37 aims at capturing non-
perturbative effects. It does not use perturbation theory
or, if you want, it drops diagrammatic expansions. In-
stead, it is based on imposing constraints and sum rules:
the theory should satisfy (a) the spin and charge conser-
vation laws (b) the Pauli principle in the form 〈ni↑ni↑〉 =
〈ni↑〉 (c) the local-moment and the local-density sum
rules. Without any further explicit constraint, we find
that the theory satisfies the Mermin-Wagner theorem,
that it satisfies consistency between one- and two-particle

quantities in the sense that 1
2Tr(ΣG) = U〈n↑n↓〉 and fi-

nally that the theory contains the physics of Kanamori-
Brückner screening (in other words, scattering between
electrons and holes includes T-matrix quantum fluctua-
tion effects beyond the Born approximation).

Several derivations of our approach have been
given,32,33 including a quite formal one34 based on the
functional derivative Baym-Kadanoff approach.35 Here
we only give an outline36 of the approach with a more
phenomenological outlook. We proceed in two steps. In
the first step (in our earlier work sometimes called zeroth
step), the self-energy is obtained by a Hartree-Fock-type
factorization of the four-point function with the addi-
tional constraint that the factorization is exact when all
space-time coordinates coincide.157 Functional differenti-
ation, as in the Baym-Kadanoff approach35, then leads
to a momentum- and frequency-independent irreducible
particle-hole vertex for the spin channel that satisfies37

Usp = U〈n↑n↓〉/(〈n↑〉〈n↓〉). The local moment sum rule
and the Pauli principle in the form 〈n2

σ〉 = 〈nσ〉 then
determine double occupancy and Usp. The irreducible
vertex for the charge channel is too complicated to be
computed exactly, so it is assumed to be constant and
its value is found from the Pauli principle and the local
charge fluctuation sum rule. To be more specific, let us
use the notation, q = (q,iqn) and k = (k,ikn) with iqn

and ikn respectively bosonic and fermionic Matsubara
frequencies. We work in units where kB, ~, and lattice
spacing are all unity. The spin and charge susceptibilities
now take the form

χ−1
sp (q) = χ0(q)

−1 −
1

2
Usp (2)

and

χ−1
ch (q) = χ0(q)

−1 +
1

2
Uch (3)

with χ0 computed with the Green function G
(1)
σ that con-

tains the self-energy whose functional differentiation gave
the vertices. This self-energy is constant, corresponding
to the Hartree-Fock-type factorization.158 The suscepti-
bilities thus satisfy conservation laws35. One enforces the
Pauli principle 〈n2

σ〉 = 〈nσ〉 implicit in the following two
sum rules,

T

N

∑

q

χsp(q) =
〈

(n↑ − n↓)
2
〉

= n − 2〈n↑n↓〉 (4)

T

N

∑

q

χch(q) =
〈

(n↑ + n↓)
2
〉

− n2 = n + 2〈n↑n↓〉 − n2

where n is the density. The above equations, in addition
to37

Usp =
U〈n↑n↓〉

〈n↑〉〈n↓〉
, (5)

suffice to determine the constant vertices Usp and Uch.
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Once the two-particle quantities have been found as
above, the next step of the approach of Ref. 23, consists in
improving the approximation for the single-particle self-
energy by starting from an exact expression where the
high-frequency Hartree-Fock behavior is explicitly fac-
tored out. One then substitutes in the exact expression
the irreducible low-frequency vertices Usp and Uch as well

as G
(1)
σ (k + q) and χsp(q), χch(q) computed above. The

exact form for the self-energy expression can however be
obtained either in the longitudinal or in the transverse
channel. To satisfy crossing symmetry of the fully re-
ducible vertex appearing in the general expression and to
preserve consistency between one- and two-particle quan-
tities, one averages the two possibilities to obtain36

Σ(2)
σ (k) = Un−σ

+
U

8

T

N

∑

q

[3Uspχsp(q) + Uchχch(q)] G(1)
σ (k + q). (6)

The resulting self-energy Σ
(2)
σ (k) on the left hand-

side is at the next level of approximation so it dif-
fers from the self-energy entering the right-hand side.
One can verify that the longitudinal spin fluctuations
contribute an amount U〈n↑n↓〉/4 to the consistency

condition24 1
2Tr(Σ(2)G(1)) = U〈n↑n↓〉 and that each of

the two transverse spin components as well as the charge
fluctuations also each contribute U〈n↑n↓〉/4. In addi-
tion, one verifies numerically that the exact sum rule23

−
∫

dω′ Im[Σσ(k,ω′)]/π = U2n−σ(1 − n−σ) determining
the high-frequency behavior is satisfied to a high degree
of accuracy.

The theory also has a consistency check. Indeed, the
exact expression for consistency between one- and two-
particle quantities should be written with G(2) given by

(G−1)(2) = (G−1)(0)−Σ(2) instead of with G(1). In other
words 1

2Tr(Σ(2)G(2)) = U〈n↑n↓〉 should be satisfied in-

stead of 1
2Tr(Σ(2)G(1)) = U〈n↑n↓〉, which is exactly satis-

fied here. We find through QMC benchmarks that when
the left- and right-hand side of the last equation differ
only by a few percent, then the theory is accurate.

To obtain the thermodynamics, one finds the entropy
by integrating 1/T times the specific heat (∂E/∂T ) so
that we know F = E − TS. There are other ways to ob-
tain the thermodynamics and one looks for consistency
between these.38 We will not discuss thermodynamic as-
pects in the present review.

At weak coupling in the repulsive model the particle-
hole channel is the one that is influenced directly.
Correlations in crossed channels, such as pairing sus-
ceptibilities, are induced indirectly and are harder to
evaluate. This simply reflects the fact the simplest
Hartree-Fock factorization of the Hubbard model does
not lead to a d-wave order parameter (even though
Hartree-Fock factorization of its strong-coupling version
does). The dx2−y2-wave susceptibility is defined by

χd =
∫ β

0
dτ〈Tτ ∆(τ)∆†〉 with the d-wave order param-

eter equal to ∆† =
∑

i

∑

γ g(γ)c†i↑c
†
i+γ↓ the sum over γ

being over nearest-neighbors, with g(γ) = ±1/2 depend-
ing on whether γ is a neighbor along the x̂ or the ŷ axis.
Briefly speaking,39,40 to extend TPSC to compute pair-
ing susceptibility, we begin from the Schwinger-Martin-
Kadanoff-Baym formalism with both diagonal23,34 and
off-diagonal41 source fields. The self-energy is expressed
in terms of spin and charge fluctuations and the irre-
ducible vertex entering the Bethe-Salpeter equation for
the pairing susceptibility is obtained from functional dif-
ferentiation. The final expression for the d-wave suscep-
tibility is,

χd(q = 0, iqn = 0) =
T

N

∑

k

(

g2
d(k)G

(2)
↑ (−k)G

(2)
↓ (k)

)

−
U

4

(

T

N

)2
∑

k,k′

gd(k)G
(2)
↑ (−k)G

(2)
↓ (k)

×

(

3

1 − 1
2Uspχ0(k′ − k)

+
1

1 + 1
2Uchχ0(k′ − k)

)

G
(1)
↑ (−k′)G

(1)
↓ (k′)gd(k

′). (7)

In the above expression, gd(k) is the form factor for the
gap symmetry, while k and k′ stand for both wave-vector
and fermionic Matsubara frequencies on a square-lattice
with N sites at temperature T. The spin and charge sus-
ceptibilities take the form χ−1

sp (q) = χ0(q)
−1 − 1

2Usp and

χ−1
ch (q) = χ0(q)

−1 + 1
2Uch with χ0 computed with the

Green function G
(1)
σ that contains the self-energy whose

functional differentiation gave the spin and charge ver-
tices. The values of Usp, Uch and 〈n↑n↓〉 are obtained as
described above. In the pseudogap regime, one cannot
use Usp = U〈n↑n↓〉/(〈n↑〉〈n↓〉). Instead,23 one uses the

local-moment sum rule with the zero temperature value
of 〈n↑n↓〉 obtained by the method of Ref. 42 that agrees
very well with QMC calculations at all values of U. Also,

G
(2)
σ contains self-energy effects coming from spin and

charge fluctuations, as described above.34,36

The same principles and methodology can be applied
for the attractive Hubbard model.39,41,43 In that case, the
dominant channel is the s-wave pairing channel. Cor-
relations in the crossed channel, namely the spin and
charge susceptibilities, can also be obtained mutatis mu-
tandi along the lines of the previous paragraph.
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FIG. 2: Comparisons between the QMC simulations (sym-
bols) and TPSC (solid lines) for the filling dependence of the
double occupancy. The results are for T = t/6 as a function of
filling and for various values of U expect for U = 4t where the
dashed line shows the results of our theory at the crossover
temperature T = TX . From Ref. 23.

2. Benchmarks for TPSC

To test any non-perturbative approach, we need reli-
able benchmarks. Quantum Monte Carlo (QMC) sim-
ulations provide such benchmarks. The results of such
numerical calculations are unbiased and they can be ob-
tained on much larger system sizes than any other simula-
tion method. The statistical uncertainty can be made as
small as required. The drawback of QMC is that the sign
problem renders calculations impossible at temperatures
low enough to reach those that are relevant for d-wave
superconductivity. Nevertheless, QMC can be performed
in regimes that are non-trivial enough to allow us to elim-
inate some theories on the grounds that they give quali-
tatively incorrect results. Comparisons with QMC allow
us to estimate the accuracy of the theory. An approach
like TPSC can then be extended to regimes where QMC
is unavailable with the confidence provided by agreement
between both approaches in regimes where both can be
performed.

In order to be concise, details are left to figure cap-
tions. Let us first focus on quantities related to spin and
charge fluctuations. The symbols on the figures refer to
QMC results while the solid lines come from TPSC cal-
culations. Fig. 2 shows double occupancy, a quantity
that plays a very important role in the Hubbard model
in general and in TPSC in particular. That quantity is
shown as a function of filling for various values of U at
inverse temperature β = 6. Fig. 3 displays the spin and
charge structure factors in a regime where size effects are
not important. Clearly the results are non-perturbative
given the large difference between the spin and charge
structure factors, which are plotted here in units where
they are equal at U = 0. In Fig. 4 we exhibit the static
structure factor at half-filling as a function of tempera-
ture. Below the crossover temperature TX , there is an
important size dependence in the QMC results. The
TPSC calculation, represented by a solid line, is done

FIG. 3: Wave vector (q) dependence of the spin and charge
structure factors for different sets of parameters. Solid lines
are from TPSC and symbols are our QMC data. Monte Carlo
data for n = 1 and U = 8t are for 6×6 clusters and T = 0.5t;
all other data are for 8 × 8 clusters and T = 0.2t. Error bars
are shown only when significant. From Ref. 37.

FIG. 4: Temperature dependence of Ssp(π, π) at half-filling
n = 1. The solid line is from TPSC and symbols are Monte
Carlo data from Ref. 44. Taken from Ref. 37.

for an infinite system. We see that the mean-field finite
transition temperature TMF is replaced by a crossover
temperature TX at which the correlations enter an ex-
ponential growth regime. One can show analytically23,37

that the correlation length becomes infinite only at zero
temperature, thus satisfying the Mermin-Wagner theo-
rem. The QMC results approach the TPSC results as the
system size grows. Nevertheless, TPSC is in the N = ∞
universality class46 contrary to the Hubbard model for
which N = 3, so one expects quantitative differences to
increase as the correlation length becomes larger. It is
important to note that TX does not coincide with the
mean-field transition temperature TMF . This is because
of Kanamori-Brueckner screening37,47 that manifests it-
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FIG. 5: Comparisons between Monte Carlo simulations
(BW), FLEX calculations and TPSC for the spin suscepti-
bility at Q = (π, π) as a function of temperature at zero Mat-
subara frequency. The filled circles (BWS) are from Ref. 45.
Taken from Ref. 23.

FIG. 6: Single particle spectral weight A(k, ω) for U = 4t,
β = 5/t, n = 1, and all independent wave vectors k of an
8 × 8 lattice. Results obtained from Maximum Entropy in-
version of QMC data on the left panel and many-body TPSC
calculations with Eq.( 6) on the middle panel and with FLEX
on the right panel. From Ref. 36.

self in the difference between Usp and the bare U . Be-
low TX , the main contribution to the static spin struc-
ture factor in Fig. 4 comes from the zero-Matsubara fre-
quency component of the spin susceptibility. This is the
so-called renormalized classical regime where the charac-
teristic spin fluctuation frequency ωsp is much less than
temperature. Even at temperatures higher than that,
TPSC agrees with QMC calculation much better than
other methods, as shown in Fig. 5.

Below the crossover temperature to the renormalized
classical regime, a pseudogap develops in the single-
particle spectral weight. This is illustrated in Fig. 6.36

Eliashberg-type approaches such as FLEX do not show
the pseudogap present in QMC. The size dependence of
the results is also quite close in TPSC and in QMC, as
shown in Fig. 7.

The d-wave susceptibility40 shown in Fig. 8 again
clearly demonstrates the agreement between TPSC and
QMC. In particular, the dome shape dependence of the
QMC results is reproduced to within a few percent. We
will see in Sec. III how one understands the dome shape
and the fact that the d-wave susceptibility of the inter-
acting system is smaller than that of the non-interacting

FIG. 7: Size dependent results for various types of calcula-
tions for U = 4t, β = 5/t, n = 1, k = (0, π), L = 4, 6, 8, 10.
Upper panels show A(k, ω) extracted from Maximum Entropy
on G(τ ) shown on the corresponding lower panels. (a) QMC.
(b) TPSC using Eq. (6). (c) FLEX. From Ref. 36.

FIG. 8: Comparisons between the dx2−y2 susceptibility ob-
tained from QMC simulations (symbols) and from the TPSC
approach (lines) in the two-dimensional Hubbard model.
Both calculations are for U = 4t, a 6 × 6 lattice. QMC er-
ror bars are smaller than the symbols. Analytical results are
joined by solid lines. The size dependence of the results is
small at these temperatures. The U = 0 case is also shown
at β = 4/t as the upper line. The inset compares QMC and
FLEX at U = 4, β = 4/t. From Ref. 40.

one in this temperature range.

To conclude this section, we quickly mention a few
other results obtained with TPSC. Fig. 9 contrasts the
crossover phase diagram obtained for the Hubbard model
at the van Hove filling48 with the results of a renormaliza-
tion group calculation.28 The difference occurring in the
ferromagnetic region is discussed in detail in Ref. 48. Fi-
nally, we point out various comparisons for the attractive
Hubbard model. Fig. 10 shows the static s-wave pairing
susceptibility, Fig. 11 the chemical potential and the oc-
cupation number, and finally Fig. 12 the local density of
states and the single-particle spectral weight at a given
wave vector.
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FIG. 9: The crossover diagram as a function of next-nearest-
neighbor hopping t′ from TPSC (left) and from a temperature
cutoff renormalization group technique from Ref. 28 (right).
The corresponding Van Hove filling is indicated on the up-
per horizontal axis. Crossover lines for magnetic instabilities
near the antiferromagnetic and ferromagnetic wave vectors
are represented by filled symbols while open symbols indicate
instability towards dx2−y2 -wave superconducting. The solid
and dashed lines below the empty symbols show, respectively
for U = 3t and U = 6t, where the antiferromagnetic crossover
temperature would have been in the absence of the super-
conducting instability. The largest system size used for this
calculation is 2048 × 2048. From Ref. 48.

FIG. 10: TPSC s-wave paring structure factor S(q, τ = 0)
(filled triangles) and QMC S(q, τ = 0) (open circles) for U =
−4t and various temperatures (a) at n = 0.5 and (b) at n =
0.8 on a 8 × 8 lattice. The dashed lines are to guide the eye.
From Ref. 43.

B. Strong-coupling approaches: Quantum clusters

DMFT3,51 has been extremely successful in helping us
understand the Mott transition, the key physical phe-
nomenon that manifests itself at strong coupling. How-
ever, in high dimension where this theory becomes ex-
act, spatial fluctuations associated with incipient order
do not manifest themselves in the self-energy. In low di-
mension, this is not the case. The self-energy has strong
momentum dependence, as clearly shown experimentally
in the high-temperature superconductors, and theoreti-
cally in the TPSC approach, a subject we shall discuss
again below. It is thus necessary to go beyond DMFT
by studying clusters instead of a single Anderson impu-

FIG. 11: Left: chemical potential shifts µ(1) − µ0 (open dia-

monds) and µ(2)−µ0 (open squares) with the results of QMC
calculations (open circles) for U = −4t. Right: The momen-
tum dependent occupation number n(k). Circles: QMC cal-
culations from Ref. 49. The solid curve: TPSC. The dashed
curve obtained by replacing Upp by U in the self-energy with
all the rest unchanged. The long-dash line is the result of a
self-consistent T-matrix calculation, and the dot-dash line the
result of second-order perturbation theory. From Ref. 43.

FIG. 12: Comparisons of local density of states and single-
particle spectral weight from TPSC (solid lines) and QMC
(dashed lines) on a 8 × 8 lattice. QMC data for the density
of states taken from Ref. 50. Figures from Ref. 43.

rity as done in DMFT. The simplest cluster approach
that includes strong-coupling effects and momentum de-
pendence is Cluster Perturbation Theory (CPT).52,53 In
this approach, an infinite set of disconnected clusters are
solved exactly and then connected to each other using
strong-coupling perturbation theory. Although the re-
sulting theory turns out to give the exact result in the
U = 0 case, its derivation clearly shows that one expects
reliable results mostly at strong coupling. This approach
does not include the self-consistent effects contained in
DMFT. Self-consistency or clusters was suggested in Ref.
2,54 and a causal approach was first implemented within
DCA,55 where a momentum-space cluster is connected
to a self-consistent momentum-space medium. In our
opinion, the best framework to understand all other clus-
ter methods is the Self-Energy Functional approach of
Potthoff.56,57 The form of the lattice Green function ob-
tained in this approach is the same as that obtained in
CPT, clearly exhibiting that such an approach is better
at strong-coupling, even though results often extrapolate
correctly to weak coupling. Amongst the special cases of
this approach, the Variational Cluster Approach (VCA),
or Variational Cluster Perturbation Theory (VCPT)57 is
the one closest to the original approach. In a variant,
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Cellular Dynamical Mean Field Theory58 (CDMFT), a
cluster is embedded in a self-consistent medium instead
of a single Anderson impurity as in DMFT (even though
the latter approach is accurate in many realistic cases,
especially in three dimensions). The strong-coupling as-
pects of CDMFT come out clearly in Refs. 59,60. A de-
tailed review of quantum cluster methods has appeared
in Ref. 61.

1. Cluster perturbation theory

Even though CPT does not have the self-consistency
present in DMFT type approaches, at fixed computing
resources it allows for the best momentum resolution.
This is particularly important for the ARPES pseudogap
in electron-doped cuprates that has quite a detailed mo-
mentum space structure, and for d-wave superconducting
correlations where the zero temperature pair correlation
length may extend well beyond near-neighbor sites. CPT
was developed by Gros52 and Sénéchal53 independently.
This approach can be viewed as the first term of a sys-
tematic expansion around strong coupling.62 Let us write
the hopping matrix elements in the form

tmn
µν = t(c)µν δmn + V mn

µν (8)

where m and n label the different clusters, and µ, ν label

the sites within a cluster. Then t
(c)
µν labels all the hopping

matrix elements within a cluster and the above equation
defines V mn

µν .
We pause to introduce the notation that will be used

throughout for quantum cluster methods. We follow the
review article Ref. 61. In reciprocal space, any wave vec-
tor k in the Brillouin zone may be written as k =k̃ + K

where both k and k̃ are continuous in the infinite size
limit, except that k̃ is defined only in the reduced Bril-
louin zone that corresponds to the superlattice. On the
other hand, K is discrete and denotes reciprocal lattice
vectors of the superlattice. By analogy, any position r

in position space can be written as r̃ + R where R is for
positions within clusters while r̃ labels the origins of the
clusters, an infinite number of them. Hence, Fourier’s
theorem allows one to define functions of k, k̃ or K

that contain the same information as functions of, re-
spectively, r, r̃ or R. Also, we have K· r̃ = 2πn where n
is an integer. Sites within a cluster are labelled by greek
letters so that the position of site µ within a cluster is
Rµ, while clusters are labelled by Latin letters so that
the origin of cluster m is at r̃m.

Returning to CPT, the Green function for the whole
system is given by

[

Ĝ−1(k̃, z)
]

µν
=
[

Ĝ(c)−1(z) − V̂ (k̃)
]

µν
(9)

where hats denote matrices in cluster site indices and z
is the complex frequency. At this level of approximation,
the CPT Green function has the same structure as in

the Hubbard I approximation except that it pertains to
a cluster instead of a single site. Since Ĝ(c)−1(z) = z +

µ− t̂(c) − Σ̂(c) and Ĝ(0)−1(k̃, z) = z +µ− t̂(c)− V̂ (k̃), the
Green function (9) may also be written as

Ĝ−1(k̃,z) = Ĝ(0)−1(k̃,z) − Σ̂(c)(z). (10)

This form allows a different physical interpretation of the
approach. In the above expression, the self-energy of the
lattice is approximated by the self-energy of the cluster.
The latter in real space spans only the size of the cluster.

We still need an expression to extend the above result
to the lattice in a translationally invariant way. This is
done by defining the following residual Fourier transform:

GCPT(k, z) =
1

Nc

Nc
∑

µ,ν

eik·(Rµ−Rν)Gµν(k̃, z). (11)

Notice that Gµν(k̃, z) may be replaced by Gµν(k, z) in

the above equation since V̂ (k̃ + K) = V̂ (k̃).

2. Self-energy functional approach

The self-energy functional approach, devised by
Potthoff57 allows one to consider various cluster schemes
from a unified point of view. It begins with Ωt[G], a
functional of the Green function

Ωt[G] = Φ[G] − Tr((G−1
0t − G−1)G) + Tr ln(−G). (12)

The Luttinger Ward functional Φ[G] entering this equa-
tion is the sum of connected vacuum skeleton diagrams.
A diagram-free definition of this functional is also given
in Ref. 63. For our purposes, what is important is that
(1) The functional derivative of Φ[G] is the self-energy

δΦ[G]

δG
= Σ (13)

and (2) it is a universal functional of G in the following
sense: whatever the form of the one-body Hamiltonian,
it depends only on the interaction and, functionnally, it
has the same dependence on G. The dependence of the
functional Ωt[G] on the one-body part of the Hamiltonian
is denoted by the subscript t and it comes only through
G−1

0t appearing on the right-hand side of Eq. (12).
The functional Ωt[G] has the important property that

it is stationary when G takes the value prescribed by
Dyson’s equation. Indeed, given the last two equations,
the Euler equation takes the form

δΩt[G]

δG
= Σ − G−1

0t + G−1 = 0. (14)

This is a dynamic variational principle since it involves
the frequency appearing in the Green function, in other
words excited states are involved in the variation. At this
stationary point, and only there, Ωt[G] is equal to the
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FIG. 13: Various tilings used in quantum cluster approaches.
In these examples the grey and white sites are inequivalent
since an antiferromagnetic order is possible.

grand potential. Contrary to Ritz’s variational principle,
this last equation does not tell us whether Ωt[G] is a
minimum or a maximum or a saddle point there.

There are various ways to use the stationarity prop-
erty that we described above. The most common one,
is to approximate Φ[G] by a finite set of diagrams.
This is how one obtains the Hartree-Fock, the FLEX
approximation22 or other so-called thermodynamically
consistent theories. This is what Potthoff calls a type II
approximation strategy.64 A type I approximation sim-
plifies the Euler equation itself. In a type III approxi-
mation, one uses the exact form of Φ[G] but only on a
limited domain of trial Green functions.

Following Potthoff, we adopt the type III approxima-
tion on a functional of the self-energy instead of on a
functional of the Green function. Suppose we can locally
invert Eq. (13) for the self-energy to write G as a func-
tional of Σ. We can use this result to write,

Ωt[Σ] = F [Σ] − Tr ln(−G−1
0t + Σ). (15)

where we defined

F [Σ] = Φ[G] − Tr(ΣG). (16)

and where it is implicit that G = G[Σ] is now a func-
tional of Σ. F [Σ], along with the expression (13) for the
derivative of the Luttinger-Ward functional, define the
Legendre transform of the Luttinger-Ward functional. It
is easy to verify that

δF [Σ]

δΣ
=

δΦ[G]

δG

δG[Σ]

δΣ
− Σ

δG[Σ]

δΣ
− G = −G (17)

hence, Ωt[Σ] is stationary with respect to Σ when Dyson’s
equation is satisfied

δΩt[Σ]

δΣ
= −G + (G−1

0t − Σ)−1 = 0. (18)

To perform a type III approximation on F [Σ], we take
advantage that it is universal, i.e., that it depends only
on the interaction part of the Hamiltonian and not on
the one-body part. This follows from the universal char-
acter of its Legendre transform Φ[G]. We thus evaluate
F [Σ] exactly for a Hamiltonian H ′ that shares the same

interaction part as the Hubbard Hamiltonian, but that is
exactly solvable. This Hamiltonian H ′ is taken as a clus-
ter decomposition of the original problem, i.e., we tile the
infinite lattice into identical, disconnected clusters that
can be solved exactly. Examples of such tilings are given
in Fig. 13. Denoting the corresponding quantities with a
prime, we obtain,

Ωt′ [Σ
′] = F [Σ′] − Tr ln(−G−1

0t′ + Σ′). (19)

from which we can extract F [Σ′]. It follows that

Ωt[Σ
′] = Ωt′ [Σ

′] +Tr ln(−G−1
0t′ +Σ′)−Tr ln(−G−1

0t + Σ′).
(20)

The type III approximation comes from the fact that
the self-energy Σ′ is restricted to the exact self-energy of
the cluster problem H ′, so that variational parameters
appear in the definition of the one-body part of H ′.

In practice, we look for values of the cluster one-body
parameters t′ such that δΩt[Σ

′]/δt′ = 0. It is useful
for what follows to write the latter equation formally,
although we do not use it in actual calculations. Given
that Ωt′ [Σ

′] is the actual grand potential evaluated for
the cluster, ∂Ωt′ [Σ

′]/∂t′ is canceled by the explicit t′

dependence of Tr ln(−G−1
0t′ + Σ′) and we are left with

0 =
δΩt[Σ

′]

δΣ′

δΣ′

δt′

= −Tr

[(

1

G−1
0t′ − Σ′

−
1

G−1
0t − Σ′

)

δΣ′

δt′

]

. (21)

Given that the clusters corresponding to t′ are discon-
nected and that translation symmetry holds on the su-
perlattice of clusters, each of which contains Nc sites, the
last equation may be written

∑

ωn

∑

µν

[

N

Nc

(

1

G−1
0t′ − Σ′(iωn)

)

µν

−
∑

k̃

(

1

G−1
0t (k̃) − Σ′(iωn)

)

µν

]

δΣ′
νµ(iωn)

δt′
= 0. (22)

3. Variational cluster perturbation theory, or variational
cluster approximation

In Variational Cluster Perturbation Theory (VCPT),
more aptly named the Variational Cluster Approach
(VCA), solutions to the Euler equations (22) are found by
looking for numerical minima (or more generally, saddle-
points) of the functional. Typically, the VCA cluster
Hamiltonian H ′ will have the same form as H except
that there is no hopping between clusters and that long-
range order is allowed by adding some Weiss fields, for
instance like in Eq. (37) below. The hopping terms and
chemical potential within H ′ may also be treated like ad-
ditional variational parameters. In contrast with Mean-
Field theory, these Weiss fields are not mean fields, in
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the sense that they do not coincide with the correspond-
ing order parameters. The interaction part of H (or
H ’) is not factorized in any way and short-range cor-
relations are treated exactly. In fact, the Hamiltonian
H is not altered in any way; the Weiss fields are intro-
duced to let the variational principle act on a space of
self-energies that includes the possibility of specific long-
range orders, without imposing those orders. Indeed, the
more naturally an order arises in the system, the smaller
the Weiss field needs to be, and one observes that the
strength of the Weiss field at the stationary point of the
self-energy functional generally decreases with increasing
cluster size, as it should since in the thermodynamic limit
no Weiss field should be necessary to establish order.

4. Cellular dynamical mean-field theory

The Cellular dynamical mean-field theory (CDMFT)
is obtained by including in the cluster Hamiltonian H ′ a
bath of uncorrelated electrons that somehow must mimic
the effect on the cluster of the rest of the lattice. Explic-
itly, H ′ takes the form

H ′ = −
∑

µ,ν,σ

t′µνc†µσcνσ + U
∑

µ

nµ↑nµ↓

+
∑

µ,α,σ

Vµα(c†µσaασ + H.c.) +
∑

α

ǫαa†
ασaασ (23)

where aασ annihilates an electron of spin σ on a bath
orbital labelled α. The bath is characterized by the en-
ergy of each orbital (ǫα) and the bath-cluster hybridiza-
tion matrix Vµα. This representation of the environment
through an Anderson impurity model was introduced in
Ref. 65 in the context of DMFT (i.e., a single site). The
effect of the bath on the electron Green function is en-
capsulated in the so-called hybridization function

Γµν(ω) =
∑

α

VµαV ∗
να

ω − ǫα

(24)

which enters the Green function as

[G′−1]µν = ω + µ − t′µν − Γµν(ω) − Σµν(ω). (25)

Moreover, the CDMFT does not look for a strict solu-
tion of the Euler equation (22), but tries instead to set
each of the terms between brackets to zero separately.
Since the Euler equation (22) can be seen as a scalar
product, CDMFT requires that the modulus of one of the
vectors vanish to make the scalar product vanish. From
a heuristic point of view, it is as if each component of
the Green function in the cluster were equal to the cor-
responding component deduced from the lattice Green
function. This clearly reduces to single site DMFT when
there is only one lattice site.

When the bath is discretized, i.e., is made of a finite
number of bath “orbitals”, the left-hand side of Eq. (22)
cannot vanish separately for each frequency, since the

number of degrees of freedom in the bath is insufficient.
Instead, one adopts the following self-consistent scheme:
(1) one starts with a guess value of the bath parameters
(Vµα, ǫα) and solves the cluster Hamiltonian H ′ numeri-
cally. (2) One then calculates the combination

Ĝ−1
0 =





∑

k̃

1

Ĝ−1
0t (k̃) − Σ̂′(iωn)





−1

+ Σ̂′(iωn) (26)

and (3) minimizes the following canonically invariant dis-
tance function:

d =
∑

n,µ,ν

∣

∣

∣

∣

(

iωn + µ − t̂′ − Γ̂(iωn) − Ĝ−1
0

)

µν

∣

∣

∣

∣

2

(27)

over the set of bath parameters (changing the bath pa-
rameters at this step does not require a new solution of
the Hamiltonian H ′, but merely a recalculation of the hy-
bridization function Γ̂). The bath parameters obtained
from this minimization are then put back into step (1)
and the procedure is iterated until convergence.

In practice, the distance function (27) can take
various forms, for instance by adding a frequency-
dependent weight in order to emphasize low-frequency
properties17,59,66 or by using a sharp frequency cutoff.67

These weighting factors can be considered as rough ap-
proximations for the missing factor δΣ′

νµ(iωn)/δt′ in the
Euler equation (22). The frequencies are summed over on
a discrete, regular grid along the imaginary axis, defined
by some fictitious inverse temperature β, typically of the
order of 20 or 40 (in units of t−1). Even when the total
number of cluster plus bath sites in CDMFT equals the
number of sites in a VCA calculation, CDMFT is much
faster than the VCA since the minimization of a grand
potential functional requires many exact diagonalizations
of the cluster Hamiltonian H ′.

The final lattice Green function from which one com-
putes observable quantities may be obtained by periodiz-
ing the self-energy, as in Ref. 58 or in the CPT manner
described above in Eq. (11). We prefer the last approach
because it corresponds to the Green function needed to
obtain the density from ∂Ω/∂µ = −Tr(G) and also be-
cause periodization of the self-energy gives additional un-
physical states in the Mott gap68 (see also Ref. 60).

5. The Dynamical cluster approximation

The DCA55 cannot be formulated within the self-
energy functional approach.159 It is based on the idea
of discretizing irreducible quantities, such as the energy,
in reciprocal space. It is believed to converge faster for
q = 0 quantities whereas CDMFT converges exponen-
tially fast for local quantities.69–71
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FIG. 14: The spectral function of the U → ∞ limit of the
one- dimensional Hubbard model, as calculated from (a) an
exact diagonalization of the Hubbard model with U/t = 100
on a periodic 12- site cluster; (b) the same, but with CPT, on
a 12-site cluster with open boundary conditions; (c) the exact
solution, taken from Ref. 72; beware: the axes are oriented
differently. In (a) and (b) a finite width η has been given to
peaks that would otherwise be Dirac δ-functions.

6. Benchmarks for quantum cluster approaches

Since DMFT becomes exact in infinite dimension, the
most difficult challenge for cluster extensions of this ap-
proach is in one dimension. In addition, exact results to
compare with exist only in one dimension so it is mostly
in d = 1 that cluster methods have been checked. In
d = 2 there have also been a few comparisons with QMC
as we shall discuss.

CPT has been checked68 for example by comparing
with exact results72 for the spectral function at U → ∞
in d = 1 as shown in Fig. 14. Fig. 15 shows the chemical
potential as a function of density for various values of
U . Fig. 16 shows the convergence rates for the total
energy and for the double occupancy in the d = 1 half-
filled model. Clearly, there is a dramatic improvement
compared with exact diagonalizations.

FIG. 15: Chemical potential as a function of density in the
one-dimensional Hubbard model, as calculated by CPT (from
Ref. 62). The exact, Bethe-Ansatz result is shown as a solid
line.

FIG. 16: Top: Comparison (expressed in relative difference)
between the ground-state energy density of the half-filled,
one-dimensional Hubbard model calculated from the exact,
Bethe-Ansatz result. The results are displayed as a function
of the hopping t, for U = 2t and various cluster sizes L (con-
nected symbols). For comparison, the exact diagonalization
values of finite clusters with periodic boundary conditions are
also shown (dashed lines) for L = 8 and L = 12. Bottom:
Same for the double occupancy. An extrapolation of the re-
sults to infinite cluster size (L → ∞) using a quadratic fit in
terms of 1/L is also shown, and is accurate to within 0.5%.
Taken from Ref. 62.

The main weakness of CPT is that it cannot take
into account tendency towards long-range order. This
is remedied by VCPT, as shown in Fig. 17 where CPT,
VCPT are both compared with QMC as a benchmark.
Despite this agreement, we should stress that long wave
length fluctuations are clearly absent from cluster ap-
proaches. Hence, the antiferromagnetic order parameter
at half-filling, for example, does not contain the effect of
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FIG. 17: Ground state energy of the half-filled, two-
dimensional Hubbard model (t = 1) as a function of U , as
obtained from various methods: Exact diagonalization (ED),
CPT and VCPT on a 10-site cluster, quantum Monte Carlo
(QMC) and variational Monte Carlo (VMC). Taken from
Ref. 73.

FIG. 18: CDMFT calculation on a 2 × 2 cluster with 8 bath
sites of the density as a function of the chemical potential
in the one-dimensional Hubbard model for U = 4t, as com-
pared with the exact solution, DMFT and other approxima-
tion schemes. Taken from Ref. 74.

zero-point long wave length transverse spin fluctuations.
This is discussed for example in the context of Fig. 9 of
Ref. 73.

CDMFT corrects the difficulties of CPT near half-
filling by reproducing the infinite compressibility pre-
dicted by the Bethe ansatz in one dimension as shown
in Fig. 18.74 Detailed comparisons between the local and
near-neighbor Green functions66,74 have been performed.
One should note that these results, obtained from ex-
act diagonalization, also need the definition of a distance
function (See Eq. (27) above) that helps find the best
bath parametrization to satisfy the self-consistency con-
dition. This measure forces one to define calculational
parameters such as a frequency cutoff and an fictitious

temperature defining the Matsubara frequencies to sum
over. The final results are not completely insensitive to
the choice of fictitious temperature or frequency-weighing
scheme but are usually considered reliable and consistent
with each other when β lies between 20 and 40. The cut-
off procedures have been discussed in Ref. 67.

The relative merits of DCA and CDMFT have been
discussed for example in Refs 69–71,75,76. Briefly speak-
ing, convergence seems faster in DCA for long wave
length quantities but CDMFT is faster (exponentially)
for local quantities.

III. RESULTS AND CONCORDANCE

BETWEEN DIFFERENT METHODS

In this section, we outline the main results we obtained
concerning the pseudogap and d-wave superconductivity
in the two-dimensional Hubbard model. Quantum clus-
ter approaches are better at strong coupling while TPSC
is best at weak coupling. Nevertheless, all these methods
are non-perturbative, the intermediate coupling regime
presenting the physically most interesting case. But it
is also the regime where we have the least control over
the approximations. As we will show, it is quite satis-
fying that, at intermediate coupling, weak-coupling and
strong-coupling approaches give results that are nearly
in quantitative agreement with each other. This gives
us great confidence into the validity of the results. As
an example of concordance, consider the fact that to ob-
tain spectral weight near (π/2, π/2) at optimal doping in
the electron-doped systems, U has to be roughly 6t. For
larger U, (U = 8t in CPT) that weight, present in the
experiments, disappears. Smaller values of U (U = 4t
in CPT) do not lead to a pseudogap. Other examples
of concordance include the value of the superconducting
transition temperature Tc obtained with DCA and with
TPSC as well as the temperature dependence of souble
occupancy obtained with the same two methods.

A. Weak and strong-coupling pseudogap

To understand the pseudogap it is most interesting to
consider both hole and electron-doped cuprates at once.
This means that we have to include particle-hole sym-
metry breaking hoppings, t′ and t′′. We will see in the
present section that it is possible to obtain a pseudogap at
strong coupling without a large correlation length in the
particle-hole or in the particle-particle channels. By con-
trast, at weak coupling one does need a long-correlation
length and low dimension. So there appears to be theo-
retically two different mechanisms for the pseudogap.
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FIG. 19: Single particle spectral weight, as a function of en-
ergy ω in units of t, for wave vectors along the high-symmetry
directions shown in the inset. (a) CPT calculations on a 3×4
cluster with ten electrons (17% hole doped). (b) the same
as (a), with 14 electrons (17% electron doped). In all cases
t′ = −0.3t and t′′ = 0.2t. A Lorentzian broadening η = 0.12t
is used to reveal the otherwise delta peaks. From Ref. 77.

FIG. 20: Onset of the pseudogap as a function of U corre-
sponding to Fig. 19, taken from Ref. 77. Hole-doped case on
the left, electron-doped case on the right panel

1. CPT

The top panel in Fig. 19 presents the single-particle
spectral weight, A(k, ω) or imaginary part of the single-
particle Green function, for the model with t′ = −0.3t,
t′′ = 0.2t in the hole-doped case, for about 17% doping.77

FIG. 21: MDC from CPT in the t-t′ = −0.3t, t′′ = 0.2t
Hubbard model, taken from Ref. 77.

Each curve is for a different wave vector (on a trajectory
shown in the inset) and is plotted as a function of fre-
quency in units of t. This kind of plot is known as En-
ergy Dispersion Curves (EDC). It is important to point
out that the theoretical results are obtained by broaden-
ing a set of delta function, so that the energy resolution
is η = 0.12t corresponding roughly to the experimental
resolution we will compare with in the next section. At
small U = 2t on the top panel of Fig. 19, one recovers a
Fermi liquid. At large U , say U = 8t, the Mott gap at
positive energy is a prominent feature. The pseudogap
is a different feature located around the Fermi energy.
To see it better, we present on the left-hand panel of
Fig. 20 a blow-up in the vicinity of the Fermi surface
crossing occurring near (π, 0). Clearly, there is a mini-
mum in A(k, ω) at the Fermi-surface crossing when U is
large enough instead of a maximum like in Fermi liquid
theory.

It is also possible to plot A(k, ω) at fixed frequency for
various momenta. They are so-called Momentum Dis-
persion Curves (MDC). In Fig. 21 we take the Fermi
energy ω = 0, and we plot the magnitude of the single-
particle spectral weight in the first quadrant of the Bril-
louin zone using red for high-intensity and blue for low
intensity. The figure shows that, in the hole-doped case
(top panel), weight near (π/2, π/2) survives while it tends
to disappear near (π, 0) and (0, π). That pseudogap phe-
nomenon is due not only to large U but also to the fact
that the line that can be drawn between the points (π, 0)
and (0, π) crosses the Fermi surface. When there is no
such crossing, one recovers a Fermi surface (not shown
here). The (π, 0) to (0, π) line has a double role. It is the
antiferromagnetic zone boundary, as well as the line that
indicates where umklapp processes become possible, i.e.,
the line where we can scatter a pair of particles on one
side of the Fermi surface to the other side with loss or
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FIG. 22: Right: The corresponding EDC in the t-t′-t′′ Hub-
bard model, calculated on a 16-site cluster in CPT, at n =
9/8. Inset: the pseudogap. Left: The corresponding Fermi
energy momentum distribution curve.

FIG. 23: EDC in the t-t′-t′′ Hubbard model, with t′ = −0.3t
and t′′ = 0.2t, calculated on a 8-site cluster for U = 8t
in VCPT. d-wave superconductivity is present in the holde-
doped case (left) and both antiferromagnetism and d-wave
superconductivity in the electron-doped case. The resolution
is not large enough in the latter case to see the superconduct-
ing gap. The Lorentzian broadening is 0.2t. From Ref. 19.

gain of a reciprocal lattice vector. Large scattering rates
explain the disappearance of the Fermi surface.77 We also
note that the size of the pseudogap in CPT, defined as
the distance between the two peaks, does not scale like
J = 4t2/U at large coupling. It seems to be very weakly
U dependent, its size being related to t instead. This
result is corroborated by CDMFT.67

The EDC for the electron-doped case is shown on the
bottom panels of Fig. 19 near optimal doping again. This
time, the Mott gap appears below the Fermi surface so
that the lower Hubbard band becomes accessible to ex-
periment. The EDC in Fig. 22 shows very well both the
Mott gap and the pseudogap. Details of that pseudogap
can be seen both in the inset of Fig. 22 or on the right-
hand panel of Fig. 20. While in the hole-doped case the
MDC appeared to evolve continuously as we increase U
(top panel of Fig. 21), in the electron-doped case (bot-
tom panel) the weight initially present near (π/2, π/2) at
U = 4t disappears by the time we reach U = 8t.

In Fig. 23 we show, with the same resolution as CPT,
the MDC for VCPT.19 In this case the effect of long-range
order is included and visible but, at this resolution, the
results are not too different from those obtained from
CPT in Fig. 21.

FIG. 24: MDC in the t-t′, U = 8t Hubbard model, calculated
on a 4-site cluster in CDMFT. Energy resolution, η = 0.1t
(left and middle). Left: Hole-doped dSC (t′ = −0.3t, n =
0.96), Middle: Electron-doped dSC (t′ = 0.3t, n = 0.93),
Right: Same as middle with η = 0.02t. Note the particle-hole
transformation in the electron-doped case. From Ref. 17.

FIG. 25: EDC in the t-t′ = 0, U = 8t Hubbard model, cal-
culated on a 4-site cluster in CDMFT. Top: normal (para-
magnetic) state for various densities. Bottom: same for the
antiferromagnetic state. From Ref. 67.

2. CDMFT and DCA

CDMFT17 gives MDC that, at comparable resolution,
η = 0.1t, are again compatible with CPT and with
VCPT. The middle panel in Fig. 24 is for the electron-
doped case but with a particle-hole transformation so
that t′ = +0.3t and k → k + (π, π). Since there is a
non-zero d-wave order parameter in this calculation, im-
proving the resolution to η = 0.02t reveals the d-wave
gap, as seen in the right most figure.

It has been argued for a while in DCA that there
is a mechanism whereby short-range correlations at
strong coupling can be the source of the pseudogap
phenomenon.78 To illustrate this mechanism in CDMFT,
we take the case t′ = t′′ = 0 and compare in Fig. 25
the EDC for U = 8t without long-range order (top pan-
els) and with long-range antiferromagnetic order (bot-
tom panels).67 The four bands appearing in Figs 25a and
25d are in agreement with what has been shown73,79,80

with CPT, VCPT and QMC in Fig. 26. Evidently there
are additional symmetries in the antiferromagnetic case.
The bands that are most affected by the long-range or-
der are those that are closest to the Fermi energy, hence
they reflect spin correlations, while the bands far from
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FIG. 26: EDC in the Hubbard model, U = 8t, t′ = 0 calcu-
lated in CPT, VCPT and QMC. From Ref. 73.

the Fermi energy seem less sensitive to the presence of
long-range order. These far away bands are what is left
from the atomic limit where we have two dispersionless
bands. As we dope, the chemical potential moves into
the lower band closest to the Fermi energy. When there
is no long-range order (Figs 25b and 25c) the lower band
closest to the Fermi energy moves very close to it, at the
same time as the upper band closest to the Fermi energy
looses weight, part of it moving closer to the Fermi en-
ergy. These two bands leave a pseudogap at the Fermi
energy82,83, although we cannot exclude that increasing
the resolution would reveal a Fermi liquid at a very small
energy scale. In the case when there is long-range anti-
ferromagnetic order, (Figs 25e and 25f) the upper band
is less affected while the chemical potential moves in the
lower band closest to the Fermi energy but without creat-
ing a pseudogap, as if we were doping an itinerant antifer-
romagnet. It seems that forcing the spin correlations to
remain short range leads to the pseudogap phenomenon
in this case. When a pseudogap appears, it is created
again by very large scattering rates.67

3. TPSC (including analytical results)

In Hartree-Fock theory, double occupancy is given by
n2/4 and is independent of temperature. The correct
result does depend on temperature. One can observe

FIG. 27: Double occupancy 〈n↑n↓〉, in the two-dimensional
Hubbard model for n = 1, as calculated from TPSC (lines
with x) and from DCA (symbols) from Ref. 81. Taken from
Ref. 84.

FIG. 28: MDC at the Fermi energy for the two-dimensional
Hubbard model for U = 6.25, t′ = −0.175t, t′′ = 0.05t at
various hole dopings, as obtained from TPSC. The far left
from Ref. 85 is the Fermi surface plot for 10% hole-doped
Ca2−xNaxCuO2Cl2.

in Fig. 27 the concordance between the results for the
temperature-dependent double occupancy obtained with
DCA and with TPSC84 for the t′ = t′′ = 0 model. We
have also done extensive comparisons between straight
QMC calculations and TPSC.38 The downturn at low
temperature has been confirmed by the QMC calcula-
tions. It comes from the opening of the pseudogap due
to antiferromagnetic fluctuations, as we will describe be-
low. The concomitant increase in the local moment corre-
sponds to the decrease in double-occupancy. There seems
to be a disagreement at low temperature between TPSC
and DCA at U = 2t. In fact TPSC is closer to the di-
rect QMC calculation. Since we expect quantum cluster
methods in general and DCA in particular to be less ac-
curate at weak coupling, this is not too worrisome. At
U = 4t the density of states obtained with TPSC and
with DCA at various temperatures are very close to each
other.84 We stress that as we go to temperatures well
below the pseudogap, TPSC becomes less and less ac-
curate, generally overemphasizing the downfall in double
occupancy.

We will come back to more details on the predictions
of TPSC for the pseudogap, but to illustrate the concor-
dance with quantum cluster results shown in the previ-
ous subsection, we show in Fig. 28 MDC obtained at the
Fermi energy in the hole doped case for t′ = −0.175t,
t′′ = 0.05t. Again there is quasi-particle weight near
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FIG. 29: MDC at the Fermi energy in the electron-doped case
with t′ = −0.175t, t′′ = 0.05t and two different U ’s, U = 6.25t
and U = 5.75t obtained from TPSC. The first column is the
corresponding experimental plots at 10% and 15% doping in
Ref. 86. From Refs. 40,87.

FIG. 30: Cartoon explanation of the pseudogap in the weak-
coupling limit. Below the dashed crossover line to the renor-
malized classical regime, when the antiferromagnetic corre-
lation length becomes larger than the thermal de Broglie
wave length, there appears precursors of the zero-temperature
Boboliubov quasiparticles for the long-range ordered antifer-
romagnet.

(π/2, π/2) and a pseudogap near (π, 0) and (0, π). How-
ever, as we will discuss below, the antiferromagnetic cor-
relation length necessary to obtain that pseudogap is too
large compared with experiment. The electron-doped
case is shown in Fig. 29 near optimal doping and for
different values of U. As U increases, the weight near
(π/2, π/2) disappears. That is in concordance with the
results of CPT shown in Fig. 21 where the weight at
that location exists only for small U. That also agrees
with slave-boson calculations88 that found such weight
for U = 6t and it agrees also with one-loop calculations89

starting from a Hartree-Fock antiferromagnetic state that
did not find weight at that location for U = 8t. The
simplest Hartree-Fock approach21,90 yields weight near
(π/2, π/2) only for unreasonably small values of U .

A cartoon explanation of the pseudogap is given in

Fig. 30. At high temperature we have a Fermi liquid,
as illustrated in panel I. Now, suppose we start from a
ground state with long-range order as in panel III, in
other words at a filling between half-filling and nc. In
the Hartree-Fock approximation we have a gap and the
fermion creation-annihilation operators now project on
Bogoliubov-Valentin quasiparticles that have weight at
both positive and negative energies. In two dimensions,
the Mermin-Wagner theorem means that as soon as we
raise the temperature above zero, long-range order dis-
appears, but the antiferromagnetic correlation length ξ
remains large so we obtain the situation illustrated in
panel II, as long as ξ is much larger than the thermal de
Broglie wave length ξth ≡ vF /(πT ) in our usual units. At
the crossover temperature TX then the relative size of ξ
and ξth changes and we recover the Fermi liquid. We now
proceed to sketch analytically where these results come
from starting from finite temperature. Details and more
complete formulae may be found in Refs. 23,24,33,37.
Note also that a study starting from zero temperature
has also been performed in Ref. 91.

First we show how TPSC recovers the Mermin-Wagner
theorem. Consider the self-consistency conditions given
by the local moment sum rule Eq. (4) together with the
expression for the spin-susceptibility Eq. (2) and Usp in
Eq. (5). First, it is clear that if the left-hand side of the
local moment sum rule Eq. (4) wants to increase because
of proximity to a phase transition, the right-hand side can
do so only by decreasing 〈n↑n↓〉 which in turns decreases
Usp through Eq. (5) and moves the system away from the
phase transition. This argument needs to be made more
precise to include the effect of dimension. First, using
the spectral representation one can show that every term
of χsp(q, iqn) is positive. Near a phase transition, the
zero Matsubara frequency component of the susceptibil-
ity begins to diverge. On can check from the real-time
formalism that the zero-Matsubara frequency contribu-
tion dominates when the characteristic spin fluctuation
frequency ωsp ∼ ξ−2 becomes less than temperature, the
so-called renormalized-classical regime. We isolate this
contribution on the left-hand side of the local moment
sum rule and we move the contributions from the non-
zero Matsubara frequencies, that are non-divergent, on
the right-hand side. Then, converting the wave vector
sum to an integral and expanding the denominator of the
susceptibility around the wave vector where the instabil-
ity would occurs to obtain an Ornstein-Zernicke form,
the local moment sum rule Eq. (4) can be written in the
form

T

∫

qd−1dq
1

q2 + ξ−2
= C(T ). (28)

The constant on the right-hand side contains only non-
singular contributions and ξ−2 contains Usp that we want
to find. From the above equation, one finds immediately
that in d = 2, ξ ≈ exp(C(T )/T ) so that the correla-
tion length diverges only at T = 0. In three dimensions,
isotropic or not, exponents correspond to those of the
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FIG. 31: MDC plots at the Fermi energy (upper) and corre-
sponding scattering rates (lower) obtained from TPSC. The
red lines on the upper panel indicate the region where the
scattering rate in the corresponding lower panels is large.

N = ∞ universality class.46

To see how the pseudogap opens up in the single-
particle spectral weight, consider the expression (6) for
the self-energy. Normally one has to do the sum over
bosonic Matsubara frequencies first, but the zero Mat-
subara frequency contribution has the correct asymp-
totic behavior in fermionic frequencies ikn so that one
can once more isolate on the right-hand side the zero
Matsubara frequency contribution. This is confirmed by
the real-time formalism23 (See also Eq. (36) below). In
the renormalized classical regime then, we have

Σ(kF , ikn) ∝ T

∫

qd−1dq
1

q2 + ξ−2

1

ikn − εkF +Q+q

(29)

where Q is the wave vector of the instability. Hence,
when εkF +Q = 0, in other words at hot spots, we find af-
ter analytical continuation and dimensional analysis that

Im ΣR(kF , 0) ∝ −πT

∫

dd−1q⊥dq||
1

q2
⊥ + q2

|| + ξ−2
δ(v′F q||)

(30)

∝
πT

v′F
ξ3−d. (31)

Clearly, in d = 4, Im ΣR(kF , 0) vanishes as temperature
decreases, d = 3 is the marginal dimension and in d = 2
we have that Im ΣR(kF , 0) ∝ ξ/ξth that diverges at zero
temperature. In a Fermi liquid that quantity vanishes at
zero temperature. A diverging Im ΣR(kF , 0) corresponds
to a vanishingly small A(kF , ω = 0) as we can see from

A(k, ω) =
−2 ImΣR(kF , ω)

(ω − εk − Re ΣR(kF , ω))2 + Im ΣR(kF , ω)2
.

(32)
To see graphically this relationship between the loca-
tion of the pseudogap and large scattering rates at the

Fermi surface, we draw in Fig. 31 both the Fermi surface
MDC and, in the lower panels, the corresponding plots
for Im ΣR(k, 0). Note that at stronger U the scattering
rate is large over a broader region, leading to a depletion
of A(k,ω) over a broader range of k values.

An argument for the splitting in two peaks seen in
Figs. 6 and 30 is as follows. Consider the singular renor-
malized contribution coming from the spin fluctuations in
Eq. (29) at frequencies ω ≫ vF ξ−1. Taking into account
that contributions to the integral come mostly from a
region q ≤ ξ−1, this expression leads to

Re ΣR(kF , ω) =

(

T

∫

qd−1dq
1

q2 + ξ−2

)

1

ikn − εkF +Q

≡
∆2

ω − εkF +Q

(33)

which, when substituted in the expression for the spectral
weight (32) leads to large contributions when

ω − εk −
∆2

ω − εkF +Q

= 0 (34)

or, equivalently,

ω =
(εk + εkF +Q) ±

√

(εk − εkF +Q)2 + 4∆2

2
, (35)

which corresponds to the position of the hot spots in
Fig. 29 for example.

Note that analogous arguments hold for any fluctu-
ation that becomes soft,23 including superconducting
ones.41,43 The wave vector Q would be different in each
case.

4. Weak- and strong-coupling pseudogaps

The CPT results of Figs. 19 and 22 clearly show that
the pseudogap is different from the Mott gap. At finite
doping, the Mott gap remains a local phenomenon, in
the sense that there is a region in frequency space that is
not tied to ω = 0 where for all wave vectors there are no
states. The peudogap by contrast is tied to ω = 0 and
occurs in regions nearly connected by (π, π), whether we
are talking about hole- or about electron-doped cuprates.
That the phenomenon is caused by short-range correla-
tions can be seen in CPT from the fact that the pseu-
dogap is independent of cluster shape and size (most of
the results were presented for 3 × 4 clusters and we did
not go below size 2 × 2). The antiferromagnetic cor-
relations and any other two-particle correlations do not
extend beyond the size of the lattice in CPT. Hence, the
pseudogap phenomenon cannot be caused by antiferro-
magnetic long-range order since no such order exists in
CPT. This is also vividly illustrated by the CDMFT re-
sults in Fig. 25 that contrast the case with and without
antiferromagnetic long-range order. The CDMFT results
also suggest that the pseudogap appears in the bands
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that are most affected by antiferromagnetic correlations
hence it seems natural to associate it with short-range
spin correlations. The value of t′ has an effect, but it
mostly through the fact that it has a strong influence on
the relative location of the antiferromagnetic zone bound-
ary and the Fermi surface, a crucial factor determining
where the pseudogap is. All of this as well as many re-
sults obtained earlier by DCA78 suggest that there is a
strong coupling mechanism that leads to a pseudogap in
the presence of only short-range two-body correlations.
However, the range cannot be zero. Only the Mott gap
appears at zero range, thus the pseudogap is absent in
single-site DMFT.

In the presence of a pseudogap at strong coupling
(U > 8t), wave vector is not, so to speak, such a bad
quantum number in certain directions. In other words
the wave description is better in those directions. In
other directions that are “pseudogapped”, it is as if the
localized, or particle description was better. This com-
petition between wave and particle behavior is inherent
to the Hubbard model. At the Fermi surface in low di-
mension, it seems that this competition is resolved by
dividing (it is a crossover, not a real division) the Fermi
surface in different sections.

There is also a weak-coupling mechanism for the pseu-
dogap. This has been discussed at length just in the pre-
vious section on TPSC. Another way to rephrase the cal-
culations of the previous section is in the real frequency
formalism. There one finds23 that

Σ′′R(kF , ω)

∝

∫

dd−1q⊥
(2π)d−1

∫

dω′

π
[n(ω′) + f(ω + ω′)]χ′′

sp(q; ω′)

(36)

so that if the characteristic spin fluctuation frequency
in χ′′

sp(q; ω′) is much larger than temperature, then
[n(ω′)+f(ω+ω′)] can be considered to act like a window
of size ω or T and χ′′

sp(q; ω′) can be replaced by a func-
tion of q times ω′ which immediately leads to the Fermi
liquid result [ω2 +(πT )2]. In the opposite limit where the
characteristic spin fluctuation frequency in χ′′

sp(q; ω′) is
much less than temperature, then it acts as a window
narrower than temperature and [n(ω′) + f(ω + ω′)] can
be approximated by the low frequency limit of the Bose
factor, namely T/ω′. Using the thermodynamic sum rule,
that immediately leads to the result discussed before in
Eq.(31), Im Σ(kF , 0) ∝ (πT/v′F )ξ3−d. This mechanism
for the pseudogap needs long correlation lengths. In
CPT, this manifests itself by the fact that the apparent
pseudogap in Fig. 21 at U = 4t is in fact mostly a depres-
sion in spectral weight that depends on system size and
shape. In addition, in contrast to the short-range strong-
coupling mechanism, at weak coupling the pseudogap is
more closely associated with the intersection of the anti-
ferromagnetic zone boundary with the Fermi surface.

Which mechanism is important for the cuprates will
be discussed below in the section on comparisons with
experiments.

B. d-wave superconductivity

The existence of d-wave superconductivity at weak
coupling in the Hubbard model mediated by the
exchange of antiferromagnetic fluctuations92,93 had
been proposed even before the discovery of high-
temperature superconductivity.6–8 At strong-coupling,
early papers13,14 also proposed that the superconductiv-
ity would be d-wave. The issue became extremely contro-
versial, and even recently papers have been published12

that suggest that there is no d-wave superconductivity
in the Hubbard model. That problem could have been
solved very long ago through QMC calculations if it had
been possible to do them at low enough temperature.
Unfortunately, the sign problem hindered these simula-
tions, and the high temperature results5,44,95,96 were not
encouraging: the d-wave susceptibility was smaller than
for the non-interacting case. Since that time, numerical
results from variational QMC,4,97 exact diagonalization16

and other numerical approaches98 for example, suggest
that there is indeed d-wave superconductivity in the Hub-
bard model.

In the first subsection, we show that VCPT leads to
a zero-temperature phase diagram for both hole and
electron-doped systems that does show the basic features
of the cuprate phase diagram, namely an antiferromag-
netic phase and a d-wave superconducting phase in dop-
ing ranges that are quite close to experiment19 (The fol-
lowing section will treat in more detail comparisons with
experiment). The results are consistent with CDMFT.17

The fall in the d-wave superconducting order parameter
near half-filling is associated with the Mott phenomenon.
The next subsection stresses the instability towards d-
wave superconductivity as seen from the normal state
and mostly at weak coupling. We show that TPSC can
reproduce available QMC results and that its extrapo-
lation to lower temperature shows d-wave superconduc-
tivity in the Hubbard model. The transition tempera-
ture found at optimal doping40 for U = 4t agrees with
that found by DCA,18 a result that could be fortuitous.
But again the concordance between theoretical results
obtained at intermediate coupling with methods that are
best at opposite ends of the range of coupling strengths
is encouraging.

1. Zero-temperature phase diagram

In VCPT, one adds to the cluster Hamiltonian the
terms19

H ′
M = M

∑

µ

eiQ·Rµ(nµ↑ − nµ↓) (37)

H ′
D = D

∑

µν

gµν(cµ↑cν↓ + H.c.) (38)

with M and D are respectively antiferromagnetic and d-
wave superconducting Weiss fields that are determined
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FIG. 32: Antiferromagnetic (bottom) and d-wave (top) order
parameters for U = 8t, t′ = −0.3t t′′ = 0.2t as a function of
the electron density (n) for 2 × 3, 2 × 4 and 10-site clusters,
calculated in VCPT. Vertical lines indicate the first doping
where only d-wave order is non-vanishing. From Ref. 19.

FIG. 33: d-wave order parameter as a function of n for various
values of t′, calculated in CDMFT on a 2× 2 cluster for U =
8t. The positive t′ case corresponds to the electron-doped
case when a particle-hole transformation is performed. From
Ref. 17.

self-consistently and gµν equal to ±1 on near-neighbor
sites following the d-wave pattern. We recall that the
cluster Hamiltonian should be understood in a varia-
tional sense. Fig. 32 summarizes, for various cluster sizes,
the results for the d-wave order parameter D0 and for the
antiferromagnetic order parameter M0 for a fixed value of
U = 8t and the usual hopping parameters t′ = −0.3t and
t′′ = 0.2t. The results for antiferromagnetism are quite
robust and extend over ranges of dopings that correspond
quite closely to those observed experimentally. Despite
the fact that the results for d-wave superconductivity still
show some size dependence, it is clear that supercon-
ductivity alone without coexistence extends over a much
broader range of dopings on the hole-doped than on the
electron-doped side as observed experimentally. VCPT
calculations on smaller system sizes99 but that include,
for thermodynamic consistency, the cluster chemical po-
tential as a variational parameter show superconductivity

FIG. 34: Antiferromagnetic (bottom) and d-wave (top) order
parameters as a function of the electron density (n) for t′ =
−0.3t t′′ = 0.2t and various values of U on a 8-site cluster,
calculated in VCPT. From Ref. 19.

FIG. 35: d-wave order parameter as a function of n for various
values of U , and t′ = t′′ = 0 calculated in CDMFT on a 4-site
cluster. From Ref. 17.

that extends over a much broader range of dopings. Also,
for small 2×2 clusters, VCPT has stronger order parame-
ter on the electron than on the hole-doped side, contrary
to the results for the largest system sizes in Fig. 32. This
is also what is found in CDMFT as can be seen in Fig. 33.
It is quite likely that the zero-temperature Cooper pair
size is larger than two sites, so we consider the results for
2 × 2 systems only for their qualitative value.

Concerning the question of coexistence with antifer-
romagnetism, one can see that it is quite robust on the
electron-doped side whereas on the hole-doped side, it
is size dependent. That suggests that one should also
look at inhomogeneous solutions on the hole-doped side
since stripes are generally found experimentally near the
regions where antiferromagnetism and superconductivity
meet.

Fig. 34 shows clearly that at strong coupling the size
of the order parameter seems to scale with J , in other
words it decreases with increasing U. This is also found
in CDMFT,17 as shown in Fig. 35 for t′ = t′′ = 0.

If we keep the antiferromagnetic order parameter to
zero, one can check with both VCPT and CDMFT
(Fig. 33) that the d-wave superconducting order parame-
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FIG. 36: VCPT calculations for U = 4t, t′ = t′′ = 0 near
half-filling on 2 × 4 lattice. Contrary to the strong coupling
case, the d-wave order parameter D0 survives all the way to
half-filling at weak coupling, unless we also allow for antifer-
romagnetism.

ter goes to zero at half-filling. This is clearly due to Mott
localization. Indeed, at smaller U = 4t for example, the
order parameter does not vanish at half-filling if we do
not allow for long-range antiferromagnetic order, as il-
lustrated in Fig. 35 for CDMFT.17 The same result was
found in VCPT, as shown in Fig.36.19 Restoring long-
range antiferromagnetic order does however make the d-
wave order parameter vanish at half-filling.

There are thus two ways to make d-wave superconduc-
tivity disappear at half-filling, either through long anti-
ferromagnetic correlation lengths94 or through the Mott
phenomenon. In the real systems, that are Mott insula-
tors and also antiferromagnets at half-filling, both effects
can contribute.

2. Instability of the normal phase

In the introduction to this section, we alluded to QMC
calculations for the d-wave susceptibility.5,44,95,96 Recent
results40 for that quantity as a function of doping for var-
ious temperatures and for U = 4t, t′ = t′′ = 0 are shown
by symbols in Fig. 8. For lower temperatures, the sign
problem prevents the calculation near half-filling. Yet,
the lowest temperature is low enough that a dome shape
begins to appear. Nevertheless, comparison with the non-
interacting case, shown by the top continuous line, leads
one to believe that interactions only suppress d-wave su-
perconductivity. We can easily understand why this is
so. As we already know, the TPSC results obtained from
Eq. (7) are very close to the QMC calculations, as shown
by the solid lines in Fig. 8. In the temperature range
of interest, the main contribution comes from the first
term in Eq. (7). That term represents the contribution
to the susceptibility that comes from dressed quasiparti-
cles that do not interact with each other. Since dressed
quasiparticles have a lifetime, a pair breaking effect, it is
normal that this contribution to the interacting suscep-

FIG. 37: Tc as a function of doping, δ = 1 − n, for t′ = t′′ =
0 calculated in TPSC using the Thouless criterion. From
Ref. 40.

tibility leads to a smaller contribution than in the non-
interacting case. At the lowest temperature, β = 4/t,
the vertex contribution represented by the second term
in Eq. (7) accounts for about 20% of the total. It goes
in the direction of increasing the susceptibility. As we
decrease the temperature further in TPSC, that term be-
comes comparable with the first one. Since the vertex in
Eq. (7) accounts for the exchange of a single spin wave,
equality with the first term signals the divergence of the
series, as in 1/(1 − x) ∼ 1 + x. The divergence of that
series represents physically the instability of the normal
phase to a d-wave superconducting phase. This is analo-
gous to the Thouless criterion and hence it gives an up-
per bound to Tc. In other words, Berezinskii-Kosterlitz-
Thouless physics is not included.

Fig. 37 shows the TPSC transition temperature for
U = 4t and for U = 6t. As we move towards half-
filling, located to the left of the diagram, starting from
large dopings, Tc goes up because of the increase in anti-
ferromagnetic fluctuations. Eventually, Tc turns around
and decreases because of the opening of the pseudogap.
Physically, when the pseudogap opens up, weight is re-
moved from the Fermi level, the density of states be-
comes very small, and pairing cannot occur any more.
In the FLEX approximation22,100 that does not exhibit a
pseudogap,101 that downturn, observed already in QMC
at high temperature, does not occur. We have observed
that in cases where t′ 6= 0 so that the pseudogap opens
only in a limited region around hot spots, the downturn
can become less pronounced.

The case n = 0.9 = 1 − δ that corresponds to opti-
mal doping for U = 4t in Fig. 37 has been studied by
DCA. In an extensive and systematic study of the size
dependence, Maier et al.18 established the existence of
a d-wave instability at a temperature that coincides to
within a few percent with the result in Fig. 37. Since very
few vortices can fit within even the largest cluster sizes
studied in Ref. 18, it is quite likely that the Tc that they
find does not include Berezinskii-Kosterlitz-Thouless ef-
fects, just like ours. Despite the fact that, again, the
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concordance between weak and strong coupling methods
at intermediate coupling comforts us, the uncertainties in
the results found with TPSC and DCA force us to also
allow for a fortuitous coincidence.

IV. COMPARISONS WITH EXPERIMENT

The reduction of the real problem of high-temperature
superconducting materials to a one-band Hubbard is a
non-trivial one. It has been discussed already in the
early days of high Tc superconductivity. The notion of
a Zhang-Rice singlet102 emerged for hole doped systems.
The mapping to a one-band model has been discussed
in many references,103,104 and we do not wish to discuss
this point further here. In fact it is far from obvious
that this mapping is possible. It is known that about 0.5
eV below the Fermi surface, that mapping fails in hole-
doped systems.104 Nevertheless, the one-band Hubbard
model is in itself a hard enough problem for us. So it is
satisfying to see that, in the end, it gives a picture that
agrees with experiment in a quite detailed manner for the
ARPES spectrum near the Fermi surface, for the phase
diagram as well as for neutron scattering in cases where
it can be calculated.

Although we will not come back on this point at all, we
briefly mention that fitting the spin wave spectrum105 for
all energies and wave vectors at half filling in La2CuO4

gives values of U, t, t′, t′′ that are close to those used in
the rest of this paper.106–109 It is in this context that ring
exchange terms are usually discussed.

A. ARPES spectrum, an overview

ARPES experiments have played a central role in the
field of high-temperature superconductivity. We cannot
expect to be able to present the vast experimental lit-
erature on the subject. We refer the reader to a very
exhaustive review110 and to some less complete but re-
cent ones.111,112 The main facts about ARPES have been
summarized in Ref. 110. We comment on their main
points one by one, using italics for our paraphrase of the
reported experimental observations.

(i) The importance of Mott Physics and the renormal-
ization of the bandwidth from t to J for the undoped
parent compounds. This renormalization was clear al-
ready in early QMC calculations.80,113 We already dis-
cussed the presence of four peaks. The one nearest to the
Fermi surface at negative energies is the one referred to
by experimentalists when they refer to this renormaliza-
tion. This band has a dispersion of order J (not shown
on Fig. 26, but see Ref. 113). This result also agrees
with VCPT as shown in Fig. 26 and CDMFT (Fig. 25a).
As shown in Figs. 25a and 25d, whether the state is
ordered or not the band width is similar. Analytical
strong-coupling expansions114,115 and exact diagonaliza-
tions also find the same result. To find detailed agree-

FIG. 38: MDC at the Fermi energy for 10% hole-doped
Ca2−xNaxCuO2Cl2 from Ref. 85.

ment with experiment, one needs to include t′ and t′′.116

The evolution of the position of chemical potential for
extremely small dopings as discussed in Ref. 117 is not
reproduced by the strong-coupling calculations, although
the result on chemical potential is somewhat material
dependent.118

(ii) In the overdoped case, the Fermi surface is well
defined. Although we have not shown any figures con-
cerning this point, VCPT and CDMFT show the same
result.

(iii) The evolution with doping of the electronic struc-
ture has been mapped. It has shown the importance of
antiferromagnetic correlations in the p-type underdoped
cuprates and especially in the n-type ones in which the
hot-spot physics is still observed at optimal doping. We
will come back on the latter point for electron-doped
cuprates in the following subsection. The strong-coupling
results obtained with VCPT and CDMFT have a resolu-
tion of order 0.1t, which translates into about 30 meV.
This is not enough to accurately measure the Fermi ve-
locity, which was found to be doping independent in
LSCO.119 However, this suffices to compare with MDC
curves obtained experimentally by integrating over an en-
ergy range of about 60 meV, as shown in Fig. 38 obtained
in Ref. 85 on Calcium oxyclorate Ca2−xNaxCuO2Cl2, a
10% hole-doped high temperature superconductor. The
similarities between that figure and the CPT (Fig. 21),
VCPT (Fig. 23) and CDMFT (Fig. 24) results is strik-
ing. The agreement is better when no antiferromagnetic
long-range order is assumed, as in the CPT case. The
flattening of the band structure near (π, 0) observed ex-
perimentally, can also be seen in CPT by comparing the
top and middle EDC’s taken at small and large U re-
spectively on the left panel of Fig. 20. This flattening is
associated with the pseudogap phenomenon. Recall that
the theoretical results were obtained with t′ = −0.3t and
t′′ = 0.2t. This in turn implies an electron-hole asym-
metry that is observed experimentally. We come back to
this in the following subsection.

(iv) The overall d-wave symmetry of the superconduct-
ing gap has been observed for both hole and electron dop-
ing, supporting the universality of the pairing nature in
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the cuprates. In the next to next subsection, we discuss
the phase diagram for competing antiferromagnetism and
d-wave superconductivity and show striking similarities
with the observations.

(v) A normal-state pseudogap has been observed to
open up at a temperature T ∗ > Tc in the underdoped
regime with a d-wave form similar to the one of the su-
perconducting gap. That statement is correct only in the
hole-doped compounds. In electron-doped systems the
pseudogap has a form that is not of d-wave shape. If
Tc comes from a universal pairing mechanism, a univer-
sal mechanism may also be behind the pseudogap. As
we have already discussed however, there are quantita-
tive differences between strong and weak coupling mecha-
nisms for both Tc and the pseudogap. For electron-doped
systems, we made quantitative predictions for the value
of T ∗ that have later been confirmed experimentally. All
this is discussed further below. To date, in cluster meth-
ods the pseudogap temperature has been studied only
with DCA.78

(vi) A coherent quasiparticle peak below Tc has been
observed near (π, 0) whose spectral weight scales with the
doping level x in the underdoped regime. We expect
that it is a general result that long-range order will re-
store quasiparticle like excitations in strongly correlated
systems because gaps remove scattering channels near
the Fermi level. This is clearly illustrated by comparing
the upper and lower panels in Fig. 25 that contrast the
same spectra with and without antiferromagnetic long-
range order. We have not performed the analysis of our
results yet that could tell us whether the spectral weight
of the quasiparticle scales with x in the hole-underdoped
regime. Our resolution may not be good enough to see
the quasiparticle peak. Sharpening of the quasiparti-
cle excitations in the superconducting state has however
been observed in DCA.120

(vii) The presence of an energy scale of about 40 −
80 meV in the quasiparticle dynamics manifests itself
through a sharp dispersion renormalization and drop in
the scattering rate observed at those energies at differ-
ent momenta. In hole-doped systems there is a kink in
the nodal direction that is already seen above Tc while
in the antinodal direction it appears only below Tc. The
energy scales and doping dependences of these two kinks
are also different.121 The energy resolution in VCPT and
CDMFT is not sufficient to distinguish these subtleties.
In electron-doped cuprates experiments122 suggest that
there is no observable kink feature, in agreement with
the results presented in the following subsection.

B. The pseudogap in electron-doped cuprates

The ARPES spectrum of electron-doped cuprates is
strikingly different from that of their hole-doped coun-
terpart. The Fermi energy MDC’s for the first quadrant
of the Brillouin zone86 are shown at the top of Fig. 39 for
three different dopings. There is a very clear evolution

FIG. 39: Doping dependence of the MDC from experiments
on NCCO with the corresponding EDC. From Ref. 86

with doping. At the lowest dopings, there is no weight
near (π/2, π/2), contrary to the hole-doped case shown
in Fig. 38. For all dopings there is weight near (π, 0) in-
stead of the pseudogap that appeared there in the hole-
doped case. The EDC’s, also shown on the bottom of
Fig. 39, are drawn for a trajectory in the Brillouin zone
that follows what would be the Fermi surface in the non-
interacting case. Regions that are more green than red
on the corresponding MDC’s along that trajectory are re-
ferred to as hot spots. On the EDC’s we clearly see that
hot spots do not correspond to simply a decrease in the
quasiparticle weight Z. They truly originate from a pseu-
dogap, in other words from the fact that the maximum
is pushed away from zero energy. Even though the mea-
surements are done at low temperature (T = 10 − 20K)
the energy resolution of about 60 meV makes the su-
perconducting gap invisible. What is observed at this
resolution is the pseudogap.

The contrast between the location of the pseudogap in
the hole and electron-doped compounds is clearly seen
in Fig. 40 obtained from VCPT.19 In that figure, the
magnitude of the spectral weight is represented by the
different colors as a function of frequency (in units of t)
along different cuts of the Brillouin zone. In the bottom
panel, for the hole-doped case, one observes the pseudo-
gap near (π, 0). In the top panel, for the electron-doped
case, it is only by zooming (inset) on the region for the
Fermi energy crossing near (π, 0) that one sees the d-
wave superconducting gap. At 10% electron-doping, the
pseudogap near (π/2, π/2) is apparent. In this case there
is antiferromagnetic long-range order, but even if we use
CPT that does not exhibit long-range order, there ap-
pears a pseudogap in that region.160 The main differ-
ence between CPT and VCPT results is the bending back
of the bands (for example around the symmetry axis at
(π/2, π/2)) caused by halving of the size of the Brillouin
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FIG. 40: Intensity plot of the spectral function as a function
of ω in units of t and wave vector from VCPT for U = 8t
t′ = −0.3t, t′′ = 0.2t and n = 0.93 at the bottom and n = 1.10
(electron-doped) at the top. The Lorentzian broadening is
0.12t in the main figure and 0.04t in the inset that displays
the d-wave gap. Top panel is for the electron-doped case in
the right-hand panel of Fig. 23, while bottom panel is for the
hole-doped case on the left of Fig. 23. From Ref. 19.

FIG. 41: Experimental Fermi surface plot (MDC at the Fermi
energy) for NCCO (left) and corresponding energy distribu-
tion curves (right) for 15% electron-doping. From Ref. 86

zone in the antiferromagnetic case. Form factors90 are
such that the intensity is not symmetric even if the dis-
persion is. The faint band located at an energy about t
below the Fermi energy near (π/2, π/2) was also found in
Ref. 89 by a one-loop spin-wave calculation around the
Hartree-Fock antiferromagnetic ground state at U = 8t.
Experimentalists86 have suggested the existence of these
states. The VCPT results go well beyond the spin-wave

FIG. 42: EDC A<(k, ω) ≡ A(k, ω)f(ω) along the Fermi sur-
face calculated in TPSC (left) at optimal doping for t′ =
−0.175t, t′′ = 0.05t, t = 350 meV and corresponding ARPES
data on NCCO (right). From Ref. 87.

FIG. 43: EDC A<(k, ω) ≡ A(k, ω)f(ω) along two other di-
rections calculated for t′ = −0.175t, t′′ = 0.05t, t = 350 meV
in TPSC (left column) and corresponding ARPES data on
NCCO (right column). From Ref. 87.

calculation (dashed lines in Fig. 40) since one can also
see numerous features in addition to remnants of the lo-
calized atomic levels around +5t and −10t.

The optimally doped case is the real challenge for
strong-coupling calculations. The spin-wave approach in
Ref. 89 never shows the weight near (π/2, π/2) that is
seen in experiment (Fig. 41). Early mean-field calcula-
tions by Kusko et al.90 suggest that this (π/2, π/2) fea-
ture appears for U = 3t. This is very small compared
with U of the order of the bandwidth 8t necessary to
have a Mott insulator at half-filling. We already dis-
cussed in Sec. III A that both CPT and TPSC show
that weight near (π/2, π/2) appears for U not too large,
say of order 6t. This same result is also obtained in the
Kotliar-Ruckenstein slave boson approach.88

Since TPSC is valid for a system of infinite size,
we present detailed comparisons87 with experiment86

on Nd1.85Ce0.15CuO4, an electron-doped cuprate. We
take t′ = −0.175t, t′′ = 0.05t. Results obtained with
t′ = −0.275 are very close to those we present. With the
values used in CPT, t′ = −0.3t, t′ = 0.2t, U = 6t, TPSC
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FIG. 44: EDC A<(k, ω) ≡ A(k, ω)f(ω) along the Fermi sur-
face shown in the insets for (b) n = 1.10, U = 6.25t. Lines
are shifted by a constant for clarity. From Ref. 87.

does not lead to strong enough antiferromagnetic fluc-
tuations to obtain non-trivial effects in the temperature
range studied, β = 20t. We take t = 350 meV. Fig. 39
shows the correspondence between EDC and MDC. Com-
parisons with experimental EDC at wave vectors along
the non-interacting Fermi surface appear in Fig. 42 for
U = 5.75t and 15% doping (n = 1.15). The dashed lines
indicate the quite detailed agreement between theory and
experiment. At the hot spot, (middle dashed line), the
weight is pushed back about 0.2 eV and there is a very
small peak left at the Fermi surface, as in the experiment.
If U is not large enough the antiferromagnetic fluctua-
tions are not strong enough to lead to a pseudogap. As in
CPT (Fig. 21), if U is too large the (π/2, π/2) weight dis-
appears, as illustrated earlier in Fig. 29. In Fig. 43, cuts
along the (0, 0) to (π, π) and (0.65π, 0) to (0.65π, π) di-
rections are compared with experiment. Again the peak
positions and widths are very close, except for some ex-
perimental tails extending in the large binding energy
direction. The theoretical results have similar asymme-
try, but not as pronounced. Experimentally, the large
binding energy tails (“the background”) are the least
reproducible features from sample to sample, especially
for wave vectors near the Fermi surface”.161 The experi-
mental renormalized Fermi velocities are 3.31 × 105 m/s
and 3.09 × 105 m/s along the zone diagonal and along
the (π, 0)-(π, π) direction, respectively. The correspond-
ing renormalized Fermi velocities obtained by TPSC are
3.27 × 105 m/s and 2.49 × 105 m/s, respectively. The
agreement is very good, particularly along the diagonal
direction. The bare Fermi velocities are renormalized in
TPSC by roughly a factor of two.123

As we move towards half-filling, we have to increase U
slightly to find agreement with experiment, as discussed
earlier in Fig. 29. Fig. 44 shows how well the EDC’s agree
for a Fermi surface cut at 10% doping (n = 1.10). The
increase is expected physically from the fact that with
fewer electrons the contribution to screening that comes
from Thomas Fermi physics should not be as good. This
is also consistent with the fact that a larger value of U
is necessary to explain the Mott insulator at half-filling.
It would also be possible to mimic the ARPES spectrum
by keeping U fixed and changing the hopping parameters,

FIG. 45: Hot spots from quasi-static scatterings off antiferro-
magnetic fluctuations (renormalized classical regime).

FIG. 46: Semi-log plot of the AFM correlation length (in units
of the lattice constant) against inverse temperature (in units
of J = 125 meV). Filled symbols denote calculated results
and empty ones experimental data of Ref. 124 and Ref. 125
(x = 0.15). From Ref. 87.

but the changes would be of order 20%, which does not
appear realistic.87

We have already explained that the physics behind the
pseudogap in TPSC is scattering by nearly critical anti-
ferromagnetic fluctuations. This is illustrated in Fig. 45.
If this explanation is correct, the antiferromagnetic cor-
relation length measured by neutron scattering should
be quite large. The results of the measurement124,125

and of the TPSC calculations are shown in Fig. 46. The
agreement is again surprisingly good. As we move to
smaller dopings n = 1.1 (not shown) the agreement be-
comes less good, but we do expect TPSC to deteriorate
as U increases with underdoping. The arrow points to
the temperature where EDC’s shown earlier were calcu-
lated. Note however that the neutron measurements were
done on samples that were not reduced, by contrast with
the ARPES measurements mentioned earlier. We are ex-
pecting experiments on this subject.162. We should point
out that the EDC’s depend strongly on temperature and
on the actual value of the antiferromagnetic correlation
length only in the vicinity of the temperature where there
is a crossover to the pseudogap regime. Decreasing the
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FIG. 47: Pseudogap temperature T ∗ (filled circles de-
note T ∗ calculated from TPSC, empty ones experimental
data extracted from optical conductivity.127) Empty trian-
gles are experimental Néel temperatures TN . The samples
are reduced.124 From Ref. 87.

temperature makes the ω = 0 peaks near (π, 0) sharper87

as observed experimentally.126

The ARPES pseudogap temperature T ∗ has been pre-
dicted with TPSC.87 The predictions are shown by the
solid line in Fig. 47. The pseudogap temperature ob-
served in optical experiments127 is shown by the open
circles. It differs from the ARPES result, especially as
we move towards optimal doping. The size of the pseu-
dogap observed in the optical experiments127 (10T ∗) is
comparable to the ARPES pseudogap. The solid line in
Fig. 47 contains several predictions. If we look at 13%
doping (n = 1.13), the line predicts T ∗ ∼ 250K. Ex-
periments that were done without being aware of this
prediction128 have verified it. It would be most inter-
esting to do neutron scattering experiments on the same
samples to check whether the antiferromagnetic corre-
lation length ξ and the thermal de Broglie wave length
ξth are comparable at that temperature, as predicted by
TPSC. Fig. 47 also predicts that the pseudogap induced
by antiferromagnetic fluctuations will disappear at the
quantum critical point where long-range antiferromag-
netic order disappears, in other words it will coincide
with the crossing of the experimentally observed Néel
temperature (dashed line with triangles in Fig. 47) with
the zero temperature axis (if that crossing is not masked
by the superconducting transition). Recent optical con-
ductivity experiments129,130 confirm this prediction as
well.

In TPSC, superconducting fluctuations can also lead
to a pseudogap by an analogous mechanism.23

C. The phase diagram for high-temperature

superconductors

The main features appearing in the phase diagram
of high-temperature superconductors are the pseudogap
phase, the antiferromagnetic phase and the d-wave su-
perconducting phase. Fig. 48110 shows the typical dia-
gram with hole doping to the right and electron doping
to the left. Zero on the horizontal axis corresponds to

FIG. 48: The generic phase diagram of high-Tc superconduc-
tors, from Ref. 110. There should also be a pseudogap line on
the electron-doped side. It was not well studied at the time
of publication of that paper.

FIG. 49: Antiferromagnetic order parameter m (dashed) and
d-wave (solid) order parameter obtained from CDMFT on a
2 × 2 cluster. The result obtained by forcing m = 0 is also
shown as a thin dashed line.

half-filling. There are other features on the phase di-
agram, in particular checkerboard patterns131 or stripe
phases132 that appear in general close to the region where
antiferromagnetism and superconductivity come close to
each other. Before we try to understand these more de-
tailed features, one should understand the most impor-
tant phases. In the previous subsection we have discussed
the pseudogap phase, in particular on the electron-doped
side (not indicated on Fig. 48). A recent review of the
pseudogap appears in Ref. 133. In the following, we dis-
cuss in turn the phase diagram and then the nature of
the superconducting phase itself and its relation to the
Mott phenomenon.

1. Competition between antiferromagnetism and
superconductivity

We have already shown in Fig. 32 the prediction of
VCPT for the zero-temperature phase diagram.19 Here,
we just point out how closely the position of the anti-
ferromagnetic phase boundary, appearing in the lower
panel, coincides with the experimental phase diagram in
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Fig. 48. (Note that electron concentration increases from
right to left on this experimental phase diagram). In par-
ticular, there is little size dependence to the position of
this boundary, (6 to 10 sites) and in addition the depen-
dence on the value of U is also weak, as can be seen from
Fig. 34. Hence, the positions of the antiferromagnetic
phase boundaries is a robust prediction of VCPT. The
CDMFT result for a four site cluster in a bath is shown
in Fig. 49 for t′ = −0.3t, t′′ = 0 and U = 8t. The agree-
ment with experiment is not as good. Despite the useful
presence of a bath in CDMFT, the cluster itself is of size
2 × 2, which is probably smaller than the Cooper pair
size. We can obtain results closer to those of VCPT by
increasing the variational space.

The d-wave superconducting order parameter on the
top panel of Fig. 32 shows more size dependence than
the antiferromagnetic order parameter. Nevertheless,
there are some clear tendencies: (a) d-wave supercon-
ductivity can exist by itself, without antiferromagnetism.
The vertical lines indicate the location of the end of
the antiferromagnetic phase for the various system sizes
to help this observation. (b) The range where d-wave-
superconductivity exists without antiferromagnetism, is
about three times larger on the hole than on the electron-
doped side, as observed experimentally. (c) As system
size increases, the maximum d-wave order parameter
is larger on the hole than on the electron-doped side.
(d) The tendency to have coexisting antiferromagnetism
and d-wave superconductivity is rather strong on the
electron-doped side of the phase diagram. This is ob-
served experimentally134 but only over a rather narrow
region near optimal doping. Recent experiments135 chal-
lenge this result, others136,137 indicate that antiferromag-
netism can be induced from the d-wave superconducting
phases with very small fields. (e) On the hole-doped side,
d-wave superconductivity and antiferromagnetism coex-
ist for a very narrow range of dopings for system size
Nc = 6, for a broad range extending to half-filling for
Nc = 8 and not at all for Nc = 10. In other words,
the tendency to coexistence is not even monotonic. We
interpret this result as a reflection of the tendency to
form stripes observed experimentally on the hole-doped
side.132,138,139 We cannot study systems large enough
to allow for striped inhomogeneous states to check this
statement.

The more realistic two-band model has also been stud-
ied using DCA.104 The results are shown on Fig. 50.
Electron concentration increases from right to left. This
phase diagram is very close to that obtained with the
same method from the one-band Hubbard model104 with
t′ = −0.3t, t′′ = 0, U = 8t. The qualitative results agree
with the other calculations and with experiment: anti-
ferromagnetism extends over a narrower doping range for
hole than for electron doping and d-wave superconductiv-
ity by itself exists over a broader range for the hole-doped
case than for the electron-doped case. The actual ranges
where antiferromagnetism and d-wave superconductivity
exist are not in as good an agreement with experiment

FIG. 50: Phase diagram obtained from DCA for U = 8t for
the two-band model. From Ref. 104

as in the VCPT case. However, as in CDMFT, the sys-
tem sizes, 2 × 2, are very small. Overall then, quantum
cluster methods, VCPT in particular, allow us to obtain
from the Hubbard model the two main phases, antifer-
romagnetic and d-wave superconducting, essentially in
the observed doping range of the zero-temperature phase
diagram. At finite temperature, DCA and TPSC agree
on the value of Tc for the particle-hole symmetric model
at 10% doping and U = 4t. Recent studies of the irre-
ducible vertex using DCA140 also show that in the weak-
coupling limit the particle-particle d-wave channel leads
to an instability driven by antiferromagnetic fluctuations
as temperature decreases, as found in TPSC.

To understand the effect of pressure on the phase dia-
gram, note that U/t should decrease as pressure increases
since the increase in the overlap between orbitals should
lead mainly to an increase in t. Hence, as can be de-
duced from Fig. 37, applying pressure should lead to a
decrease in the value of Tc at weak coupling, concomi-
tant with the decrease in antiferromagnetic fluctuations
that lead to pairing in the weak coupling case. This is
indeed what pressure does experimentally in the case of
electron-doped high-temperature superconductors,141 re-
inforcing our argument that near optimal doping they are
more weakly coupled. It is widely known on the other
hand that pressure increases Tc in hole-doped systems.
That is consistent with the strong-coupling result that
we found in VCPT and CDMFT, namely that the max-
imum d-wave order parameter in that case scales with
J = 4t2/U, a quantity that increases with t and hence
pressure. Whereas in the weak coupling case supercon-
ductivity is a secondary phenomenon that occurs after
antiferromagnetic fluctuations have built up, in strong
coupling they can be two distinct phenomena as can be
seen from the phase diagram, even though they arise from
the same microscopic exchange interaction represented
by J .
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2. Anomalous superconductivity near the Mott transition

Superconductivity in the underdoped regime is very
much non-BCS. First of all, we notice in Fig. 35 ob-
tained in CDMFT17 that at strong coupling the d-wave
superconducting order parameter vanishes as we move
towards half-filling even in the absence of long-range an-
tiferromagnetic order. In other words, the Mott phe-
nomenon by itself suffices to destroy d-wave superconduc-
tivity. This conclusion is reinforced by the fact that at
weak coupling (U = 4t) where there is no Mott localiza-
tion, d-wave superconductivity survives at half-filling. In
the presence of antiferromagnetic long-range order, that
last statement would not be true, as confirmed by VCPT
calculations in Fig. 36: at U = 4t d-wave superconduc-
tivity survives at half-filling if we do not allow for an-
tiferromagnetic long-range order but it disappears if we
do. In BCS theory, the presence of an interaction J that
leads to attraction in the d-wave channel would lead at
T = 0 to d-wave superconductivity at all dopings includ-
ing half-filling, unless we allow for competing long-range
order. At strong coupling, no long-range order is neces-
sary to destroy d-wave superconductivity.

Superconductivity at strong coupling142,143 also differs
from BCS in the origin of the condensation energy. Sup-
pose we do BCS theory on the attractive Hubbard model.
Then, as in the usual BCS model, kinetic energy is in-
creased in the superconducting state because the Fermi
surface is no-longer sharp. On the other hand, in the
superconducting phase there is a gain in potential en-
ergy. The reverse is true at strong coupling. This re-
sult follows from DCA120 and is in agreement with the
kinetic energy drop in the superconducting state that
has been estimated from the f-sum rule in optical con-
ductivity experiments.144–146 Photoemission data147 had
also suggested this kinetic energy drop in the supercon-
ducting state. A crossover from non-BCS-like to BCS
behavior in the condensation mechanism as we go from
underdoping to overdoping has also been seen recently
experimentally.144 We do not seem to have the resolution
to find that crossover since the condensation energy be-
comes very small on the overdoped side. We expect that
crossover from strong to weak coupling will also lead to a
change from a kinetic-energy driven to a potential-energy
driven pairing mechanism. This is confirmed by CDMFT
calculations for the attractive Hubbard model.148

A third way in which superconductivity in the under-
doped regime is non-BCS is that the drop in the order
parameter as we go towards half-filling is accompanied by
an increase in the gap as measured in the single-particle
density of states. Fig. 6 of Ref. 149 summarizes the ex-
perimental evidence for the increase in the size of the gap.
That increase, observed in the CDMFT calculation of the
gap, is illustrated in Fig. 51.17 That gap has essentially
the same size as that observed in the normal pseudogap
state67.

FIG. 51: The gap in the density of states of the dSC as a
function of filling for U = 8t, t′ = −0.3t as calculated in
CDMFT on a 2 × 2 cluster. From Ref. 17.

V. CONCLUSION, OPEN PROBLEMS

High-temperature superconductivity has forced both
experimentalists and theorists to refine their tools and to
develop new ones to solve the puzzles offered by this re-
markable phenomenon. From a theoretical perspective,
the original suggestion of Anderson1 that the physics
was in the one-band Hubbard model is being confirmed.
In the absence of ab initio methods to tell us what is
the correct starting point, such insight is essential. The
non-perturbative nature of the phenomenon has however
forced theorists to be extremely critical of each other’s
theories since none of them can pretend that a small pa-
rameter controls the accuracy of the approximations.

If theorists are to convince each other and experimen-
talists that a solution of the high-temperature super-
conductivity problem has been found, then the theories
have to give quantitative results and to make predic-
tions. Unlike most traditional problems in condensed
matter physics however, the non-perturbative nature of
the problem means that no simple mean-field like the-
ory can be trusted, even if it seems to agree qualitatively
with experiment. In fact several such theories have been
proposed13,14,150,151 not long after the experimental dis-
covery of the phenomenon but they have not been ac-
cepted immediately. Theories have to be internally con-
sistent, they have to agree with exact results whenever
they are available, and then they can be compared with
experiments. If there is a disagreement with experiment,
the starting point (one-band Hubbard model) needs to
be reconsidered. When approaches developed on the
basis of weak-coupling ideas agree at intermediate cou-
pling with approaches developed on the basis of strong-
coupling ideas, then one gains confidence in the validity
of the results. We have argued that such concordance is
now found in a number of cases and that corresponding
rather detailed quantitative agreement with experiment
can be found. In a non-perturbative context it becomes
essential to also cross check various approaches.

The main theoretical methods that we have dis-
cussed are those that we have developed or perfected
or simply used in our group: The Two-Particle Self-
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Consistent approach that is based on weak-coupling but
non-perturbative ideas (no diagrams are involved), as
well as heavily numerical approaches such as QMC and
various quantum cluster methods, VCPT and CDMFT.

Based on our own work and that of many others,
we think the following experimental facts about high-
temperature superconductivity can be reproduced very
accurately by calculations for the one-band Hubbard
model with U in the intermediate coupling range (U ∼
8t) with t ∼ 350 meV, and hopping parameters t′

and t′′ close to the values suggested by band structure
calculations,103 namely t′ = −0.3t, t′′ = 0.2t.

(i) In the one-band Hubbard model the main phases of
the zero-temperature phase diagram, namely antiferro-
magnetic and d-wave superconducting, appear very near
the observed ranges for both the hole- and electron-doped
cases.

(ii) The normal state is unstable to a d-wave supercon-
ducting phase in a temperature range that has the correct
order of magnitude. As usual the value of Tc is the most
difficult quantity to evaluate since one must take into ac-
count Kosterlitz-Thouless physics as well as the effect of
higher dimensions etc, so this level of agreement must be
considered satisfying.

(iii) The ARPES MDC at the Fermi energy and
the EDC near the Fermi energy are qualitatively well
explained by cluster calculations for both hole- and
electron-doped cases. These comparisons, made at a res-
olution of about 30 to 60 meV are not very sensitive to
long-range order, although order does influence the re-
sults. One is mainly sensitive to the pseudogap, so this
is the main phenomenon that comes out from the model.
Energy resolution is not good enough to see a kink. More
details about what aspects of ARPES are understood
may be found in Sec. IVA.

(iv) In the case of electron-doped cuprates, the value of
U near optimal doping seems to be in the range U ∼ 6t,
which means that it is accessible to studies with TPSC
that have better resolution. In that case, the agreement
with experiment is very accurate, even if there is room
for improvement and a need for further experiments. In
addition, the value of T ∗ for 13% doping has been pre-
dicted theoretically before it was observed experimen-
tally, one of the very rare predictions in the field of
high-temperature superconductors. All of this agreement
with ARPES data is strong indication that U ∼ 6t is
appropriate to describe electron-doped superconductors
near optimal doping. Additional arguments come from
the pressure dependence of the superconducting transi-
tion temperature Tc, which increases with t/U contrary
to the strong-coupling result, and from simple ideas on
Thomas-Fermi screening. The latter would predict that
the screened interaction scales like ∂µ/∂n and CPT re-
sults do lead to ∂µ/∂n smaller on the electron- than on
the hole-doped side.77 In addition, the optical gap at half-
filling is smaller in electron- than in hole-doped systems.

What is the physics? The physics of the antiferro-
magnetic phase at both weak and strong coupling is

well understood and needs no further comment. For the
pseudogap, we have argued that there seems to be two
mechanisms, a weak coupling one that involves scattering
off critical fluctuations and that is very well understood
within TPSC, and a strong-coupling one where there is
no need for large correlation lengths. There is no sim-
ple physical picture for the latter mechanism although
the fact that it does not scale with J but with t seems
to suggest forbidden hopping. The pseudogap is clearly
different from the Mott gap. Whether there is a phase
transition as a function of U that separates the weak
and strong coupling regimes or whether there is only a
crossover is an open question. The shape of the MDC’s
at the Fermi energy clearly show in any case that in some
directions wave vector is not such a bad quantum num-
ber whereas in the pseudogap direction, a “localized” or
“almost localized” particle-like picture would be appro-
priate. In fact the pseudogap occurs near the intersection
with the antiferromagnetic zone boundary that turns out
to also be the place where umklapp processes are possi-
ble. In other words, the presence of a lattice is extremely
important for the appearance of the pseudogap. We have
seen that with spherical Fermi surfaces the Fermi liquid
survives even for large U . The dichotomy between the
wave description inherent to the Fermi liquid and the
particle (localized) description inherent to the Mott phe-
nomenon seems to be resolved in the pseudogap phase by
having certain directions where electrons are more wave-
like and other directions where particle-like (gapped) be-
havior appears. The latter behavior appears near regions
where the presence of the lattice is felt through umklapp
processes.

It is clear that when weak-coupling-like ideas of quasi-
particles scattering off each other and off collective ex-
citations do not apply, a simple physical description be-
comes difficult. In fact, knowing the exact wave functions
would give us the solution but we would not know how
to understand “physically” the results.

This lack of simple physical images and the neces-
sity to develop a new discourse is quite apparent for
d-wave superconductivity. At weak coupling exchange
of slow antiferromagnetic fluctuations is at the origin of
the phenomenon, while at strong-coupling the fact that
the maximum value of the d-wave order parameter scales
with J tells us that this microscopic coupling is impor-
tant, even though there is no apparent boson exchange.
This is where mean-field like theories13,14,150 or varia-
tional approaches4 can help when they turn out to give
results that are confirmed by more accurate and less bi-
ased methods.

There are many open problems, some of which are ma-
terial dependent and hence may depend on interactions
not included in the simplest Hubbard model. We have
already mentioned the problem of the chemical potential
shift in ARPES for very small dopings117 that seems to
be somewhat material dependent118. It would also be im-
portant to understand additional inhomogeneous phases
that are observed in certain high-temperature supercon-
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ductors. That is extremely challenging for quantum clus-
ter methods and unlikely to be possible in the very near
future, except for inhomogeneities of very short wave
length. Also, we still need to improve concordance be-
tween the methods before we can make predictions that
are quantitative at the few percent level for all physical
quantities. Apart from DCA, there are no quantum clus-
ter methods that have been developed yet to study two-
particle response functions that are necessary to obtain
results on the superfluid density and on transport in gen-
eral. Transport studies are being completed in TPSC.152

Such studies are crucial since they are needed to answer
questions such as: (i) Why is it that for transport proper-
ties, such as optical conductivity, the number of carriers
appears to scale with doping whereas in ARPES the sur-
face of the Brillouin zone enclosed by the apparent Fermi
surface appears to scale with the number of electrons?
Is it because the weight of quasiparticles at the Fermi
surface scales like the doping or because of vertex correc-
tions or because of both? (ii) Can we explain a vanishing
superfluid density as doping goes to zero153 only through
Mott physics or can competing order do the job.163,94

After twenty years all the problems are not solved, but
we think that we can say with confidence that the es-
sential physics of the problem of high-temperature su-
perconductivity is in the one-band Hubbard model. At
least the pseudogap, the antiferromagnetic and the d-
wave superconducting phases come out from the model.
Refinements of that model may however be necessary as
we understand more and more details of the material-
specific experimental results.

Has a revolution been necessary to understand the ba-
sic physics of high-temperature superconductors? Cer-
tainly, it has been necessary to change our attitude to-
wards methods of solution. We have seen that to study
intermediate coupling, even starting from weak coupling,
it has been necessary to drop diagrams and to rely in-
stead on sum rules and other exact results to devise a
non-perturbative approach. At strong coupling we had to
accept that numerical methods are essential for progress
and that we need to abandon some of the traditional
physical explanations of the phenomena in terms of el-
ementary excitations. Even though progress has been
relatively slow, the pace is accelerating in the last few
years and there is hope that in a few years the problem
will be considered for the most part solved. The the-
oretical methods (numerical and analytical) that have
been developed and that still need to be developed will
likely remain in the tool box of the theoretical physicist
and will probably be useful to understand and perhaps
even design other yet undiscovered materials with inter-
esting properties. The success will have been the result
of the patient and focused effort of a large community of
scientists fascinated by the remarkable phenomenon of
high-temperature superconductivity.
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APPENDIX A: LIST OF ACRONYMS

ARPES: Angle Resolved Photoemission Spec-
troscopy: Experiment from which one can
extract A(k,ω)f(ω).

CPT: Cluster Perturbation Theory: Cluster
method based on strong coupling perturbation
theory.52,53,62

CDMFT: Cellular Dynamical Mean Field Theory: A
cluster generalization of DMFT that allows one to
take into account both wave vector and frequency
dependence of the self-energy.58 It is best formu-
lated in real space.

DCA: Dynamical Cluster approximation: A cluster gen-
eralization of DMFT that allows one to take into ac-
count both wave vector and frequency dependence
of the self-energy based on coarse graining of the
self-energy in reciprocal space.55,154

DMFT: Dynamical Mean Field Theory: This approach
is exact in infinite dimension. It takes the frequency
dependence of the self-energy into account and in-
cludes both the Mott and the Fermi liquid limits.2,3

EDC: Energy Dispersion Curves: A representation of
A (k,ω) f (ω) at fixed k as a function of ω.

FLEX: Fluctuation Exchange Approximation: A con-
serving many-body approach, similar in spirit to
Eliashberg theory.22

MDC: Momentum Dispersion Curves: A representation
of A(k,ω)f(ω) at fixed ω as a function of k.

QMC: Quantum Monte Carlo: Determinental
approach155. This provides an essentially ex-
act solution to the model for a given system size
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and within statistical errors that can be made
smaller by performing more measurements.

RPA: Random Phase Approximation.

TPSC: Two-Particle Self-Consistent Approach: Based
on sum rules and other constraints, allows to treat
the Hubbard model non-perturbatively in the weak
to intermediate coupling limit.23,34

VCA: Variational Cluster Approach. Analogous to
CDMFT but with a convergence criterion based on
an extremum principle. In the applications quoted
here, there is no bath.56,64,73,156

VCPT: Variational Cluster Perturbation Theory. In the
present paper synonymous with VCA.
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Abstract. — A new approach to the single-band Hubbard model is described in the general
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a number of crucial sum-rules. More specifically, spin and charge susceptibilities are expressed,
in a conserving approximation, as a function of two irreducible vertices whose values are found
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↑〉 = 〈n↑〉 as well as the local-moment sum-rule and
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to that obtained using the fluctuation-dissipation theorem for susceptibilities. Since there is
no Migdal theorem controlling the effect of spin and charge fluctuations on the self-energy,
the required vertex corrections are included. It is shown that the theory is in quantitative
agreement with Monte Carlo simulations for both single-particle and two-particle properties. The
theory predicts a magnetic phase diagram where magnetic order persists away from half-filling
but where ferromagnetism is completely suppressed. Both quantum-critical and renormalized-
classical behavior can occur in certain parameter ranges. It is shown that in the renormalized
classical regime, spin fluctuations lead to precursors of antiferromagnetic bands (shadow bands)
and to the destruction of the Fermi-liquid quasiparticles in a wide temperature range above
the zero-temperature phase transition. The upper critical dimension for this phenomenon is
three. The analogous phenomenon of pairing pseudogap can occur in the attractive model in
two dimensions when the pairing fluctuations become critical. Simple analytical expressions
for the self-energy are derived in both the magnetic and pairing pseudogap regimes. Other
approaches, such as paramagnon, self-consistent fluctuation exchange approximation (FLEX),
and pseudo-potential parquet approaches are critically compared. In particular, it is argued that
the failure of the FLEX approximation to reproduce the pseudogap and the precursors AFM
bands in the weak coupling regime and the Hubbard bands in the strong coupling regime is due
to inconsistent treatment of vertex corrections in the expression for the self-energy. Treating the
spin fluctuations as if there was a Migdal’s theorem can lead not only to quantitatively wrong
results but also to qualitatively wrong predictions, in particular with regard to the single-particle
pseudogap.

(∗)Author for correspondence (e-mail: tremblay@physique.usherb.ca)
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1. Introduction

Understanding all the consequences of the interplay between band structure effects and electron-
electron interactions remains one of the present-day goals of theoretical solid-state Physics. One
of the simplest model that contains the essence of this problem is the Hubbard model. In the
more than thirty years [1, 2] since this model was formulated, much progress has been accom-
plished. In one dimension [3, 4], various techniques such as diagrammatic resummations [5],
bosonization [6], renormalization group [7, 8] and conformal approaches [9, 10] have lead to a
very detailed understanding of correlation functions, from weak to strong coupling. Similarly,
in infinite dimensions a dynamical mean-field theory [11] leads to an essentially exact solution
of the model, although many results must be obtained by numerically solving self-consistent
integral equations. Detailed comparisons with experimental results on transition-metal oxides
have shown that three-dimensional materials can be well described by the infinite-dimensional
self-consistent mean-field approach [11]. Other methods, such as slave-boson [12] or slave-
fermion [13] approaches, have also allowed one to gain insights into the Hubbard model through
various mean-field theories corrected for fluctuations. In this context however, the mean-field
theories are not based on a variational principle. Instead, they are generally based on expan-
sions in the inverse of a degeneracy parameter [14], such as the number of fermion flavors N ,
where N is taken to be large despite the fact that the physical limit corresponds to a small
value of this parameter, say N = 2. Hence these theories must be used in conjunction with
other approaches to estimate their limits of validity [15]. Expansions around solvable limits
have also been explored [16]. Finally, numerical solutions [17], with proper account of finite-size
effects, can often provide a way to test the range of validity of approximation methods inde-
pendently of experiments on materials that are generally described by much more complicated
Hamiltonians.

Despite all this progress, we are still lacking reliable theoretical methods that work in ar-
bitrary space dimension. In two dimensions in particular, it is believed that the Hubbard
model may hold the key to understanding normal state properties of high-temperature super-
conductors. But even the simpler goal of understanding the magnetic phase diagram of the
Hubbard model in two dimensions is a challenge. Traditional mean-field techniques, or even
slave-boson mean-field approaches, for studying magnetic instabilities of interacting electrons
fail in two dimensions. The Random Phase Approximation (RPA) for example does not sat-
isfy the Pauli principle, and furthermore it predicts finite temperature antiferromagnetic or
Spin Density Wave (SDW) transitions while this is forbidden by the Mermin-Wagner theorem.
Even though one can study universal critical behavior using various forms of renormalization
group treatments [18–22] or through the self-consistent-renormalized approach of Moriya [23]
which all satisfy the Mermin-Wagner theorem in two dimensions, cutoff-dependent scales are
left undetermined by these approaches. This means that the range of interactions or fillings
for which a given type of ground-state magnetic order may appear is left undetermined.

Amongst the recently developed theoretical methods for understanding both collective and
single-particle properties of the Hubbard model, one should note the fluctuation exchange
approximation [24] (FLEX) and the pseudo-potential parquet approach [25]. The first one,
FLEX, is based on the idea of conserving approximations proposed by Baym and Kadanoff
[26,27]. This approach starts with a set of skeleton diagrams for the Luttinger-Ward functional
[28] to generate a self-energy that is computed self-consistently. The choice of initial diagrams
however is arbitrary and left to physical intuition. In the pseudo-potential parquet approach,
one parameterizes response functions in all channels, and then one iterates crossing-symmetric
many-body integral equations. While the latter approach partially satisfies the Pauli principle,
it violates conservation laws. The opposite is true for FLEX.
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In this paper, we present the formal aspects of a new approach that we have recently de-
veloped for the Hubbard model [29, 30]. The approach is based on enforcing sum rules and
conservation laws, rather than on diagrammatic perturbative methods that are not valid for
interaction U larger than hopping t. We first start from a Luttinger-Ward functional that
is parameterized by two irreducible vertices Usp and Uch that are local in space-time. This
generates RPA-like equations for spin and charge fluctuations that are conserving. The local-
moment sum rule, local charge sum rule, and the constraint imposed by the Pauli principle,
〈n2
↑〉 = 〈n↑〉 then allow us to find the vertices as a function of double occupancy 〈n↑n↓〉 (see

Eqs. (37, 38)). Since 〈n↑n↓〉 is a local quantity it depends very little on the size of the system
and, in principle, it could be obtained reliably using numerical methods, such as for example
Monte Carlo simulations. Here, however, we adopt another approach and find 〈n↑n↓〉 self-
consistently [29] without any input from outside the present theory. This is done by using an
ansatz equation (40) for the double-occupancy 〈n↑n↓〉 that has been inspired by ideas from the
local field approach of Singwi et al. [31]. Once we have the spin and charge fluctuations, the
next step is to use them to compute a new approximation, equation (46), for the single-particle
self-energy. This approach to the calculation of the effect of collective modes on single-particle
properties [30] is similar in spirit to paramagnon theories [32]. Contrary to these approaches
however, we do include vertex corrections in such a way that, if Σ(1) is our new approxima-
tion for the self-energy while G(0) is the initial Green’s function used in the calculation of the
collective modes, and 〈n↑n↓〉 is the value obtained from spin and charge susceptibilities, then
1
2Tr

[
Σ(1)G(0)

]
= U 〈n↑n↓〉 is satisfied exactly. The extent to which 1

2Tr
[
Σ(1)G(1)

]
(computed

with G(1) instead of G(0)) differs from U 〈n↑n↓〉 can then be used both as an internal accuracy
check and as a way to improve the vertex corrections.

If one is interested only in two-particle properties, namely spin and charge fluctuations,
then this approach has the simple physical appeal of RPA but it satisfies key constraints that
are always violated by RPA, namely the Mermin-Wagner theorem and the Pauli principle.
To contrast it with usual RPA, that has a self-consistency only at the single-particle level,
we call it the Two-Particle Self-Consistent approach (TPSC) [29, 30, 33]. The TPSC gives a
quantitative description of the Hubbard model not only far from phase transitions, but also
upon entering the critical regime. Indeed we have shown quantitative agreement with Monte
Carlo simulations of the nearest-neighbor [29] and next-nearest neighbor [34] Hubbard model
in two dimensions. Quantitative agreement is also obtained as one enters the narrow critical
regime accessible in Monte Carlo simulations. We also have shown [33] in full generality that
the TPSC approach gives the n → ∞ limit of the O (n) model, while n = 3 is the physically
correct (Heisenberg) limit. In two dimensions, we then recover both quantum-critical [19] and
renormalized classical [18] regimes to leading order in 1/n. Since there is no arbitrariness in
cutoff, given a microscopic Hubbard model no parameter is left undetermined. This allows us
to go with the same theory from the non-critical to the beginning of the critical regime, thus
providing quantitative estimates for the magnetic phase diagram of the Hubbard model, not
only in two dimensions but also in higher dimensions [33].

The main limitation of the approach presented in this paper is that it is valid only from
weak to intermediate coupling. The strong-coupling case cannot be treated with frequency-
independent irreducible vertices, as will become clear later. However, a suitable ansatz for
these irreducible vertices in a Luttinger-Ward functional might allow us to apply our general
scheme to this limit as well.

Our approach predicts [30] that in two dimensions, Fermi liquid quasiparticles disappear
in the renormalized classical regime ξAFM ∝ exp(const/T ), which always precedes the zero-
temperature phase transition in two-dimensions. In this regime the antiferromagnetic
correlation length becomes larger than the single-particle thermal de Broglie wave length
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ξth(= vF/T ), leading to the destruction of Fermi liquid quasiparticles with a concomitant
appearance of precursors of antiferromagnetic bands (“shadow bands”) with no quasi-particle
peak between them. We stress the crucial role of the classical thermal spin fluctuations and low
dimensionality for the existence of this effect and contrast our results with the earlier results
of Kampf and Schrieffer [35] who used a susceptibility separable in momentum and frequency
χsp = f(q)g(ω). The latter form of χsp = f(q)g(ω) leads to an artifact that dispersive precur-
sors of antiferromagnetic bands can exist at T = 0 (for details see [36]). We also contrast our
results with those obtained in the fluctuation exchange approximation (FLEX), which includes
self-consistency in the single particle propagators but neglects the corresponding vertex cor-
rections. The latter approach predicts only the so-called “shadow feature” [36,37] which is an
enhancement in the incoherent background of the spectral function due to antiferromagnetic
fluctuations. However, it does not predict [38] the existence of “shadow bands” in the renor-
malized classical regime. These bands occur when the condition ω − εk − Σσ(k, ω) + µ = 0 is
satisfied. FLEX also predicts no pseudogap in the spectral function A(kF, ω) at half-filling [38].
By analyzing temperature and size dependence of the Monte Carlo data and comparing them
with the theoretical calculations, we argue that the Monte Carlo data supports our conclusion
that the precursors of antiferromagnetic bands and the pseudogap do appear in the renormal-
ized classical regime. We believe that the reason for which the FLEX approximation fails to
reproduce this effect is essentially the same reason for which it fails to reproduce Hubbard
bands in the strong coupling limit. More specifically, the failure is due to an inconsistent
treatment of vertex corrections in the self-energy ansatz. Contrary to the electron-phonon
case, these vertex corrections have a strong tendency to cancel the effects of using dressed
propagators in the expression for the self-energy.

Recently, there have been very exciting developments in photoemission studies of the High-Tc

materials [39,40] that show the opening of the pseudogap in single particle spectra above the
superconducting phase transition. At present, there is an intense debate about the physical
origin of this phenomena and, in particular, whether it is of magnetic or of pairing origin.
From the theoretical point of view there are a lot of formal similarities in the description
of antiferromagnetism in repulsive models and superconductivity in attractive models. In
Section 5 we use this formal analogy to obtain a simple analytical expressions for the self-energy
in the regime dominated by critical pairing fluctuations. We then point out on the similarities
and differences in the spectral function in the case of magnetic and pairing pseudogaps.

Our approach has been described in simple physical terms in references [29, 30]. The plan
of the present paper is as follows. After recalling the model and the notation, we present our
theory in Section 3. There we point out which exact requirements of many-body theory are
satisfied, and which are violated. Before Section 3, the reader is urged to read Appendix A that
contains a summary of sum rules, conservation laws and other exact constraints. Although
this discussion contains many original results, it is not in the main text since the more expert
reader can refer to the appendix as need be. We also illustrate in this appendix how an
inconsistent treatment of the self-energy and vertex corrections can lead to the violation of a
number of sum rules and inhibit the appearance of the Hubbard bands, a subject also treated
in Section 6. Section 4 compares the results of our approach and of other approaches to Monte
Carlo simulations. We study in more details in Section 5 the renormalized classical regime at
half-filling where, in two dimensions, Fermi liquid quasiparticles are destroyed and replaced
by precursors of antiferromagnetic bands well before the T = 0 phase transition. We also
consider in this section the analogous phenomenon of pairing pseudogap which can appear in
two dimensions when the pairing fluctuations become critical. The following section (Sect. 6)
explains other attempts to obtain precursors of antiferromagnetic bands and points out why
approaches such as FLEX fail to see the effect. We conclude in Section 7 with a discussion
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of the domain of validity of our approach and in Section 8 with a critical comparison with
FLEX and pseudo-potential parquet approaches, listing the weaknesses and strengths of our
approach compared with these. A more systematic description and critique of various many-
body approaches, as well as proofs of some of our results, appear in appendices.

2. Model and Definitions

We first present the model and various definitions. The Hubbard model is given by the Hamil-
tonian

H = −
∑
<ij>σ

ti,j

(
c†iσcjσ + c†jσciσ

)
+ U

∑
i

ni↑ni↓. (1)

In this expression, the operator ciσ destroys an electron of spin σ at site i. Its adjoint c†iσ creates

an electron and the number operator is defined by niσ = c†iσciσ. The symmetric hopping matrix
ti,j determines the band structure, which here can be arbitrary. Double occupation of a site
costs an energy U due to the screened Coulomb interaction. We work in units where kB = 1,
h̄ = 1 and the lattice spacing is also unity, a = 1 . As an example that occurs later, the
dispersion relation in the d -dimensional nearest-neighbor model is given by

εk = −2t
d∑
i=1

(cos ki) . (2)

2.1. Single-Particle Propagators, Spectral Weight and Self-Energy. — We will
use a “four”-vector notation k ≡ (k, ikn) for momentum-frequency space, and 1 ≡ (r1, τ1) for
position-imaginary time. For example, the definition of the single-particle Green’s function
can be written as

Gσ (1, 2) ≡ −
〈
Tτc1σ (τ1) c

†
2σ (τ2)

〉
≡ −

〈
Tτcσ (1) c†σ(2)

〉
(3)

where the brackets 〈〉 represent a thermal average in the grand canonical ensemble, Tτ is the
time-ordering operator, and τ is imaginary time. In zero external field and in the absence
of the symmetry breaking Gσ(1, 2) = Gσ(1−2) and the Fourier-Matsubara transforms of the
Green’s function are

Gσ (k) =
∑
r1

e−ik·r1

∫ β

0

dτ eiknτ1Gσ (r1, τ1) ≡

∫
d(1)e−ik(1)Gσ(1) (4)

Gσ(1) =
T

N

∑
k

eik(1)Gσ(k). (5)

As usual, experimentally observable retarded quantities are obtained from the Matsubara ones
by analytical continuation ikn → ω + iη. In particular, the single-particle spectral weight
A(k, ω) is related to the single-particle propagator by

Gσ(k, ikn) =

∫
dω

2π

Aσ(k, ω)

ikn − ω
(6)

Aσ(k, ω) = −2ImGR
σ (k, ω). (7)

The self-energy obeys Dyson’s equation, leading to

Gσ(k, ikn) =
1

ikn − (εk − µ)− Σσ(k, ikn)
· (8)
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It is convenient to use the following notation for real and imaginary parts of the analytically
continued retarded self-energy

ΣR
σ (k, ikn → ω + iη) = Σ′σ(k, ω) + iΣ′′σ(k, ω). (9)

Causality and positivity of the spectral weight imply that

Σ′′σ(k, ω) < 0. (10)

Finally, let us point out that for nearest-neighbor hopping, the Hamiltonian is particle-hole
symmetric at half-filling, (ckσ → c†k+Qσ; c†kσ → ck+Qσ) with Q =(π, π) , implying that
µ = U/2 and that,

Gσ (k, τ) = −Gσ (k + Q,−τ) (11)[
Σ(k, ikn)−

U

2

]
= −

[
Σ(k + Q,−ikn)−

U

2

]
· (12)

2.2. Spin and Charge Correlation Functions. — We shall be primarily concerned with
spin and charge fluctuations, which are the most important collective modes in the repulsive
Hubbard model. Let the charge and z components of the spin operators at site i be given
respectively by

ρi(τ) ≡ ni↑(τ) + ni↓(τ) (13)

Szi ≡ ni↑(τ) − ni↓(τ). (14)

The time evolution here is again that of the Heisenberg representation in imaginary time.
The charge and spin susceptibilities in imaginary time are the responses to perturbations

applied in imaginary-time. For example, the linear response of the spin to an external field
that couples linearly to the z component

e−βH → e−βHTτe
∫

dτSzi (τ
′)φSi (τ

′) (15)

is given by

χsp(ri − rj , τi − τj) =
δ 〈Sj(τj)〉

δφSi (τi)
=
〈
TτS

z
i (τi)S

z
j (τj)

〉
· (16)

In an analogous manner, for charge we have

χch(ri − rj , τi − τj) =
δ 〈ρj(τj)〉

δφρi (τi)
= 〈Tτρi(τi)ρj(τj)〉 − n

2. (17)

Here n ≡ 〈ρi〉 is the filling so that the disconnected piece is denoted n2. It is well known
that when analytically continued, these susceptibilities give physical retarded and advanced
response functions. In fact, the above two expressions are the imaginary-time version of the
fluctuation-dissipation theorem.

The expansion of the above functions in Matsubara frequencies uses even frequencies. Defin-
ing the subscript ch, sp to mean either charge or spin, we have

χch,sp(q, iqn) =

∫
dω′

π

χ′′ch,sp(q, ω′)

ω′ − iqn
(18)

χ′′ch(q, t) =
1

2
〈[ρq(t), ρ−q(0)]〉 ; χ′′sp(q, t) =

1

2

〈[
Szq(t), Sz−q(0)

]〉
· (19)
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The fact that χ′′ch,sp(q, ω′) is real and odd in frequency in turn means that χch,sp(q, iqn) is real

χch,sp(q, iqn) =

∫
dω′

π

ω′χ′′ch,sp(q, ω′)

(ω′)
2

+ (qn)
2 (20)

a convenient feature for numerical calculations. The high-frequency expansion has 1/q2
n as

a leading term so that there is no discontinuity in χch,sp (q, τ) as τ → 0, contrary to the
single-particle case.

3. Formal Derivation

To understand how to satisfy as well as possible the requirements imposed on many-body
theory by exact results, such as those in Appendix A, it is necessary to start from a general non-
perturbative formulation of the many-body problem. We thus first present a general approach
to many-body theory that is set in the framework introduced by Martin and Schwinger [42],
Luttinger and Ward [28] and Kadanoff and Baym [26, 27]. This allows one to see clearly the
structure of the general theory expressed in terms of the one-particle irreducible self-energy
and of the particle-hole irreducible vertices. These quantities represent projected propagators
and there is a great advantage in doing approximations for these quantities rather than directly
on propagators.

Our own approximation to the Hubbard model is then described in the subsection that
follows the formalism. In our approach, the irreducible quantities are determined from various
consistency requirements. The reader who is interested primarily in the results rather than in
formal aspects of the theory can skip the next subsection and refer back later as needed.

3.1. General Formalism. — Following Kadanoff and Baym [27], we introduce the gener-
ating function for the Green’s function

lnZ [φ] = ln
〈
Tτe
−c†

σ
(1)cσ(2)φσ(1,2)

〉
(21)

where, as above, a bar over a number means summation over position and imaginary time
and, similarly, a bar over a spin index means a sum over that spin index. The quantity Z is
a functional of φσ , the position and imaginary-time dependent field. Z reduces to the usual
partition function when the field φσ vanishes. The one-particle Green’s function in the presence
of this external field is given by

Gσ(1, 2; [φ]) = −
δ lnZ [φ]

δφσ(2, 1)
(22)

and, as shown by Kadanoff and Baym, the inverse Green’s function is related to the self-energy
through

G−1 = G−1
0 − φ− Σ. (23)

The self-energy in this expression is a functional of φ.
Performing a Legendre transform on the generating functional ln Z [φ] in equation (21) with

the help of the last two equations, one can find a functional Φ [G] of G that acts as a generating
function for the self-energy

Σσ(1, 2; [G]) =
δΦ [G]

δGσ(2, 1)
· (24)

The quantity Φ [G] is the Luttinger-Ward functional [28]. Formally, it is expressed as the sum of
all connected skeleton diagrams, with appropriate counting factors. Conserving approximations
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Fig. 1. — The first line is a diagrammatic representation of the Bethe-Salpeter equation (26) for the
three point susceptibility and the second line is the corresponding equation (27) for the self-energy. In
the Hubbard model, the Fock contribution is absent, but in general it should be there. Solid lines are
Green’s functions and dashed lines represent the contact interaction U . The triangle is the three point
vertex, while the three-point susceptibility χ(1, 3; 2) is the triangle along with the attached Green’s
function. The usual two-point susceptibility is obtained by identifying points 1 and 3 in the Bethe-
Salpeter equation. The rectangular box is the irreducible four-point vertex in the selected particle-hole
channel.

start from a subset of all possible connected diagrams for Φ [G] to generate both the self-energy
and the irreducible vertices entering the integral equation obeyed by response functions. These
response functions are then guaranteed to satisfy the conservation laws. They obey integral
equations containing as irreducible vertices

Γir
σσ′(1, 2; 3, 4) ≡

δΣσ(1, 2; [G])

δGσ′(3, 4)
=

δ2Φ [G]

δGσ(2, 1)δGσ′(3, 4)
= Γir

σ′σ(4, 3; 2, 1). (25)

A complete and exact picture of one- and two-particle properties is obtained then as fol-
lows. First, the generalized susceptibilities χσσ′(1, 3; 2) ≡ −δGσ(1, 3)/δφσ′ (2

+, 2) are cal-
culated by taking the functional derivative of GG−1 and using the Dyson equation (23) to
compute δG−1/δφ. One obtains [27]

χσσ′(1, 3; 2) = −Gσ(1, 2)δσ,σ′Gσ(2, 3) +Gσ(1, 2)Γ
ir
σσ(2, 3; 4, 5)χσσ′(4, 5; 2)Gσ(3, 3) (26)

where one recognizes the Bethe-Salpeter equation for the three-point susceptibility in the
particle-hole channel. The second equation that we need is automatically satisfied in an exact
theory. It relates the self-energy to the response function just discussed through the equation

Σσ(1, 2) = Un−σδ(1− 2) + UGσ(1, 2)Γ
ir
σσ′(2, 2; 4, 5)χσ′−σ(4, 5; 1) (27)

which is proven in Appendix B.

The diagrammatic representation of these two equations (26, 27) appearing in Figure 1 may
make them look more familiar. Despite this diagrammatic representation, we stress that this
is only for illustrative purposes. The rest of our discussion will not be diagrammatic.
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Because of the spin-rotational symmetry the above equations (26, 27) can be decoupled into
symmetric (charge) and antisymmetric (spin) parts, by introducing spin and charge irreducible
vertices and generalized susceptibilities:

Γch ≡ Γir
↑↓ + Γir

↑↑ ; Γsp ≡ Γir
↑↓ − Γir

↑↑ (28)

χch ≡ 2(χ↑↓ + χ↑↑) ; χsp ≡ 2(χ↑↑ − χ↑↓). (29)

The usual two-point susceptibilities are obtained from the generalized ones as
χsp,ch(1, 2) = χsp,ch(1, 1+; 2). The equation (26) for the generalized spin susceptibility leads to

χsp(1, 3; 2) = −2G(1, 2)G(2, 3)− Γsp(2, 3; 4, 5)G(1, 2)G(3, 3)χsp(4, 5; 2) (30)

and similarly for charge, but with the plus sign in front of the second term.
Finally, one can write the exact equation (27) for the self-energy in terms of the response

functions as

Σσ(1, 2) = Un−σδ(1− 2) +
U

4
[Γsp(2, 2; 4, 5)χsp(4, 5; 1) + Γch(2, 2; 4, 5)χch(4, 5; 1)]Gσ(1, 2). (31)

Our two key equations are thus those for the three-point susceptibilities, equation (30), and
for the self-energy, equation (31). It is clear from the derivation in Appendix B that these
equations are intimately related.

3.2. Approximations through Local Irreducible Vertices

3.2.1. Conserving Approximation for the Collective Modes. — In formulating approximation
methods for the many-body problem, it is preferable to confine our ignorance to high-order
correlation functions whose detailed momentum and frequency dependence is not singular and
whose influence on the low energy Physics comes only through averages over momentum and
frequency. We do this here by parameterizing the Luttinger-Ward functional by two constants
Γir
↑↓ and Γir

↑↑. They play the role of particle-hole irreducible vertices that are eventually deter-
mined by enforcing sum rules and a self-consistency requirement at the two-particle level. In
the present context, this functional can be also considered as the interacting part of a Landau
functional. The ansatz is

Φ [G] =
1

2
Gσ

(
1, 1

+
)

Γir
σσGσ

(
1, 1

+
)

+
1

2
Gσ

(
1, 1

+
)

Γir
σ−σG−σ

(
1, 1

+
)
. (32)

As in every conserving approximation, the self-energy and irreducible vertices are obtained from
functional derivatives as in equations (24, 25) and then the collective modes are computed from
the Bethe-Salpeter equation (30). The above Luttinger-Ward functional gives a momentum
and frequency independent self-energy [43], that can be absorbed in a chemical potential shift.
From the Luttinger-Ward functional, one also obtains two local particle-hole irreducible vertices
Γir
σσ and Γir

σ−σ

Γir
σσ(2, 3; 4, 5) ≡

δΣσ(2, 3)

δGσ′(4, 5)
= δ(2− 5)δ(3− 4)δ(4+ − 5)Γir

σσ′ · (33)

We denote the corresponding local spin and charge irreducible vertices as

Usp ≡ Γir
σ−σ − Γir

σσ; Uch ≡ Γir
σ−σ + Γir

σσ · (34)

Notice now that there are only two equal-time, equal-point (i.e. local) two-particle correlation
functions in this problem, namely 〈n↑n↓〉 and 〈n2

↑〉 = 〈n2
↓〉 = 〈n↓〉 = n/2. The last one is
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completely determined by the Pauli principle and by the known filling factor, while U〈n↑n↓〉
is the expectation value of the interaction term in the Hamiltonian. Only one of these two
correlators, namely U〈n↑n↓〉, is unknown. Assume for the moment that it is known. Then,
we can use the two sum rules (Eqs. (A.15, A.14)) that follow from the fluctuation-dissipation
theorem and from the Pauli principle to determine the two trial irreducible vertices from the
known value of this one key local correlation functions. In the present notation, these two sum
rules are

χch

(
1, 1+

)
=

T

N

∑
q

∑
iqn

χch(q, iqn) = 〈n↑〉+ 〈n↓〉+ 2 〈n↑n↓〉 − n
2 (35)

χsp

(
1, 1+

)
=

T

N

∑
q

∑
iqn

χsp(q, iqn) = 〈n↑〉+ 〈n↓〉 − 2 〈n↑n↓〉 (36)

and since the spin and charge susceptibilities entering these equations are obtained by solving
the Bethe-Salpeter equation (30) with the constant irreducible vertices equations (33, 34) we
have one equation for each of the irreducible vertices

n+ 2〈n↑n↓〉 − n
2 =

T

N

∑
q

χ0(q)

1 + 1
2Uchχ0(q)

, (37)

n− 2〈n↑n↓〉 =
T

N

∑
q̃

χ0(q)

1− 1
2Uspχ0(q)

· (38)

We used our usual short-hand notation for wave vector and Matsubara frequency q = (q, iqn).
Since the self-energy corresponding to our trial Luttinger-Ward functional is constant, the
irreducible susceptibilities take their non-interacting value χ0(q).

The local Pauli principle 〈n2
↓〉 = 〈n↓〉 leads to the following important sum-rule

T

N

∑
q

∑
iqn

[χsp(q, iqn) + χch(q, iqn)] = 2n− n2, (39)

which can be obtained by adding equations (38, 37). This sum-rule implies that effective
interactions for spin Usp and charge Uch channels must be different from one another and hence
that ordinary RPA is inconsistent with the Pauli principle (for details see Appendix A.3).

Equations (37, 38) determine Usp and Uch as a function of double occupancy 〈n↑n↓〉. Since
double occupancy is a local quantity it depends little on the size of the system. It could be
obtained reliably from a number of approaches, such as for example Monte Carlo simulations.
However, there is a way to obtain double-occupancy self-consistently [29] without input from
outside of the present theory. It suffices to add to the above set of equations the relation

Usp = g↑↓(0)U ; g↑↓(0) ≡
〈n↑n↓〉

〈n↓〉〈n↑〉
· (40)

Equations (38, 40) then define a set of self-consistent equations for Usp that involve only
two-particle quantities. This ansatz is motivated by a similar approximation suggested by
Singwi et al. [31] in the electron gas, which proved to be quite successful in that case. On
a lattice we will use it for n ≤ 1. The case n > 1 can be mapped on the latter case using
particle-hole transformation. In the context of the Hubbard model with on-site repulsion, the
physical meaning of equation (40) is that the effective interaction in the most singular spin



N◦11 NON-PERTURBATIVE APPROACH TO HUBBARD MODEL 1319

channel, is reduced by the probability of having two electrons with opposite spins on the same
site. Consequently, the ansatz reproduces the Kanamori-Brueckner screening that inhibits
ferromagnetism in the weak to intermediate coupling regime (see also below). We want to
stress, however, that this ansatz is not a rigorous result like sum rules described above. The
plausible derivation of this ansatz can be found in references [29,31] as well as, in the present
notation, in Appendix C.

We have called this approach Two-Particle Self-Consistent to contrast it with other conserv-
ing approximations like Hartree-Fock or Fluctuation Exchange Approximation (FLEX) [24]
that are self-consistent at the one-particle level, but not at the two-particle level. This ap-
proach [29] to the calculation of spin and charge fluctuations satisfies the Pauli principle
〈n2
σ〉 = 〈nσ〉 = n/2 by construction, and it also satisfies the Mermin-Wagner theorem in

two dimensions.
To demonstrate that this theorem is satisfied, it suffices to show that 〈n↑n↓〉=g↑↓ (0) 〈n↑〉〈n↓〉

does not grow indefinitely. (This guarantees that the constant C̃ appearing in Eq. (A.21) is
finite.) To see how this occurs, write the self-consistency condition (Eq. (38)) in the form

n− 2〈n↑n↓〉 =
T

N

∑
q̃

χ0(q)

1− 1
2U

〈n↑n↓〉
〈n↑〉〈n↓〉

χ0(q)
· (41)

Consider increasing 〈n↑n↓〉 on the right-hand side of this equation. This leads to a decrease of
the same quantity on the left-hand side. There is thus negative feedback in this equation that
will make the self-consistent solution finite. A more direct proof by contradiction has been
given in reference [29]: suppose that there is a phase transition, in other words suppose that
〈n↑〉 〈n↓〉 = 1

2U〈n↑n↓〉χ0(q). Then the zero-Matsubara frequency contribution to the right-
hand side of equation (41) becomes infinite and positive in two dimensions as one can see
from phase-space arguments (See Eq. (A.21)). This implies that 〈n↑n↓〉 on the left-hand
side must become negative and infinite, but that contradicts the starting hypothesis since
〈n↑〉 〈n↓〉 =

1
2U〈n↑n↓〉χ0(q) means that 〈n↑n↓〉 is positive.

Although there is no finite-temperature phase transition, our theory shows that sufficiently
close to half-filling (see Sect. 4.3) there is a crossover temperature TX below which the system
enters the so-called renormalized classical regime, where antiferromagnetic correlations grow
exponentially. This will be discussed in detail in Section 5.1.1.

Kanamori-Brueckner screening is also included as we already mentioned above. To see how
the screening occurs, consider a case away from half-filling, where one is far from a phase
transition. In this case, the denominator in the self-consistency condition can be expanded to
linear order in U and one obtains

g↑↓ (0) =
〈n↑n↓〉

〈n↑〉 〈n↓〉
=

1

1 + ΛU
(42)

where

Λ =
2

n2

T

N

∑
q

χ0(q)
2. (43)

Clearly, quantum fluctuations contribute to the sum appearing above and hence to the renor-
malization of Usp = g↑↓ (0)U. The value of Λ is found to be near 0.2 as in explicit numerical
calculations of the maximally crossed Kanamori-Brueckner diagrams [44]. At large U , the
value of Usp = g↑↓ (0)U ∼ 1/Λ saturates to a value of the order of the inverse bandwidth
which corresponds to the energy cost for creating a node in the two-body wave function, in
agreement with the Physics described by Kanamori [2].
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Fig. 2. — Dependence on U of the charge and spin effective interactions (irreducible vertices). The
temperature is chosen so that for all U , it is above the crossover temperature. In this case, temperature
dependence is not significant. The filling is n = 1.

Fig. 3. — Crossover temperature at half-filling as function of U compared with the mean-field tran-
sition temperature.

To illustrate the dependence of Usp, Uch on bare U we give in Figure 2 a plot of these
quantities at half-filling where the correlation effects are strongest. The temperature for this
plot is chosen to be above the crossover temperature TX to the renormalized classical regime,
in which case the dependence of Usp and Uch on temperature is not significant. As one can
see, Usp rapidly saturates to a fraction of the bandwidth, while Uch rapidly increases with U ,
reflecting the tendency to the Mott transition. We have also shown previously in Figure 2
of reference [29] that Usp depends only weakly on filling. Since Usp saturates as a function
of U due to Kanamori-Brueckner screening, the crossover temperature TX also saturates as a
function of U . This is illustrated in Figure 3 along with the mean-field transition temperature
that, by contrast, increases rapidly with U.

Quantitative agreement with Monte Carlo simulations on the nearest-neighbor [29] and next-
nearest-neighbor models [34] is obtained [29] for all fillings and temperatures in the weak to
intermediate coupling regime U < 8t. This is discussed further below in Section 4. We have also
shown that the above approach reproduces both quantum-critical and renormalized-classical
regimes in two dimensions to leading order in the 1/n expansion (spherical model) [33].

As judged by comparisons with Monte Carlo simulations [45], the particle-particle channel
in the repulsive two-dimensional Hubbard model is relatively well described by more standard
perturbative approaches. Although our approach can be extended to this channel as well,
we do not consider it directly in this paper. It manifests itself only indirectly through the
renormalization of Usp and Uch that it produces.

3.2.2. Single-Particle Properties. — As in any implementation of conserving approximations,
the initial guess for the self-energy, Σ(0), obtained from the trial Luttinger-Ward functional



N◦11 NON-PERTURBATIVE APPROACH TO HUBBARD MODEL 1321

is inconsistent with the exact self-energy formula (Eq. (31)). The latter formula takes into
account the feedback of the spin and charge collective modes actually calculated from the
conserving approximation. In our approach, we use this self-energy formula (Eq. (31)) in an
iterative manner to improve on our initial guess of the self-energy. The resulting formula for an
improved self-energy Σ(1) has the simple physical interpretation of paramagnon theories [46].

As another way of Physically explaining this point of view, consider the following: the bosonic
collective modes are weakly dependent on the precise form of the single-particle excitations, as
long as they have a quasiparticle structure. In other words, zero-sound or paramagnons exist,
whether the Bethe-Salpeter equation is solved with non-interacting particles or with quasipar-
ticles. The details of the single-particle self-energy by contrast can be strongly influenced by
scattering from collective modes because these bosonic modes are low-lying excitations. Hence,
we first compute the two-particle propagators with Hartree-Fock single-particle Green’s func-
tions, and then we improve on the self-energy by including the effect of collective modes on
single-particle properties. The fact that collective modes can be calculated first and self-energy
afterwards is reminiscent of renormalization group approaches [8, 47], where collective modes
are obtained at one-loop order while the non-trivial self-energy comes out only at two-loop
order.

The derivation of the general self-energy formula (Eq. (31)) given in Appendix B shows
that it basically comes from the definition of the self-energy and from the equation for the
collective modes (Eq. (30)). This also stands out clearly from the diagrammatic representation
in Figure 1. By construction, these two equations (Eqs. (30, 31)) satisfy the consistency
requirement 1

2Tr ΣG = U 〈n↑n↓〉 (see Appendix B), which in momentum and frequency space
can be written as

lim
τ→0−

T

N

∑
k

Σσ(k)Gσ(k)e
−iknτ = U 〈n↑n↓〉 · (44)

The importance of the latter sum rule, or consistency requirement, for approximate theories
should be clear from the appearance of the correlation function 〈n↑n↓〉 that played such an im-
portant role in determining the irreducible vertices and in obtaining the collective modes. Using
the fluctuation dissipation theorem (Eqs. (36, 35)) this sum-rule can be written in form that
explicitly shows the relation between the self-energy and the spin and charge susceptibilities

T

N

∑
k

[Σσ(k)− Un−σ]Gσ(k) =
U

4

T

N

∑
q

[χch(q)− χsp(q)] . (45)

To keep as much as possible of this consistency, we use on the right-hand side of the self-energy
expression (Eq. (31)) the same irreducible vertices and Green’s functions as those that appear
in the collective-mode calculation (Eq. (30)). Let us call G(0) the initial Green’s function
corresponding to the initial Luttinger-Ward self-energy Σ(0). Our new approximation for the
self-energy Σ(1) then takes the form

Σ(1)
σ (k) = Un−σ +

U

4

T

N

∑
q

[Uspχsp(q) + Uchχch(q)]G(0)
σ (k + q). (46)

Note that Σ
(1)
σ (k) satisfies particle-hole symmetry (Eq. (12)) where appropriate. This self-

energy expression (Eq. (46)) is physically appealing since, as expected from general skeleton
diagrams, one of the vertices is the bare one U , while the other vertex is dressed and given
by Usp or Uch depending on the type of fluctuation being exchanged. It is because Migdal’s
theorem does not apply for this problem that Usp and Uch are different from the bare U at one
of the vertices. Usp and Uch here take care of vertex corrections [48].
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The use of the full Gσ(k+q) instead of G0
σ(k+q) in the above expression (Eq. (46)) would be

inconsistent with frequency-independent irreducible vertices. For the collective mode (Eq. (30))
this is well known to lead to the violation of the conservation laws as was discussed in detail in
the previous subsection. Here we insist that the same is true in the calculation of the effect of
electronic collective modes on the single-particle properties. Formally, this is suggested by the
similarity between the equation for the susceptibility (Eq. (30)) and that for the self-energy
(Eq. (31)) in terms of irreducible vertices. More importantly, two physical effects would be
absent if one were to use full G and frequency independent irreducible vertices. First, upper
and lower Hubbard bands would not appear because the U2/ω high-frequency behavior in
equation (68) that is necessary to obtain the Hubbard bands would set in too late, as we discuss
in Sections 1.2 and 6.1. This result is also apparent from the fact that FLEX calculations in
infinite dimension do not find upper and lower Hubbard bands [49] where the exact numerical
solution does. The other physical effect that would be absent is precursors of antiferromagnetic
bands, Section 5 and the pseudogap in A(kF, ω), that would not appear for reasons discussed
in Section 6. We also will see in Section 4 below that FLEX calculations of the single-particle
Green’s function, significantly disagree with Monte Carlo data, even away from half-filling, as
was already shown in Figure 1 of reference [30].

The chemical potential for interacting electrons µ is found from the usual condition on
particle number

n =
T

N

∑
k

G(1)
σ (k) exp(−ikn0−) =

T

N

∑
k

exp(−ikn0−)

iωn − εk + µ(1) − Σ(1)(k, kn)
· (47)

This chemical potential µ is, of course, different from µ0 but the Luttinger sum rule∑
θ(−εk + µ − Σ(1)) = nσ is satisfied to a high accuracy (about few percent) for all fill-

ings and temperatures TX ≤ T � W . As usual this occurs because the change in µ(1) − µ0

is compensated by the self-energy shift on the Fermi surface Σ(1)(kF, 0). For T < TX there is
some deviation from the Luttinger sum rule which is due to the appearance of the precursors of
the antiferromagnetic bands below TX (Sect. 5) which develop into true SDW bands at T = 0.

It is important to realize that G(0) on the right hand side of the equation for the self-energy
Σ cannot be calculated as G(0) = 1/(ω − εk + µ(1)), because otherwise it would not reduce to
zero-temperature perturbation theory when it is appropriate. As was pointed out by Luttinger,
(see also Sect. A.4) the “non-interacting” Green’s function used in the calculation for Σ should
be calculated as G(0) = 1/(ω−εk−Σ(n)(kF, 0)+µ(n)), where µ(n) is calculated on the same level
of accuracy as Σ(n)(kF, 0), i.e. from equation (47) with Σ(n)(k, ikn). In our calculation below,
we approximate µ(1) − Σ(1)(kF, 0) by µ0 because for the coupling strength and temperatures
considered in this paper (U ≤W/2 , TX ≤ T �W ) the Luttinger theorem is satisfied to high
accuracy and the change of the Fermi surface shape is insignificant. In addition, at half-filling
the condition µ − Σ(kF, 0) = µ0 is satisfied exactly at any U and T because of particle-hole
symmetry. For somewhat larger coupling strengths and away from half-filling, one may try to
improve the theory by using G(0) = 1/(ω − εk − Σ(1)(kF, 0) + µ(1)), with Σ(1) and µ found
self-consistently. However, the domain of validity of our approach is limited to the weak-to-
intermediate coupling regime since the strong-coupling regime requires frequency-dependent
pseudopotentials (see below).

Finally, let us note that, in the same spirit as Landau theory, the only vertices entering
our theory are of the type Γ↑↓ and Γ↑↑, or, through equation (34), Usp and Uch. In other
words, we look at the problem from the longitudinal spin and charge particle-hole channel.
Consequently, in the contact pseudopotential approximation the exact equation for the self-
energy (Eq. (31)) reduces to our expression (Eq. (46)) which does not have the factor 3 in
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the front of the spin susceptibility. This is different from some paramagnon theories, in which
such factor was introduced to take care of rotational invariance. However, we show in Ap-
pendix E.1 that these paramagnon theories are inconsistent with the sum-rule (Eq. (45)) which
relates one and two-particle properties. In our approach, questions about transverse spin fluc-
tuations are answered by invoking rotational invariance χxxsp = χyysp = χzzsp . In particular, one
can write the expression for the self-energy (Eq. (46)) in an explicitly rotationally invariant
form by replacing χsp by (1/3)Tr[χννsp ]. If calculations had been done in the transverse channel,
it would have been crucial to do them while simultaneously enforcing the Pauli principle in
that channel. In functional integration methods, it is well known that methods that enforce
rotational invariance without enforcing the Pauli principle at the same time give unphysical
answers, such as the wrong factor 2/3 in the RPA susceptibility [23] χsp = χ0/(1− (2/3)Uχ0)
or wrong Hartree-Fock ground state [50].

3.2.3. Internal Accuracy Check. — The quantitative accuracy of the theory will be discussed in
detail when we compare with Monte Carlo calculations in the next section. Here we show that
we can use the consistency requirement between one- and two-particle properties (Eq. (44)) to
gauge the accuracy of the theory from within the theory itself.

The important advantage of the expression for the self-energy Σ
(1)
σ (k) given by equation (46)

is that, as shown in Appendix (B), it satisfies the consistency requirement between one- and
two-particle properties (Eq. (44)), in the following sense

lim
τ→0−

T

N

∑
k

Σ(1)
σ (k)G(0)

σ (k)e−iknτ = U 〈n↑n↓〉 · (48)

Let G
(1)
σ be defined by [G

(1)
σ ]−1 ≡ G−1

0 −Σ(1). We can use the fact that in an exact theory we

should have Tr[Σ
(1)
σ G

(1)
σ ] in the above expression instead of Tr[Σ

(1)
σ G

(0)
σ ] to check the accuracy

of the theory. It suffices to compute by how much Tr[Σ
(1)
σ G

(0)
σ ] differs from Tr[Σ

(1)
σ G

(1)
σ ]. In

the parameter range U < 4t and n, T arbitrary but not too deep in the, soon to be described,

renormalized-classical regime, we find that Tr[Σ
(1)
σ G

(0)
σ ] differs from Tr[Σ

(1)
σ G

(1)
σ ] by at most

15%. Another way to check the accuracy of our approach is to evaluate the right-hand side of

the f -sum rule (Eqs. (A.22)) with nkσ = G
(1)
σ (k, 0−) and to compare with the result that had

been obtained with fk,σ. Again we find the same 15% disagreement, at worse, in the same
parameter range. As one can expect, this deviation is maximal at half-filling and becomes
smaller away from it.

Equation (46) for the self-energy Σ(1) already gives good agreement with Monte Carlo data
but the accuracy can be improved even further by using the general consistency condition

(Eq. (44)) on Tr[Σ
(1)
σ G

(1)
σ ] to improve on the approximation for vertex corrections. To do so

we replace Usp and Uch on the right-hand side of equation (46) by αUsp and αUch with α

determined self-consistently in such a way that equation (48) is satisfied with G
(0)
σ (k) replaced

by G
(1)
σ (k). For U < 4, we have α < 1.15. The slight difference between the irreducible vertices

entering the collective modes and the vertex corrections entering the self-energy formula can
be understood from the fact that the replacement of irreducible vertices by constants is, in
a way, justified by the mean-value theorem for integrals. Since the averages are not taken
over the same variables, it is clear that the vertex corrections in the self-energy formula and
irreducible vertices in the collective modes do not need to be strictly identical when they are
approximated by constants.

Before we move on to comparisons with Monte Carlo simulations, we stress that Σ(1) given
by equation (46) cannot be substituted back into the calculation of χsp,ch by simply replacing
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χ0 = G0G0 with the dressed bubble χ̃0 = GG. Indeed, this would violate conservation of
spin and charge and f -sum rule. In particular, the condition χsp,ch(q = 0, iqn 6= 0) = 0 that
follows from the Ward identity (A.28) would be violated as we see in equation (A.23). In the
next order, one is forced to work with frequency-dependent irreducible vertices that offset the
unphysical behavior of χ̃0 at non-zero frequencies.

4. Numerical Results and Comparisons with Monte Carlo Simulations

In this section, we present a few numerical results and comparisons with Monte Carlo simu-
lations. We divide this section in two parts. In the first one we discuss data sufficiently far
from half-filling, or at high enough temperature, where size effects are unimportant for systems
sizes available in Monte Carlo simulations. In the second part, we discuss data at half-filling.
There, size effects become important below the crossover temperature TX where correlations
start to grow exponentially (Sect. 5). All single-particle properties are calculated with our
approximation (Eq. (46)) for the self-energy using the vertex renormalization α explained in
the previous section. The results would differ at worse by 15% if we had used α = 1.

4.1. Far from the Crossover Temperature TX

4.1.1. Two-Particle Properties. — We have shown previously in Figures 4a-d of reference [29]
and in Figures 2-4 and Figure 6 of reference [34] that both spin and charge structure factor
sufficiently away from the crossover temperature TX are in quantitative agreement with Monte
Carlo data for values of U as large as the bandwidth. On the qualitative level, the decrease in
charge fluctuations as one approaches half-filling has been explained [29] as a consequence of
the Pauli principle embodied in the calculation of the irreducible vertex Uch [51].

Here we present in Figures 4 and 5 comparisons with a dynamical quantity, namely the spin
susceptibility. Similar comparisons, but with a phenomenological value of Usp, have been done
by Bulut et al. [52]. Figure 4 shows the staggered spin susceptibility as a function of Matsubara
frequencies for n = 0.87, T = 0.25 and U = 4. The effect of interactions is already quite large
for the zero-frequency susceptibility. It is enhanced by a factor of over 5 compared with the
non-interacting value. Nevertheless, one can see that the theory and Monte Carlo simulations
are in good agreement.

Figure 5 shows the temperature dependence of the zero-frequency staggered spin susceptibil-
ity for the same filling and interaction as in the previous figure. Symbols represent Monte Carlo
simulations from references [53, 99], the solid line is for our theory while dotted and dashed
lines are for two versions of FLEX. Surprisingly, the fully conserving FLEX theory, (dashed
line) compares worse with Monte Carlo data than the non-conserving version of this theory
that neglects the so-called Aslamasov-Larkin diagrams (dotted line). By contrast, our theory
is in better agreement with the Monte Carlo data than FLEX for the staggered susceptibility
χsp (q = (π, π) , iωn = 0), and at the same time it agrees exactly with the conservation law that
states that χsp,ch(q = 0, iωn 6= 0) = 0.

Finally, Figure 6 shows the double occupancy 〈n↑n↓〉 as a function of filling for various
values of U . The symbols again represent Monte Carlo data for T = 1/6, and the lines are
the results of our theory. Everywhere the agreement is very good, except for n = 1, U = 4. In
the latter case, the system is already below the crossover temperature TX to the renormalized
classical regime. As explained in Section 7, the appropriate procedure for calculating double
occupancy in this case is to take for 〈n↑n↓〉 its value (dotted line) at TX instead of using the
ansatz equation (40). In any case, the difference is not large.
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Fig. 4. — Comparisons between Monte Carlo simulations [99] and our theory for the spin susceptibility
at Q = (π, π) as a function of Matsubara frequency. The temperature is T = 0.25, and the system
size 8× 8. The factor 1/2 on the vertical axis is due to the fact that the susceptibility in [99] is χ+−

a quantity that is by definition twice smaller then ours and that of [53].

Fig. 5. — Comparisons between the Monte Carlo simulations (BW) and FLEX calculations presented
in Figure 19 of reference [53] and our theory for the spin susceptibility at Q = (π, π) as a function of
temperature at zero Matsubara frequency. The filled circles (BWS) are from reference [99].
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of filling and for various values of U except for U = 4 where the dotted line shows the results of our
theory at the crossover temperature T = TX.
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4.1.2. Single-Particle Properties. — Figure 1a of reference [30] shows G (k, τ) for filling
n = 0.875, temperature T = 0.25 and U = 4 for the wave vector on the 8× 8 lattice which is
closest to the Fermi surface, namely (π, 0). Our theory is in agreement with Monte Carlo data
and with the parquet approach [53] but in this regime second-order perturbation theory for the
self-energy gives the same result. Surprisingly, FLEX is the only theory that disagrees signifi-
cantly with Monte Carlo data. The good performance of perturbation theory (see also [54]) can
be explained in part by compensation between the renormalized vertices and susceptibilities
(Usp < U , χsp(q) > χ0(q); Uch > U , χch(q) < χ0(q)).

We have also calculated Re(Σ (ikn) /ikn) and compared with the Monte Carlo data in Fig-
ure 2a of reference [52] obtained at n = 0.87, U = 4, β = 6. Our approach agrees with Monte
Carlo data for all frequencies, but again second-order perturbation theory gives similar results.

4.2. Close to Crossover Temperature TX at Half-Filling

4.2.1. Two-Particle Properties. — The occurrence of the crossover temperature TX at half-
filling is perhaps best illustrated in the upper part of Figure 7 by the behavior of the static
structure factor Ssp (π, π) for U = 4 as a function of temperature. When the correlation length
becomes comparable to the size of the system used in Monte Carlo simulations [55], the static
structure factor starts to increase rapidly, saturating to a value that increases with system
size. The solid line is calculated from our theory for an infinite lattice. The Monte Carlo
data follow our theoretical curve (solid line) until they saturate to a size-dependent value.
The theory correctly describes the static structure factor not only above TX but also as we
enter the renormalized classical regime at TX. Analytical results for this regime are given in
Section 5.1.1. Note that the RPA mean-field transition temperature for this value of U is more
than three times larger than TX ∼ 0.2. The size-dependence of Monte Carlo data for Ssp (q)
at all other values of q 6=(π, π) available in simulations is negligible and our calculation for
infinite system reproduces this data (not shown).

4.2.2. Single-Particle Properties. — Equal-time (frequency integrated) single-particle proper-
ties are much less sensitive to precursor effects than dynamical quantities as we now proceed to
show. For example, n (k) = G (k, 0−) is a sum of G (k, ikn) over all Matsubara frequencies. We
have verified (figure not shown) that 1

N

∑
kσ nkσ∂

2εk/∂k
2
x obtained from Monte Carlo simula-

tions [56] is given quite accurately by either second-order perturbation theory or by our theory.
This has very important consequences since, for this quantity, the non-interacting value differs
from second-order perturbation theory by at most 15%. This means that the numerical value
of the right-hand side of the f sum-rule (Eq. (A.22)) is quite close to that obtained from the
left-hand side using our expression for the spin and charge susceptibility.

One can also look in more details at n (k) itself instead of focusing on a sum rule. Figure 8
shows a comparison of our theory and of second order perturbation theory with Monte Carlo
data for n (k) obtained for a set of lattice sizes from 6× 6 to 16× 16 at n = 1, T = 1/6, U = 4.
Size effects appear unimportant for this quantity at this temperature. These Monte Carlo data
have been used in the past [57] to extract a gap by comparison with mean field SDW theory.
Our theory for the same set of lattice sizes is in excellent agreement with Monte Carlo data
and predicts a pseudogap at this temperature, as we will discuss below. However, for available
values of k on finite lattices, second order perturbation theory is also in reasonable agreement
with Monte Carlo data for n (k). Since second order perturbation theory does not predict a
pseudogap, this means that n (k) is not really sensitive to the opening of a pseudogap. This
is so both because of the finite temperature and because the wave vectors closest to the Fermi
surface are actually quite far on the appropriate scale. For this filling, the value of n (k) is
fixed to 1/2 on the Fermi surface itself.
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Fig. 7. — The upper part of the figure, adapted from reference [29], shows the temperature dependence
of Ssp(π, π) at half-filling n = 1. The solid line is our theory for an infinite system while symbols are
Monte Carlo data from reference [56]. The bottom part of the figure, adapted from reference [30],

shows the behavior of ˜z(T ) = −2G(kF, β/2) in equation (49), as a function of temperature as obtained
from Monte Carlo [53] simulations (symbols), from second order pertrubation theory (dashed line) and
from our theory for an infinite system (solid line) and for a 16× 16 lattice (dashed line).

It is thus necessary to find a dynamical quantity defined on the Fermi surface whose tem-
perature dependence will allow us to unambiguously identify the pseudogap regime in both
theory and in Monte Carlo data. The most dramatic effect is illustrated in the lower part of
Figure 7 where we plot the quantity z̃ (T ) defined by [30,58]

z̃ (T ) = −2G (kF, β/2) =

∫
dω

2π

A (kF, ω)

cosh (βω/2)
· (49)

The physical meaning of this quantity z̃ (T ) is that it is an average of the single-particle
spectral weight A (kF, ω) within T ≡ 1/β of the Fermi level (ω = 0). When quasiparticles
exist, this is the best estimate of the usual zero-temperature quasiparticle renormalization
factor z ≡ 1/(1 − ∂Σ/∂ω) that can be obtained directly from imaginary-time Monte Carlo
data. For non-interacting particles z̃ (T ) is unity. For a normal Fermi liquid it becomes equal
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to a constant less than unity as the temperature decreases since the width of the quasiparticle
peak scales as T 2 and hence lies within T of the Fermi level. However, contrary to the usual
z ≡ 1/(1− ∂Σ/∂ω) this quantity gives an estimate of the spectral weight A (kF, ω) around the
Fermi level, even if quasiparticles disappear and a pseudogap forms, as in the present case, (see
Sect. 5).

One can clearly see from the lower part of Figure 7 that while second-order perturbation
theory exhibits typical Fermi-liquid behavior for z̃ (T ), both Monte Carlo data [53] and a
numerical evaluation of our expression for the self-energy lead to a rapid fall-off of z̃ (T ) below
TX (for U = 4, TX ≈ 0.2 [29]). The rapid decrease of z̃ (T ) clearly suggests non Fermi-liquid
behavior. We checked also that our theory reproduces the Monte Carlo size-dependence. This
dependence is explained analytically in Section 5.1.2. In reference [30] we have shown that at
half-filling, our theory gives better agreement with Monte Carlo data [53] for G (kF, τ) than
FLEX, parquet or second order perturbation theory.

To gain a qualitative insight into the meaning of this drop in z̃ (T ), we use the analytical
results of the next section to plot in Figure 9 the value of A (kF, ω). This plot is obtained by
retaining only the contribution of classical fluctuations (Eq. (59)) to the self-energy. One sees
that above TX, there is a quasiparticle but that at T ∼ TX a minimum instead of a maximum
starts to develop at the Fermi surface ω = 0. Below TX, the quasiparticle maximum is replaced
by two peaks that are the precursors of antiferromagnetic bands. This is discussed in detail in
much of the rest of this paper.

4.3. Phase Diagram. — The main features predicted by our approach for the magnetic phase
diagram of the nearest-neighbor hopping model have been given in reference [29]. Needless to
say, all our considerations apply in the weak to intermediate coupling regime. Note also that
both quantum critical and renormalized classical properties of this model have been studied
in another publication [33]. The shape of the phase diagram that we find is illustrated in
Figure 10 for U = 2.5 and U = 4.
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Fig. 9. — Qualitative sketch of the spectral weight at the Fermi wave vector at half-filling for three
temperatures. This plot is obtained by retainig only the classical contribution to the self-energy using
parameters corresponding to the typical U = 4 of Monte Carlo simulations. The top plot is for T > TX,
the middle one for T ∼ TX and the bottom one for T < TX. The precursors of antiferromagnetic bands
would look like this last figure.

Fig. 10. — Crossover temperature TX as a function of filling for U = 4 and U = 2.5. On this crossover
line, ξ2 is enhanced by a factor of 500 over the bare value. Filled symbols indicate that the crossover is
at the antiferromagnetic wave vector, while open symbols indicate a crossover at an incommensurate
wave vector. Reproduced with permission from reference [100].

At zero temperature and small filling, the system is a paramagnetic Fermi liquid, whatever
the value of the interaction U (< W ). Then, as one moves closer to half-filling, one hits a quan-
tum critical point at a value of filling nc. Since, Usp in our theory saturates with increasing U ,
the value of nc is necessarily larger than about nc(U =∞) = 0.68. At this point, incommensu-
rate order sets in at a wave vector (qc, π) or at symmetry-related points. Whatever the value
of U , the value of qc is contained [29] in the interval 0.74π < qc ≤ π, increasing monotonously
towards 0.74π as U increases. Since our approach applies only in the paramagnetic phase, at
zero temperature we cannot move closer to half-filling. Starting from finite-temperature then,
the existence of long-range order at low temperature is signaled by the existence of a crossover
temperature TX (n,U) below which correlations start to grow exponentially. We have already
discussed the meaning of TX (n,U) at half-filling. This crossover temperature becomes smaller
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and smaller as one moves away from half-filling, until it reaches the quantum-critical point
that we just discussed. The correlations that start to grow at TX (n,U) when n = 1 are at
the antiferromagnetic wave vector, and they stay at this wave vector for a range of fillings n.
Finally, at some filling, the correlations that start to grow at TX (n,U) are at an incommensu-
rate value until the quantum-critical point is reached.

Note that the above phase diagram is quite different from the predictions of Hartree-Fock
theory mostly because of the strong renormalization of Usp. This quantitative change leads
to qualitative changes in the Hartree-Fock phase diagram since, for example, Stoner ferro-
magnetism never occurs in our picture. While the existence of ferromagnetism in the strong
coupling limit has been proven only recently [59], the absence of Stoner ferromagnetism in
the Hubbard model was already suggested by Kanamori [2] a long time ago and was verified
by more recent studies [44, 60, 61]. More relevant to the present debate though, is the fact
that SDW order persists away from half-filling for a finite range of dopings. While this is
in agreement with slave-boson approaches [62] and studies [63] using the infinite-dimension
methodology [11], it is in clear disagreement with Monte Carlo simulations [64]. Our approach
certainly fails sufficiently below TX, but given the successes described above, we believe that it
can correctly predict the exponential growth of fluctuations at TX. It would be difficult to imag-
ine how one could modify the theory in such a way that the growth of magnetic fluctuations
does not occur even at incommensurate wave vectors. Also, such an approach would also need
to stop the growth of fluctuations that we find as we approach the quantum critical point along
the zero temperature axis, from the low-filling, paramagnetic side, where TX (n < nc, U) = 0.

It could be that Monte Carlo simulations [64] fail to see long-range order at zero temperature
away from half-filling because at zero temperature, in the nearest-neighbor model, this order
has a tendency to being incommensurate everywhere except at n = 1. Furthermore, as we saw
above, this incommensuration is in general far from one of the available wave vectors on an
8 × 8 lattice. It comes close to (0.75π, π) only for the largest values of U available by Monte
Carlo. Hence, incommensurate order on small lattices is violently frustrated not only by the
boundary conditions, but also by the fact that there is no wave vector on what would be the
Fermi surface of the infinite system. This means that the electron-electron interaction scatters
the electrons at wave-vectors that are not those where the instability would show up, rendering
these scatterings not singular. This is clearly an open problem.

5. Replacement of Fermi Liquid Quasiparticles by a Pseudogap in Two Dimensions
below TX

One of the most striking consequences of the results discussed in the context of Monte Carlo
simulations is the fall of the spectral weight below the temperature TX where antiferromag-
netic fluctuations start to grow exponentially in two dimensions. We have already shown in a
previous publication [30] that this corresponds to the disappearance of Fermi liquid quasipar-
ticles at the Fermi surface, well above the zero temperature phase transition. We also found
that, simultaneously, precursors of the antiferromagnetic bands develop in the single-particle
spectrum. Given the simplicity of our approach, it is possible to demonstrate this phenomenon
analytically. This is particularly important here because size effects and statistical errors make
numerical continuation of the Monte Carlo data to real frequencies particularly difficult. Such
analytic continuations using the maximum entropy method [55] have, in the past, lead to a
conclusion different from the one obtained later using singular value decomposition [65].

In this section then, we will consider the conditions for which Fermi liquid quasiparticles can
be destroyed and replaced by a pseudogap in two dimensions. The major part of this section
will be concerned with the single particle pseudogap and the precursors of antiferromagnetic



N◦11 NON-PERTURBATIVE APPROACH TO HUBBARD MODEL 1331

bands in the vicinity of the zero temperature antiferromagnetic phase transition in the positive
U Hubbard model. However, it is well known that the problem of superconductivity is formally
related to the problem of antiferromagnetism, in particular at half-filling where the nearest-
neighbor hopping positive U Hubbard model maps exactly onto the nearest-neighbor negative
U Hubbard model. The corresponding canonical transformation maps the q =(π, π) spin cor-
relations of the repulsive model onto the q = 0 pairing and q = (π, π) charge correlations of the
attractive model while the single-particle Green’s functions of both models are identical. Thus
all our results below concerning the opening of the pseudogap in A (kF, ω) in the repulsive
U half-filled Hubbard model are directly applicable to the attractive U model at half-filling,
the only difference being in the physical interpretation. While in the case of repulsive inter-
action the pseudogap is due to the critical thermal spin fluctuation, in the case of attractive
interactions it is, obviously, due to the critical thermal pairing and charge fluctuations. Away
from half-filling the mapping between two models is more complicated and the single particle
spectra in the pairing pseudogap regime A (kF, ω) have important qualitative differences with
the single particle spectra in the magnetic pseudogap regime. However, even in this case there
are very useful formal similarities between two problems so that in Section 5.6 we will give
some simple analytical results for the self-energy in the regime dominated by critical pairing
fluctuations.

The problem of precursor effects in the repulsive Hubbard model has been first studied by
Kampf and Schrieffer [35]. Their analysis however was done at zero temperature and although
the precursor effect that they found, called “shadow bands”, looks similar to what we find,
there are a number of important differences. For example, they find a quasiparticle between the
precursors of antiferromagnetic bands, while we do not. Also, one does not obtain precursors at
zero temperature when one uses our more standard expression for the dynamical susceptibility
instead of the phenomenological form χK Shr = f(q)g(ω) that they use. The physical reason
why a function that is separable in both momentum and frequency, such as χK Shr, leads to
qualitatively different results than the conventional one has been explained in reference [36].
The microscopic justification for χK Shr is unclear. We comment below on this problem as well
as on some of the large related literature that has appeared lately.

Repeating some of the arguments of reference [30], we first show by general phase space
arguments that the feedback of antiferromagnetic fluctuations on quasiparticles has the po-
tential of being strong enough to destroy the Fermi liquid only in low enough dimension, the
upper critical dimension being three. Then we go into more detailed analysis to give explicit
analytic expressions for the quasi-singular part of the self-energy, first in Matsubara frequency.
The analysis of the self-energy expression directly in real-frequencies is in Appendix (D). The
latter analysis is useful to exhibit in the same formalism both the Fermi liquid limit and the
non-Fermi liquid limit.

For simplicity we give asymptotics for n = 1 at the Fermi wave vector, where ε(kF) = 0,
but similar results apply for n 6= 1 as long as there is long-range order at T = 0 and one is
below TX. This case is also discussed briefly, but for more details the reader is referred to
reference [36].

5.1. Upper Critical Dimension for the Destruction of Quasiparticles by

Critical Fluctuations. — Before describing the effect of spin fluctuations on quasipar-
ticles, we first describe the so-called renormalized classical regime of spin fluctuations that
precedes the zero-temperature phase transition in two dimensions.

5.1.1. Renormalized Classical Regime of Spin Fluctuations. — The spin susceptibility χsp (q, 0)
below TX is almost singular at the antiferromagnetic wave vector Q2 = (π, π) because
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the energy scale δU ≡ Umf,c − Usp (Umf,c ≡ 2/χ0(Q, 0)) associated with the proximity to
the SDW instability becomes exponentially small [29]. This small energy scale, δU � T , leads
to the so-called renormalized classical regime for the fluctuations [66]. In this regime, the
main contribution to the sum over Matsubara frequencies entering the local-moment sum rule
(Eq. (38)) comes from iqn = 0 and wave vectors (q−Q)

2 ≤ ξ−2 near Q. Approximating
χsp (q, 0) by its asymptotic form

χsp(q, 0) ≈
1

Uspξ
2
0

2

((q−Qd)
2

+ ξ−2)
(50)

where Q2 = (π, π), Q3 = (π, π, π) and

ξ2
0 ≡

−1

2χ0(Q)

∂2χ0 (q)

∂q2
x

∣∣∣∣
q=Qd

; ξ ≡ ξ0(Usp/δU)1/2 (51)

we obtain, in d dimensions

σ̃2 =
2T

Uspξ
2
0

∫
ddq

(2π)d
1

q2 + ξ−2
(52)

where σ̃2 ≡ n − 2〈n↑n↓〉 − C < 1 is the left-hand side of equation (38) minus corrections
C that come from the sum over non-zero Matsubara frequencies (quantum effects) and from

(q−Q)
2 � ξ−2. There is an upper cutoff to the integral which is less than or of the order of

the Brillouin zone size. The important point is that the left-hand side of the above equation
(Eq. (52)) is bounded and weakly dependent on temperature. This implies, as discussed in
detail in reference [33], that the above equation leads to critical exponents for the correlation
length that are in the spherical model (n→∞) universality class. For our purposes, it suffices
to notice that the integral converges even when ξ →∞ in more than two dimensions. This leads
to a finite transition temperature. In two dimensions, the transition temperature is pushed
down to zero temperature and, doing the integral, one is left with a correlation length ξ that
grows exponentially below TX

ξ ∼ exp

(
πσ̃2ξ2

0

Usp

T

)
· (53)

The important consequence of this is that, below TX, the correlation length quickly becomes
larger than the single-particle thermal de Broglie wave length ξth = vF/ (πT ). This has dra-
matic consequences on quasiparticles in two dimensions.

5.1.2. Effect of Critical Spin Fluctuations on Quasiparticles. — When the classical fluctuations
(iqn = 0) become critical, they also give, in two dimensions, a dominant contribution to the self-
energy at low frequency. To illustrate what we mean by the classical frequency contribution,
neglect the contribution of charge fluctuations and single out the zero Matsubara frequency
component from equation (46) to obtain

Σ (k, ikn) ≈ Un−σ +
U

4

T

N

∑
q

Uspχsp (q, 0)
1

ikn − ε̃k+q

+
U

4

T

N

∑
q

∑
iqn 6=0

Uspχsp (q, iqn)
1

ikn + iqn − ε̃k+q
· (54)

Here, ε̃k is measured relative to the chemical potential. The last term is the contribution
from quantum fluctuations. In this last term, the sum over Matsubara frequencies iqn must
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be done before the analytical continuation of ikn to real frequencies otherwise this analytical
continuation would involve going through complex plane poles of the other terms entering
the full sum over iqn. The contribution from classical fluctuations, iqn = 0, does not have
this problem and furthermore it has the correct asymptotic behavior at ikn → ∞. Hence the
contribution of classical fluctuations to the retarded self-energy ΣR (k, ω) can be obtained from
the iqn = 0 term by trivial analytical continuation ikn → ω + i0. Note also that the chemical
potential entering G(0) in the self-energy formula is µ0 = µ = 0 at half-filling.

Doing the same substitution as above for the asymptotic form of the spin susceptibility
(Eq. (50)) in the equation for the self-energy (Eq. (46)) one obtains the following contribution
to Σ from classical fluctuations

Σcl (k, ikn) ∼=
UT

2ξ2
0

∫
ddq

(2π)d
1

q2 + ξ−2

1

ikn − ε̃k+Q − q · vk+Q

, (55)

where we have expanded ε̃k+Q+q ' ε̃k+Q + q · vk+Q. In the case that we consider, namely
half-filling and k = kF, we have µ0 = µ = 0 and ε̃kF+Q = 0. The key point is again that in
two dimensions the integral in this equation (Eq. (55)) is divergent at small q for ξ = ∞. In
a Fermi liquid, the imaginary part of the self-energy at the Fermi surface (ω = 0) behaves as
Σ′′R(kF, 0) ∼ T 2. Here instead, we find a singular contribution

Σ′′R(kF, 0) ∝ T

∫
dd−1q⊥

1

q2
⊥ + ξ−2

∝ Tξ3−d (56)

that is proportional to ξ in d = 2 and hence is very large Σ′′R(kF, 0) ≈ −Uξ/(ξthξ2
0) > 1 when

the condition ξ > ξth is realized. By contrast, for d = 3, Σ′′R(kF, 0) ∼ −U (ln ξ) /
(
ξ2
0ξth

)
,

so that the Fermi liquid is destroyed only in a very narrow temperature range close the Néel
temperature TN. Dimensional analysis again suffices to show that in four dimensions the
classical critical fluctuations do not lead to any singular behavior. Three dimensions then
is the upper critical dimension. As usual, logarithmic corrections exist at the upper critical
dimension. The effect will be very small in three dimensions not only because it is logarithmic,
but also because the fluctuation regime is very small, extending only in a narrow temperature
range around the Néel temperature. By contrast, in two dimensions the effect extends all the
way from the crossover temperature, TX, which is of the order of the mean-field transition
temperature, to zero temperature where the transition is.

Wave vectors near Van Hove singularities are even more sensitive to classical thermal fluctua-
tions. Indeed, near this point the expansion should be of the type εkVH+q+(π,π) ∝ q

2
x−q

2
y. This

leads, in two dimensions, to even stronger divergence in Σ′′R(kF, 0)∝Tξ2
∫

dqy
[(

2q2
y + 1

)
|qy|
]−1

[36]. Even if the logarithmic divergence is cutoff the prefactor is larger by a factor of ξ compared
with points far from the Van Hove singularities.

5.2. Precursors of Antiferromagnetic Bands in Two Dimensions. — Let us analyze
in more details the consequences of this singular contribution of critical fluctuations to the
self-energy in two dimensions. The integral appearing in the two-dimensional version of the
expression for the self-energy (Eq. (55)), can be performed exactly [67]

Σ (kF, ikn) =
U

2
− i

UT

8πξ2
0

√
k2

n − v
2
Fξ
−2

ln
kn +

√
k2

n − v
2
Fξ
−2

kn −
√
k2

n − v
2
Fξ
−2

+R. (57)

Here R is a regular part.
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As a first application, we can use this expression to understand qualitatively both the tem-
perature and size dependence of the Monte Carlo data for z̃(T ) appearing in Figure 2 of
reference [30] or in the lower panel of Figure 7. Indeed, z̃(T ) can be written as the alter-
nating series −2G (kF, β/2) = −4T

∑∞
n=1 (−1)n / (kn − Σ′′ (kF, ikn)). Even though the series

converges slowly, in the beginning of the renormalized classical regime and for qualitative
purposes it suffices to use the first term of this series. Then, using the expressions for the
correlation length (Eq. (53)) and for the self-energy (Eq. (57)), one finds

z̃(T ) ∼
T 2

σ̃2UUsp

√
1−

ξ2
th

ξ2
, TX − T � TX. (58)

On the infinite lattice, ξ starts growing exponentially below TX, quickly becoming much larger
than ξth. This implies z̃(T ) ' T 2. On finite lattices ξ ∼

√
N , which explains the size effect

observed in Monte Carlo i.e. smaller z̃ for smaller size N , (ξth(TX) ∼ 5 for Fig. 7).

The analytic continuation of Σ (kF, ikn) in equation (57) is

ΣR (kF, ω) =
U

2
+

UT

8πξ2
0

√
ω2 + v2

Fξ
−2

[
ln

∣∣∣∣∣ω +
√
ω2 + v2

Fξ
−2

ω −
√
ω2 + v2

Fξ
−2

∣∣∣∣∣− iπ
]

+R. (59)

For the wave vectors k away from the Fermi surface the anomalous contribution due to the
classical fluctuation has a similar form but with ω replaced by (ω− ε̃k+Q). When T > TX, the
correlation length ξ becomes of order unity and, as we will show in Appendix D, the regular
part R dominates so that one recovers standard Fermi liquid behavior. Furthermore, even
for large correlation length the regular part cannot be neglected when ω � T since the term
exhibited here becomes small. Hence we concentrate on small frequencies and on T < TX

where the regular part R can be neglected.

Exactly at the Fermi level (ω = 0) we recover the result of the previous section, namely that
the imaginary part of the self-energy for ξ > ξth increases exponentially when the temperature
decreases, Σ′′(kF, 0) ∼ Uξ/(ξthξ

2
0) ∝ Tξ ∝ T exp

(
πσ̃2ξ2

0Usp/T
)
. The above analysis shows by

contradiction that in the paramagnetic state below TX there is no Fermi-liquid quasiparticle at
kF, yet the symmetry of the system remains unbroken at any finite T . Indeed, starting from

quasiparticles (G
(0)
σ ) we found that as temperature decreases, Σ′′R(kF, 0) increases indefinitely

instead of decreasing, in direct contradiction with the starting hypothesis. By contrast, a self-
consistent treatment where we use in equation (46) the full Gσ with a large Σ′′R(kF, 0) shows
that, for T < TX, Σ′′R(kF, 0) remains large in d = 2 and does not vanish as T → 0, again
confirming that the system is not a Fermi liquid in this regime (See however Sect. 6.2 below).
Strong modifications to the usual Fermi liquid picture also persist away from half-filling as long
as TX(n) > 0, as we discuss later.

One can check that the large Σ′′R(kF, 0) in two dimensions (for T < TX) leads to a pseudogap
in the infinite lattice, contrary to the conclusion reached in reference [55]. Indeed, instead of
a quasiparticle peak, the spectral weight A (kF, ω) ≡ −2ImGR (kF, ω) has a minimum at the
Fermi level ω = 0 and two symmetrically located maxima away from it. More specifically, for
vF/ξ < |ω| < T we have

A (kF, ω) ∼=
2 |ω|UT/(8ξ2

0)

[ω2 − UUspσ̃2/4]2 + [UT/(8ξ2
0)]2
· (60)
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The maxima are located at ω = ±
√
UUspσ̃/2. These two maxima away from zero fre-

quency correspond to precursors of the zero-temperature antiferromagnetic (or SDW) bands
(shadow bands [35]). There is no quasiparticle peak between these two maxima when ξ > ξth.
This remains true in the case of no perfect nesting as well [36] (see also Sect. 5.5). We note
that this is different from the results of the zero-temperature (ξth =∞) calculations of Kampf
and Schrieffer [35] that were based on a phenomenological susceptibility separable in momen-
tum and frequency χK.Sh. = f(q)g(ω). As was explained in reference [36], the existence of
precursors of antiferromagnetic bands (shadow bands in the terminology of Ref. [35]) at zero
temperature is an artifact of the separable form of the susceptibility. The third peak between
the two precursors of antiferromagnetic bands that was found in reference [35] is due to the
fact that at zero temperature the imaginary part of the self-energy Σ′′(k, ω = 0, T = 0) is
strictly zero at all k. In our calculations, precursor bands appear only at finite tempera-
ture when the system is moving towards a zero-temperature phase transition. In this case,
the imaginary part of the self-energy goes to infinity for k on the “shadow Fermi surface”
limT→0 Σ′′(kF + Q, 0) ∝ Tξ ∝ T exp (Cst/T )→∞ and to zero at all other wave vectors. This
is consistent with the SDW result which we should recover at T = 0. Indeed, the latter result
can be described by the self-energy ΣR(k, ω) = ∆2/(ω− ε̃(k+Q) + iη) which implies that the
imaginary is a delta function Σ′′(k, ω) = −πδ(ω − ε̃(k + Q)) instead of zero at all k as in a
Fermi liquid. We note also that analyticity and the zero value of Σ′′(k, ω = 0) in reference [35]
automatically implies that the slope of the real part of the self-energy ∂Σ′(k, ω)/∂ω|ω=0 is neg-
ative. By contrast, in our case ∂Σ′(kF +Q, ω)/∂ω|ω=0 is positive and increases with decreasing
temperature, eventually diverging at the zero-temperature phase transition. The real part of
the self-energy obtained using the asymptotic form equation (59) is at the bottom left corner
of Figure 11 with the corresponding spectral function A (kF, ω) shown above it. In Figure 9
we have already shown the evolution of the spectral function A (kF, ω) with temperature. The
positions of the precursors of antiferromagnetic bands scale like σ̃/2 which itself, at small cou-
pling in two dimensions, scales like the mean field SDW transition temperature or gap (see
Appendix B of Ref. [33]). As U increases, the predicted positions of the maxima obtained
from the asymptotic form (Eq. (60)) will be less accurate since they will be at intermediate
frequencies and the regular quantum contribution to the self-energy will affect more and more
the position of the peaks.

We have predicted [30] that the exponential growth of the magnetic correlation length ξ
below TX will be accompanied by the appearance of precursors of SDW bands in A (kF, ω)
with no quasiparticle peak between them. By contrast with isotropic materials, in quasi-
two-dimensional materials this effect should exist in a wide temperature range, from TX

(TX � U < EF) to the Néel temperature TN (TX − TN ∼ 102 K).

5.3. Contrast between Magnetic Precursor Effects and Hubbard Bands. —

Although there are some formal similarities between the precursors of antiferromagnetic bands
and the Hubbard bands (see Sect. 6) we would like to stress that these are two different physi-
cal phenomena. A clear illustration of this is when a four peak structure exists in the spectral
function A(k, ω), two peaks being precursors of antiferromagnetic bands, and two peaks be-
ing upper and lower Hubbard bands. The main differences between these bands are in the
k-dependence of the self-energy Σ(k, ω) and in the conditions for which these bands develop.
Precursors of antiferromagnetic bands appear even for small U in the renormalized classical
regime T < TX, and their dispersion has the quasi-periodicity of the magnetic Brillouin zone.
In contrast, upper and lower Hubbard bands are high-frequency features that appear only for
sufficiently large U > W and T < U and have the periodicity of the whole Brillouin zone
in the paramagnetic state. Furthermore, the existence of Hubbard bands is not sensitive to
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dimensionality so they exist even in infinite dimension where the self-energy does not depends
on momentum k at all. In contrast, the upper critical dimension for the precursors of antifer-
romagnetic bands is three (see Sect. 5.4).

In our theory the precursors of antiferromagnetic bands come from the almost singular behav-
ior of the zero Matsubara frequency susceptibility χsp (q, 0), which leads to the characteristic
behavior of Σ(k, ω) = ∆2

Sh.B/ (ω − ε(k + Q)) with ∆2
Sh.B ∝ T ln(ξ). On another hand, the Hub-

bard bands appear in our theory because the high-frequency asymptotics Σ(k, ω) ∝ ∆2
H.B/ω

has already set in for ω > W , and this leads to the bands at ω = ±∆H.B for ∆ > W (see
for more details Sect. 6). The coefficient ∆2

H.B is determined by the sum over all Matsubara
frequencies and q: ∆2

H.B = TUN−1
∑

q,n [Uspχsp(q, iωn) + Uchχch(q, iωn)].

It was noticed in Monte Carlo simulations [68,78] that for intermediate U , the spectral weight
has four maxima. We think that peaks at ω ∼ ±U/2 are Hubbard bands, while the peaks closer
to ω = 0 are precursors of antiferromagnetic bands. If this interpretation is correct, then the
latter peaks should disappear with increasing temperature when ξ becomes smaller than ξth,
while the Hubbard bands should exist as long as T < U .

While the location of the precursors of antiferromagnetic bands should be accurate in our
theory, the same will not be true for the location of the upper and lower Hubbard bands. This
is because our theory is tuned to the low frequency behavior of the irreducible vertices and does
not have the right numerical coefficient in the high-frequency expansion of the self-energy, as
shown in equation (E.10) below. Nevertheless, our analytical approach to date is the only one
that agrees at least qualitatively with the finding that precursors of antiferromagnetic bands
as well as upper and lower Hubbard bands can occur simultaneously. Note however that a four
peak structure at n = 1 was also obtained in reference [70] but the physical difference between
Hubbard bands and precursors of antiferromagnetic bands was not clearly spelled out. We
comment on recent findings of the FLEX approach in Section 6 [37,38,69].

5.4. Can the Precursors of Antiferromagnetic Bands Exist in Three

Dimensions?. — In two dimensions, the finite-temperature phase is disordered, but the zero-
temperature one is ordered and has a finite gap, except at the quantum critical point away
from half-filling. Hence, precursors of antiferromagnetic bands that appear in the paramagnetic
state do so with a finite pseudogap which appears consistent with the finite zero-temperature
gap towards which the system is evolving. By contrast, in higher dimensions the gap opens-up
with a zero value at the transition temperature. Based on this simple argument, one does not
expect precursors of antiferromagnetic bands in dimensions larger than two (see, however, be-
low). Here, we will also show that there is no phase space reasons for the existence of precursors
of the antiferromagnetic bands when d > 2.

We have already shown that in three dimensions the quasiparticle at the Fermi level at half-
filling will have an imaginary part of the self-energy that grows like T ln ξ, an effect that is
much weaker than Tξ found in two dimensions. Despite this small effect, in three dimensions
the classical fluctuations do not affect the self-energy for energies larger than vFξ

−1. Indeed,
consider the contribution of classical thermal fluctuations to the self-energy (Eq. (55)). In two
dimensions, we have for |ω| > vFξ

−1

Re
[
Σ2d

cl (kF, ω)
]
∼=
UT

2ξ2
0

∫
d2q

(2π)2

1

q2 + ξ−2

1

ω
, (61)

which allows us to recover the approximate formula for the spectral weight given in equa-
tion (60) above. In three dimensions however, this approximation cannot be done because
the integral is not dominated by small values of q. To see this explicitly in three dimensions,
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consider the contribution of classical thermal fluctuations

Σ3d
cl (kF, ω + iη) ∼=

UT

2ξ2
0

∫
dq‖
2π

∫
d2q⊥

(2π)2

1

q2
⊥ + q2

‖ + ξ−2

1

ω + iη + vFq‖
(62)

∼=
UT

2ξ2
0

1

4π

∫
dq‖
2π

ln

[
Λ2
⊥ + q2

‖ + ξ−2

q2
‖ + ξ−2

]
1

ω + iη + vFq‖
· (63)

As long as |ω| > vFξ
−1, the logarithmic singularity that develops at q‖ = 0 when ξ−1 → 0

is integrable and gives no singular contribution to the self-energy. Hence, unusual effects of
classical thermal fluctuations are confined to the range of frequencies |ω| < vFξ

−1. At higher
frequencies, |ω| > vFξ

−1, all bosonic Matsubara frequencies in equation (46) need to be taken
into account and from phase space considerations alone there is no reason for the existence of
precursors of antiferromagnetic bands in the 3D case. However, the existence of such bands in
3D cannot be completely excluded based on dimensional arguments alone because they occur
at finite frequencies and strictly speaking they are non-universal. In particular, as discussed in
reference [33], one expects to see precursors that look like 2D antiferromagnetic bands (shadow
bands) in the vicinity of the finite temperature phase transition in strongly anisotropic quasi-
two-dimensional material. On the other hand, such bands do not generically exist in the
almost isotropic 3D case, because even in 2D the conditions for such bands are quite stringent.
The difference between shadow bands and Hubbard bands has been discussed in the previous
subsection and the discussion of non-analyticities sometimes encountered in Fermi liquid theory
can be found in Appendix D.

5.5. Away from Half-Filling. — Close to half-filling, in the nearest-neighbor hopping
model, one can enter a renormalized classical regime with large antiferromagnetic correlation
length, even though the zero-temperature Fermi surface properties may favor incommensurate
correlations. This renormalized-classical regime with large (π, π) correlations occurs when
TX � µ0. By arguments similar to those above, one finds that in this regime one still has
precursors of antiferromagnetic bands. However, the chemical potential is in or near the lower
precursor band and the system remains metallic. The high-frequency precursor appears only
below TX at ω ≈ ε̃k+Q.

With second-neighbor hopping, the points of the Fermi surface that intersect the magnetic
Brillouin zone (hot spots) behave as does the whole Fermi surface of the nearest-neighbor
(nested) case discussed above. These questions were discussed in detail in reference [36].

5.6. The Pairing Pseudogap and Precursors of Superconducting Bands in Two

Dimensions. — As we have already pointed out above, the results for the single particle
spectra obtained for the half-filled nearest-neighbor hopping repulsive Hubbard model can be
directly applied to the corresponding attractive Hubbard model, in which case the pseudogap
opens up in the renormalized classical regime of pairing and charge fluctuations. Away from
half-filling, the symmetry between charge and pair correlations is lost and pair fluctuations
dominate, becoming infinite at the Kosterlitz-Thouless transition temperature. This temper-
ature is below the temperature at which the magnitude of the pair order parameter acquires
rigidity despite the randomness of its phase. One expects then that a pseudogap will also open
in this case when the correlation length for pairing fluctuations becomes larger than the single-
particle thermal de Broglie wavelength ξpairing > ξth = vF/T . This should occur below the
crossover temperature to the renormalized classical regime of pairing fluctuations but above
the Kosterlitz-Thouless transition temperature.
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The quantitative microscopic theory for the negative U Hubbard model will be considered
in a separate publication. By contrast with all other sections of this paper, our considerations
here will be more phenomenological. Nevertheless, they will allow us to present some analytical
results for the self-energy obtained in the critical regime dominated by pairing fluctuations.
Details of the model should not be very important since we are in a regime where everything
is dominated by long wave length fluctuations.

The derivation of Σ(k, ω) in the pairing case is a straightforward extension of what we did
in the antiferromagnetic case (see Sects. 5.1.2, 5.2 and Ref. [36]). In particular, in complete
analogy with the magnetic case, the main contribution to the self-energy in the critical regime
comes from the classical thermal fluctuations iqn = 0. Assuming some effective coupling
constant g′ between quasiparticles and pairing fluctuations, which in general can be momentum
dependent, one can write in the one loop approximation

Σcl (k, ikn) ≈ Tg′(k)

∫
d2q

(2π)2

1

ξ−2
p + q2

1

ikn + ε̃−k+q
· (64)

Here ε̃k is the electron dispersion relative to the chemical potential, and all factors in front
of integral are reabsorbed into the coupling constant g′. This expression is similar to the
expression (Eq. (55)) in the magnetic case but there are two important differences: i) instead
of ε̃k+Q+q we have now ε̃−k+q; ii) there is no minus sign in front of ε̃−k+q. The first difference
is due to the fact that superconductivity usually occurs with zero center of mass momentum
for the pair, and hence the pairing susceptibility in the normal state χp ∝ 1/(ξ−2

p + q2) must
be peaked near q = 0, (the integration variable q in equation (55) was measured relative
to Q = (π, π)). The second difference comes from the fact that we are now considering the
contribution to Σ coming from the particle-particle channel instead of the particle-hole channel.
Taking the integrals over q and using the fact that small q only will contribute we neglect the
q dependence of the coupling constant and obtain for the imaginary part of Σcl the following
expression

Σ′′(k, ω) = −
g′(k)T

4
√

(ω + ε̃−k)
2
+ v2
−kξ

−2
p

· (65)

In the renormalized classical regime the pairing correlation length ξp increases faster with
decreasing temperature than ξth = vF/T . Consequently, Σ′′(kF, 0) tends to diverge with
decreasing temperature and a pairing pseudogap in the spectral function A(kF, ω) opens up
over the complete Fermi surface, except maybe at a few points where g′(k) = 0. This is
different from the antiferromagnetic case, where the pseudogap in A(kF = kh.sp., ω) opens up
only when, so called, “hot spots” (ε̃(kh.sp. + Q) = ε̃(kh.sp.) = 0 ) exist in a given model [36].
The antiferromagnetic pseudogap opens everywhere on the Fermi surface only in the case of
perfect nesting, where all points on the Fermi surface are “hot spots”.

The real part of the self-energy can be obtained from equation (65) using the Kramers-Kronig
relation and has the form:

Σ′(k, ω) =
g′(k)T

4π
√

(ω + ε̃−k)
2

+ v2
−kξ

−2
p

ln

∣∣∣∣∣∣
ω + ε̃−k +

√
(ω + ε̃−k)

2
+ v2
−kξ

−2
p

ω + ε̃−k −
√

(ω + ε̃−k)
2
+ v2
−kξ

−2
p

∣∣∣∣∣∣ · (66)

To understand how precursors of the superconducting bands develop, let us look at Σ′(k, ω)
at frequencies |ω + ε̃−k| � v−kξ

−1
p . In this case, using inversion symmetry ε̃−k = ε̃k, one can

obtain from equation (66) the following asymptotic form

Σ′(k, ω) ≈
g′(k)

2π

T ln ξp
ω + ε̃k

· (67)
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When, ξp ∼ exp(const/T ) (see, more general case below) this form of the self-energy leads
to the usual BCS result Σ′(k, ω) ≈ ∆2 (k) /(ω + ε̃k) with the gap ∆2 (k) ≈ (g′(k)/2π)T ln ξp.
On the other hand, the imaginary part Σ′′(k, ω), equation (65), vanishes everywhere in the
T = 0 limit, except when ω = −ε̃k where it becomes infinite. The results for Σ′ and Σ′′

can thus be combined to write for the corresponding limit of the retarded self-energy ΣR =
∆2 (k) /(ω+ ε̃k + iη). This limit leads to the standard BCS expression for the normal Green’s
function when substituted back into the Dyson equation GR = 1/

(
ω + iη − ε̃k − ΣR(k, ω)

)
.

Above the transition temperature, the anomalous Green’s function remains zero since there is
no broken symmetry. The qualitative picture for the development of the pairing pseudogap
and of the precursors of superconducting bands at k = kF is illustrated in Figure 9 and in the
left part of Figure 11. While in the case of magnetic critical fluctuations these figures describe
the precursor effect in A(kF, ω) for perfect-nesting or for the “hot spots” (when such points
exist), in the case of pairing fluctuations they describe the spectra for all kF and for all fillings
where the ground state is superconducting.

We need to comment on a subtle difference between the antiferromagnetic and the pairing
precursor effects in the single particle spectra. While the magnetic order parameter has three
components and can order only at zero temperature in the two-dimensional repulsive model,
away from half-filling in the attractive model the pairing order parameter becomes the only
relevant order parameter at low temperature. Since it has only two components, a finite
temperature Kosterlitz-Thouless phase transition is then allowed in two dimensions. The
critical behavior in vicinity of this transition is given by ξp ∝ exp[const/(T − TKT)1/2] instead
of ξ ∝ exp(const/T ) as in the magnetic case. To take this properly into account one would need
a treatment of the problem that is more sophisticated than that given above. In particular,
one would have to take into account corrections to the simple form that we used for the pairing
susceptibility χp(q, 0) ∝ 1/(ξ−2

p + q2). This Lorentzian form of the susceptibility in the critical
regime is strictly valid only in the n = ∞ limit ( n is the number of the components of the
order parameter) and is, clearly, a less accurate approximation in the case of pairing fluctuations
(n = 2) than in the case of the antiferromagnetic fluctuations (n = 3). Nevertheless, we believe
that qualitatively the picture given above is correct for two reasons. First, because in the
Kosterlitz-Thouless picture the magnitude of the order parameter is locally non-zero starting
below a crossover temperature TX that is larger than the transition temperature TKT. It is only
the phase that is globally decorrelated above TKT. This means that locally the quasiparticles
are basically in a superconducting state even above TKT. A second reason to believe in the
precursor effects is that the superfluid density and the gap are finite as T → T−KT and, hence,
the two peak structure in A(kF, ω) exists even as the phase transition point is approached from
the low-temperature side. By analogy with the antiferromagnetic case, this two peak structure
should not immediately disappear when one increases the temperature slightly above TKT.

Finally, we point out that the precursor phenomenon described above has to be distin-
guished from, so-called, pre-formed pairs considered first by Nozières and Schmitt-Rink [71]
(see also [72]). These pre-formed pairs exist in any dimension when the coupling strength is
sufficiently large, while the precursor effect considered above can be caused by arbitrarily small
attractive interactions but only in two dimensions. We think that recent Monte Carlo data [73]
on the negative U = −W/2 Hubbard model illustrates the opening of the single-particle pseu-
dogap due to critical fluctuations, rather than a strong-coupling effect. In these simulations,
the drop in the density of states at the Fermi level should be accompanied by a simultaneous
rapid increase of the pairing structure factor Sp(q =0, T ). The latter must be exponential in
the infinite 2D lattice and a size analysis of Monte Carlo data similar to the one shown in
Figure 7 would be extremely helpful to clarify this issue.
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6. Absence of the Precursors of Antiferromagnetic Bands and Upper and Lower
Hubbard Bands in Eliashberg-Type Self-Consistent Theories

In this section, we explain why the theories that use self-consistent propagators but neglect the
corresponding frequency-dependent vertex corrections fail to see two important physical effects:
namely upper and lower Hubbard bands, as well as the precursors of antiferromagnetic bands
that we just discussed. The failure of this type of self-consistent schemes to correctly predict
upper and lower Hubbard bands has been realized a long time ago in the context of calculations
in infinite dimension [11, 74]. While one may brush aside this failure by claiming that high-
energy phenomena are not so relevant to low-energy physics, we show that in fact these schemes
also fail to reproduce the low-energy pseudogap and the precursors of antiferromagnetic bands
for essentially the same reasons that they fail to see Hubbard bands. It is thus useful to start
by a discussion of the better understood phenomenon of upper and lower Hubbard bands and
then to move to precursors of antiferromagnetic bands.

6.1. Why Eliashberg-Type Self-Consistency for the Electronic Self-Energy

Kills Hubbard Bands. — We first note that ordinary perturbation theory satisfies the
correct high-frequency behavior (Eq. (68)) for the self-energy namely, for kn �W

lim
ikn→∞

Σσ (k, ikn) = Un−σ +
U2n−σ (1− n−σ)

ikn
+ · · · (68)

It is the latter property that guarantees the existence of the Hubbard bands for U > W . To
see this, consider the half-filled case. In this case, n−σ = 1/2, µ = U/2 and one finds for the
spectral weight

A (k, ω) ∼
−2Σ′′(

ω − U2

4ω

)2
+ Σ′′2

(69)

which has pronounced maxima at the upper and lower Hubbard bands, namely ω = ±U/2, has
long as Σ′′ is not too large. Since these results are obtained using high-frequency asymptotics,
they are valid only when the asymptotic equation (68) has already set in when ω ∼ U/2. In
the exact theory and in ordinary perturbation theory in terms of bare Green functions G(0),
equation (68) is valid for |ω| � Wand the Hubbard bands appears as soon as U becomes larger
than W .

The fact that this simple high-frequency behavior sets in at the energy scale given by W
rather than U , even when W < U , is a non-trivial consequence of the Pauli principle. To see
this we first recall the exact result for the self-energy Σσ (k, ikn) in the atomic limit [1]

Σatomic
σ (k, ikn) = Un−σ +

U2n−σ (1− n−σ)

ikn + µ− U (1− n−σ)
· (70)

Formally, the atomic limit means that hopping is the smallest of all energy scales in the prob-
lem, including the temperature, t � T , which is not a very interesting case. However, the
same arguments that have been used to derive the expression (70) in the atomic limit can be
used to show that equation (70) is valid at any T/t when kn � W . Indeed, in the equations
of motion for two-particle correlators [1] one can neglect hopping terms when kn � W . This
is where the asymptotic behavior (70) sets in since the equations of motion then immedi-
ately lend themselves to a solution without any additional approximation for the interacting
term. This solution is possible because the Pauli principle n2

iσ = niσ allows us to collapse
three-particle correlation function which enters equation of motion to the two-particle one
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U
〈
Tτ

(
ni−σ (τi)ni−σ (τi) ciσ (τi) c

†
jσ (τj)

)〉
= U

〈
Tτ

(
ni−σ (τi) ciσ (τi) c

†
jσ (τj)

)〉
. Hence, the

expression for atomic limit (Eq. (70)) is also a general result for the self-energy that is valid
for kn �W. At half-filling n−σ = 1/2, µ = U/2 and the asymptotic (68) sets in at kn ∼W , as
was pointed out above. Away from half-filling, as long as |µ− Σ(∞)| and |µ− U (1− n−σ)|
are both much smaller than W, (they both vanish at half-filling), the asymptotic behavior will
also start at kn ∼W .

The situation is qualitatively different when one uses dressed Green functions, but does
not take into account the frequency dependence of the vertex, as it is done in FLEX (see
Eq. (E.9)) or for second-order perturbation theory with dressed G. For example, the second-
order expression for Σσ (k, ikn) in terms of full G does satisfy the asymptotics equation (68),
but it sets in too late, namely for kn � U , instead of kn � W . Indeed, when kn � W , the
equation for the self-energy at half-filling in this type of theories reduces to

Σ (ikn) =
∆2

ikn − Σ(ikn)
(71)

where ∆2 = cU2/4 with c a constant of proportionality involving the sum over all wave vectors
and Matsubara frequencies of the self-consistent dynamical susceptibilities. In a given theory
the value of c may differ from its value c = 1 obtained from the exact result (Eq. (70)), but
its always of order unity. The solution of equation (71)

Σ (ikn) =
1

2
ikn −

1

2

√
(ikn)

2 − 4∆2 (72)

has the analytically continued form

Re ΣR (ω) =
ω

2
−

ω

2 |ω|
θ (|ω| − 2∆)

√
ω2 − 4∆2 (73)

ImΣR (ω) = −
1

2
θ (2∆− |ω|)

√
4∆2 − ω2. (74)

From this one can immediately see that a U2/ω regime exists for Re ΣR (ω) only
when |ω| � U, (with 2∆ = U).

This means that such regime sets in too late to give the Hubbard bands described by equa-
tion (69), because the Hubbard bands occur at ω = ±U/2 and for such ω the asymptotic form
ΣR ∝ U2/ω is not valid yet in FLEX and similar theories. Consequently, instead of well defined
peaks at ω = ±U/2 in the half-filled case, one obtains only long tails in the spectral function
Aσ (k, ω) , no matter how large U is [74] (see also following subsection).

This explains why there is no Hubbard bands in any theory that uses self-consistent Green’s
functions, but neglects the frequency dependence of the vertex. This is an explicit example that
illustrates what seems to be a more general phenomenon when there is no Migdal theorem for
vertex corrections: a calculation with dressed Green’s functions but no frequency dependent
vertex correction often gives worse results than a calculation done with bare Green’s functions
and a frequency independent vertex.

6.2. Why FLEX Fails to See Precursors of Antiferromagnetic Bands. — In this
subsection we describe the qualitative differences between our results and the results of FLEX
approximations given by equation (E.9) with regards to the “shadow bands” and explain why
we believe that the failure of the FLEX to reproduce these bands is an artifact of that approx-
imation. To avoid any confusion, we first clarify the terminology, because the term “shadow
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bands” has been used previously to describe different physical effects (see for details Ref. [36]).
We note that the so-called shadow features discussed in [36, 37] as well as the pseudogap in
the total density of states N(ω) = (1/N)

∑
kA (k, ω))exist in both theories and we will not

discuss them here. Instead, we concentrate on the precursors of antiferromagnetic bands in the
spectral function A (kF, ω)which correspond to two new solutions of the quasi-particle equation

ω − ε(k) + µ− Σ(k, ω) = 0. (75)

We start by recalling a simple physical argument why the precursors of antiferromagnetic bands
must exist at finite temperatures in the vicinity of the zero-temperature phase transition in
two dimensions. This can be best understood by contrasting this case with isotropic 3D case
where such precursor effect are highly unlikely (for a discussion of the strongly anisotropic case
see Sect. 5.4). Indeed, in three dimensions there is a finite temperature phase transition and
the gap is equal to zero at this temperature ∆(TN) = 0. Consequently at TN there is only one
peak in the A (kF, ω) at ω = 0 which starts to split into two peaks only below TN. Based on
this simple physical picture, one would not expect to see precursors of antiferromagnetic bands
above TN in this case. The situation is qualitatively different in two-dimensions where classical
thermal fluctuations suppress long-range order at any finite temperature while at the T = 0
phase transition the system goes directly into the ordered state with a finite gap. Clearly, the
two peak structure in A (kF, ω) at T = 0 cannot disappear as soon as we raise the temperature.

For simplicity we again consider half-filling. As we have seen in Section 5.2 two new quasi-
particle peaks do appear in the renormalized classical regime T < TX in our theory. We have
also found a pseudogap with the minimum at ω = 0 in this regime. In contrast, the numerical
solution of the FLEX equations [38] found a spectral function with a single maximum in
A (kF, ω) at ω = 0 even when χ̃RPA(q, 0) becomes strongly peaked at q = Q. With decreasing
temperature this central maximum becomes anomalously broad, but the two peak structure
does not appear. The clear deviation from the Fermi liquid is signaled by the positive sign of
∂Σ′ (kF, ω) /∂ω > 0. However the value of ∂Σ′ (kF, ω) /∂ω does not become larger than unity.
The latter would unavoidably lead to the existence of two new quasi-particle peaks away from
ω = 0 as is clear from the graphical solution of the quasiparticle equation (Eq. (75)) shown on
the bottom left panel of Figures 11.

We now explain analytically the origin of these qualitative differences in the two theories.
In our theory ∂Σ′(kF, ω)/∂ω|ω=0 ∝ Tξ2 and hence it quickly becomes larger than unity in
the renormalized classical regime ξ ∝ exp(const/T ). In addition, for ω > vFξ

−1 the real
part of the self-energy has the same behavior as in the ordered state Σ(kF, ω) ∝ ∆2/ω with
∆2 ∝ T ln ξ = const. The important point is that this asymptotic behavior Σ(kF, ω) ∝ ∆2/ω
of the self-energy already sets in for ω ∼ ∆ � vFξ

−1. It is this property that leads to the
appearance of the precursors of antiferromagnetic bands at ω = ±∆ in a manner analogous
to the appearance of the Hubbard bands in the strong coupling limit that is discussed in the
previous subsection. Let’s now try to understand analytically what happens in the FLEX
approximation. As in our theory, the main contribution to the self-energy in the strongly
fluctuating regime comes from the zero-frequency term in the Matsubara sum in the equation
for the self-energy (Eq. (54) in our theory and Eq. (E.9) in FLEX). An upper bound of the
effect of the critical spin fluctuations can be obtained by approximating T χ̃RPA(q, 0) ∝ δ(q).
Then one immediately obtains the same expression for the self-energy as the one obtained in
FLEX in the context of Hubbard bands (Eq. (71)). (The only difference is that the parameter
∆ is now defined by the zero-frequency Matsubara contribution of χ̃RPA(q, 0), rather than
by the sum over all Matsubara frequencies.) As we have already discussed in the context of
Hubbard bands, such a form for Σ does not lead to the appearance of two new quasiparticle
solution away from ω = 0 because the characteristic behavior Σ(kF, ω) ∝ ∆2/ω sets in too
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Fig. 11. — Top two panels are qualitative sketches of the spectral weight at the Fermi wave vector
at half-filling. The plots are obtained by retainig only the classical contribution to the self-energy for
T < TX using parameters corresponding to the typical U = 4, of Monte Carlo simulations. The two
bottom panels are the corresponding plots of ReΣ(ω). The left-hand side of this figure is obtained using
our approximation while the right-hand side is obtained from the FLEX-like approach. The intersection
with the 45 degree line ω in the bottom-left panel gives rise to the precursors of antiferromagnetic
bands seen right above it.

late, namely for ω � ∆. In addition, the slope of Σ′ (kF, ω) at ω → 0 does not diverge with
decreasing temperature as in our theory but instead saturates to its value given by the analog
of equation (73), i.e. ∂Σ′ (kF, ω) /∂ω < 1/2. As we mentioned above, a value larger than unity
∂Σ′ (kF, ω) /∂ω > 1 would guarantee the existence of two new solutions of the quasiparticle
equation (Eq. (75)) away from ω = 0. The right-hand side of Figure 11 illustrates clearly
what happens in a FLEX-like approach such as equation (71). The contribution of classical
fluctuations to the spectral weight does not lead to a Fermi liquid since A (kF, ω) saturates
to a finite width as temperature decreases, but nevertheless precursors of shadow bands do
not occur because ∂Σ′ (kF, ω) /∂ω is bounded below unity. (Note that the spectral weight
would not vanish so steeply at large frequencies if we had taken into account the quantum
contribution of the spin fluctuations, as in full FLEX calculations.)

We just saw that the self-consistency in the propagators without corresponding self-consisten-
cy in the vertices inhibits the existence of the shadow bands in essentially the same way as it
inhibits the existence of the Hubbard bands. It thus seems to us very likely that the absence
of the precursors of antiferromagnetic bands below TX in FLEX is an artifact. This conclusion
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can be reliably verified by comparison with Monte Carlo data despite the fact that the latter is
done for finite lattices and in the Matsubara formalism. This was discussed in more detail in
Section 5.2. Here we just note that the temperature dependence of Matsubara quantities such
as G(kF, τ = β/2) and Σ(kF, ik1) have a very characteristic form in the pseudogap regime.
For example, Σ(k, ik1) ∝ 1/(iπT ) in the pseudogap regime, while in FLEX we would expect
a much weaker temperature dependence of this quantity (the upper bound being given by the
analog of Eq. (72)).

We also would like to comment on the 1D model [75] which describes the interaction of
electrons with static spin fluctuations characterized by the susceptibility χsp ∝ δ(ω)[ξ−1/(q−
Q)2 + ξ−2]. The nice thing about this model is that it has an exact solution which shows the
development of shadow bands and of the pseudogap in A (kF, ω). A treatment similar to ours
which uses non-interacting Green’s functions in the one-loop approximation also reproduces
this feature [75]. However, the analogous approximation with dressed Green’s functions leads
to equation (71) and hence inhibits the existence of the “shadow bands” and of the pseudogap
in A (kF, ω).

In closing we comment on semantics and on the physical interpretation of some results
obtained in the FLEX approximation. The expression “conserving approximation” has been
widely used to describe FLEX calculations of the single particle properties and, in particular,
in the context of the shadow bands and of the failure of Luttinger’s theorem [37, 38, 69]. The
conserving aspect has been emphasized, but in fact the only desirable feature in the calculation
of the single-particle properties is that the self-energy Σ is obtained from a functional derivative
of the Luttinger-Ward functional Σ = δΦ/δG and hence it is guaranteed to satisfy Luttinger’s
theorem whenever appropriate. Only on the next level does this scheme lead to a calculation
of the “true” susceptibilities [24] and of collective modes that satisfy conservation laws (Ward
identities). However, these “true” susceptibilities are never substituted back in the calculation
of the self-energy and the effect of “true” collective modes on the single-particle spectrum is
an open question in FLEX. In fact, the RPA propagators χ̃RPA appearing in the self-energy
expression are different from susceptibilities from which collective modes should be computed
and further they explicitly break conservation laws, as can be seen from the fact that RPA-like
expressions χ̃RPA = χ̃0/(1 − Uχ̃0) with a dressed bubble χ̃0 have the unphysical properties
that are mentioned in equations (A.23, A.24) of Appendix A. The fact that there are in effect
two susceptibilities in the FLEX approximation leads, in our opinion, to some confusion and
incorrect physical interpretation of the results in the literature. In particular, it was argued that
the non-Fermi-liquid behavior and deviations from Luttinger theorem found in FLEX [37,38,69]
are not due to critical thermal fluctuation in the vicinity of the phase transition but are rather
the result of large U . The reasoning for such claim was that although the RPA susceptibilities
χ̃RPA is very strongly peaked at q = Q, the “true” FLEX susceptibility is not. In our opinion,
such claim could be justified only if one would substitute the “true” susceptibility back in
the calculation of Σ (for example using the exact Eq. (31)) and found that the deviation
from the Luttinger theorem and other qualitative changes in A(k, ω) increase with decreasing
temperature without almost divergent behavior of the conserving susceptibility χsp(Q, 0) and
of the static structure factor Ssp (Q) .

The Monte Carlo data in Figure 7 are also instructive since they clearly show that qualitative
changes in the single-particle spectra occur when the system enters the renormalized classical
regime with rapidly growing Ssp (Q). The fact that the FLEX “true” susceptibility does not
show such behavior at half-filling [38] tells us that it even more drastically disagrees with the
Monte Carlo data than the RPA-like χ̃ which enters the expression for self-energy. Moreover,
even away from half-filling the “true” susceptibility in FLEX at q = Q significantly underesti-
mates the strength of the spin fluctuations, as is clear from the comparison with Monte Carlo
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data in Figure 5. In our opinion the, so-called, “true susceptibility” in FLEX is the key element
in the confusion surrounding the interpretation of FLEX results for the self-energy because the
“true susceptibility” never comes in the calculation of the self-energy. For all practical pur-
poses these calculations of the self-energy should be considered as consistent with Luttinger’s
theorem at T = 0 but based on a non-conserving susceptibility. Consistency with conserva-
tion laws and consistency with Luttinger’s theorem are not identical requirements because to
satisfy rigorously Luttinger’s theorem one needs that Σ = δΦ/δG, while to have conserving
susceptibilities one needs that the irreducible vertices used in Bethe-Salpeter (Eq. (26)) should
be obtained from Γ = δ2Φ/δGδG.

7. Domain of Validity of our Approach

Our approach is not valid beyond intermediate coupling. That is perhaps best illustrated by
Figure 3 that shows that the crossover temperature first increases with U and then saturates
instead of decreasing. The decrease is expected on general grounds from the fact that at strong
coupling the tendency to antiferromagnetism should decrease roughly as J ∼ t2/U. The reason
for this failure of our approach is clear. As we know from studies in infinite dimension [11], to
account for strong-coupling effects it is necessary to include at least a frequency dependence
to the self-energy and to the corresponding irreducible vertices.

Our theory also fails at half-filling deep in the renormalized classical regime, i.e. T � TX

mainly for two reasons. First, the ansatz Usp = Ug↑↓(0), equation (40), fails in the sense that
g↑↓(0) eventually reaches zero at T → 0 because of the log2 T divergence in the irreducible
susceptibility χ0 (π, π) due to perfect nesting. The physically appropriate choice for g↑↓(0) in
the renormalized classical regime is to keep its value fixed to its crossover-temperature value
(See Fig. 6 and Sect. 4). The more serious reason why our approach fails for T � TX is that,
as we just saw, critical fluctuations destroy completely the Fermi liquid quasiparticles and lead
to a pseudogap. This invalidates our starting point. It is likely that in a more self-consistent
theory, the logarithmic divergence of the appropriate irreducible susceptibility will be cutoff
by the pseudogap. However, just a simple dressing of the Green’s function is not the correct
solution to the problem because it would make the theory non-conserving, as we discussed
in Section A.3. One needs to take into account wave vector and energy dependent vertex
corrections similar to those discussed by Schrieffer [76,77].

8. Comparisons with other Approaches

In Appendix E, we discuss in detail various theories, pointing out limitations and advantages
based on the criteria established in Appendices A.2 and A.3. More specifically, we include
in our list of desirable properties, the local Pauli principle 〈n2

↑〉 = 〈n↑〉 , the Mermin-Wagner
theorem (Eq. (A.14)), the Ward identities (Eq. (A.28)), and f -sum rule (Eq. (A.22)), one-
particle versus two-particle consistency Σσ

(
1, 1
)
Gσ
(
1, 1+

)
= U 〈n↑n↓〉 (Eq. (44)), Luttinger’s

theorem, and the large frequency asymptotic for the self-energy (Eq. (68)), which is important
for the existence of the Hubbard bands. In the present section, we only state without proof
where each theory has strengths and weaknesses.

In standard paramagnon theories [32,46], the spin and charge fluctuations are computed by
RPA, using either bare or dressed Green’s functions. Then the fluctuations are feedback in the
self-energy. When RPA with bare Green’s functions are used for the collective modes, these
satisfy the f -sum rule, but that is the only one of our requirements that is satisfied by such
theories.
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In conserving approximation schemes [24, 26] the Mermin-Wagner theorem, the Luttinger
theorem and conservation laws are satisfied, but none of the other above requirements are
fulfilled.

In the parquet approach [25, 53], one enforces complete antisymmetry of the four point
function by writing down fully crossing-symmetric equations for these. However, in actual cal-
culations, the local Pauli principle, the Mermin Wagner theorem, and the consistency between
one and two particle properties are only approximately satisfied, while nothing enforces the
other requirements.

In our approach, the high-frequency asymptotics and Luttinger’s theorem are satisfied to a
very good degree of approximation while all other properties in our list are exactly enforced.
Let us specify the level of approximation. Luttinger’s theorem is trivially satisfied with our

initial approximation for the self-energy Σ
(0)
σ , but at the next level of approximation, Σ

(1)
σ , one

needs a new chemical potential to keep the electron density Tr[G
(1)
σ (1, 1+)] fixed. With this

new chemical potential the Fermi surface volume is preserved to a very high accuracy. Finally,
consider the high-frequency asymptotics. Since we use bare propagators, the high-frequency
asymptotics comes in at the appropriate frequency scale, namely ikn ∼W , which is crucial for
the existence of the Hubbard bands. However, the coefficient of the 1/ikn term in the high-
frequency expansion (Eq. (68)) is incorrect because our irreducible vertices Usp and Uch are
tuned to the low frequencies. If one would take into account the frequency dependence of Usp

and Uch and assume that at high frequency they become equal to the bare interaction U , then
one would recover the exact result, provided the Pauli principle in the form of equation (39) is
satisfied. The difficulty with such a procedure is that frequency dependent irreducible vertices
requires frequency dependent self-energy in the calculation of collective modes and that would
make the theory much more complicated. Yet it is, probably, the only way to extend the theory
to strong coupling.

9. Conclusion

We have presented a new simple approach [29,30] to the repulsive single-band Hubbard model.
We have also critically compared competing approaches, such as paramagnon, fluctuation ex-
change approximation, and pseudo-potential parquet approaches. Our approach is applicable
for arbitrary band structure [34] and gives us not only a quantitative description of the Hub-
bard model, but also provide us with some qualitatively new results. Let us summarize our
theory again. We first obtain spin and charge fluctuations by a self-consistent parameteriza-
tion of the two-particle effective interactions (irreducible vertices) that satisfies a number of
exact constraints usually not fulfilled by standard diagrammatic approaches to the many-body
problem. Then the influence of collective modes on single-particle properties is taken into ac-
count in such a way that single-particle properties are consistent with two-particle correlators,
which describe these collective modes. More specifically, our approach satisfies the following
constraints:

1. Spin and charge susceptibilities, through the fluctuation-dissipation theorem, satisfy the
Pauli principle in the form 〈n2

↑〉 = 〈n↑〉 as well as the local moment sum-rule, conserva-
tions laws and consistency with the equations of motion in a local-field-like approxima-
tion.

2. In two dimensions, the spin fluctuations satisfy the Mermin-Wagner theorem.

3. The effect of collective modes on single-particle properties is obtained by a paramagnon-
like formula that is consistent with the two-particle properties in the sense that
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the potential energy obtained from Tr [ΣG] is identical to that obtained from applying
the fluctuation-dissipation theorem to spin and charge susceptibilities.

4. Vertex corrections are included not only in spin and charge susceptibilities (Usp 6=Uch 6=U)
but also in the self-energy formula. In the latter case, this takes into account the fact
that there is no Migdal theorem controlling the effect of spin and charge fluctuations on
the self-energy.

The results for both single-particle and two-particle properties are in quantitative agreement
with Monte Carlo simulations for all fillings, as long as U is less than the bandwidth and T is
not much smaller than the crossover temperature TX where renormalized-classical behavior sets
in. Both quantum-critical and renormalized-classical behavior can occur in certain parameter
ranges but the critical behavior of our approach is that of the O (n) model with n→∞ [33].

The main predictions of physical significance are as follows:

1. The theory predicts a magnetic phase diagram where magnetic order persists away from
half-filling but with completely suppressed ferromagnetism.

2. In the renormalized classical regime above the zero-temperature phase transition, pre-
cursors of antiferromagnetic bands (shadow bands) appear in A (kF, ω). These precur-
sors occur when ξ > ξth (or ωSF < T ). Between these precursors of antiferromagnetic
bands a pseudogap appears at half-filling, so that the Fermi liquid quasiparticles are
completely destroyed in a wide temperature range above the zero-temperature phase
transition 0 < T < TX. The upper critical dimension for this phenomenon is three. We
stress the qualitative difference between the Hubbard bands and the precursors of antifer-
romagnetic bands and we predict that in two dimensions one may see both sets of bands
simultaneously in certain parameter ranges. This prediction is consistent with the results
of numerical simulations [68,78]. We know of only one other analytic approach [70] which
leads to similar four peak structure in the spectral function.

The zero temperature magnetic phase diagram is partly an open question because, despite the
qualitative agreement with other analytical approaches, there is still an apparent contradiction
with Monte Carlo simulations [64]. Our prediction of precursors of antiferromagnetic bands on
the other hand is in agreement with Monte Carlo simulations. Neither this effect nor upper and
lower Hubbard bands are observed in self-consistent schemes such as FLEX. This is because of
inconsistent treatment of the vertex and self-energy corrections in this approximation, as we
have explained in Section 6. However, if there was a Migdal theorem for spin fluctuations, it
would be justifiable to neglect the vertex corrections and keep only the self-energy effects as
is done in the FLEX approximation. The presence of precursors of antiferromagnetic bands in
two-dimensions is then a clear case of qualitatively new Physics that would not appear if there
was a Migdal theorem for spin fluctuations. The same is true for the Hubbard bands for large
U > W in any dimension.

We would like to state again clearly the nature of our critique of approximation schemes
which are based on using Migdal’s theorem for systems with electron-electron interactions. We
do not imply that one does not need at all to take into account the feedback of the single-
particle spectra on collective modes. The only point that we want to make here is that, based
on sum rules and comparison with Monte Carlo data, we see that frequency and momentum
dependent corrections to the self-energy and to the vertex often tend to cancel one another
and that ignoring this leads to qualitatively incorrect results, in particular, with regards to
the pseudogap. In this paper we were able to look only at the beginning of the renormalized
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classical regime when the pseudogap starts to form. The truly self-consistent treatment of
the one-particle and two-particle properties in the pseudogap regime remains an open and
very challenging problem. We hope that by extending our approach to the ordered state and
looking at how the pseudogap starts to disappear as the temperature is raised, one can better
understand how to develop a more self-consistent theory in the pseudogap regime. We now
point out how our approach can be extended in other directions.

As we mentioned in Section 5, the pseudogap and precursors of antiferromagnetic bands
in the two-dimensional repulsive Hubbard model have interesting analogs in the attractive
Hubbard model. In that model, one expects a pairing pseudogap and precursors of supercon-
ducting quasiparticle bands above Tc. At half-filling the negative and positive Hubbard models
are mapped onto one another by a canonical transformation and the present theory is directly
applicable to the attractive case. However, away from half-filling the mapping between the
two models is more complicated and the microscopic theory requires additional sum-rule for
pairing susceptibilities to find self-consistently the effective pairing interaction. This work is
now in progress.

The present approach can be also extended to stronger coupling U > W . Again the key idea
would be to parameterize the irreducible vertices, which have now to be frequency dependent,
and then use the most important sum-rules to find the parameterization coefficients. This will,
of course, require solving much more complicated self-consistent equations than in the present
approach, but we believe that the problem still can be made tractable.

Finally, we would like to make two comments about the magnetic and the pairing pseudogap
in the context of high-Tc superconductors, based on the results of our studies. First, as was
stressed in reference [36], to understand clearly the physics of the single-particle pseudogap
phenomena it is important to distinguish static short-range order from dynamical short-range
order. The former is defined by a nearly Lorentzian form of the corresponding static structure
factor S(q) ∝ 1/((q−Q)2 + ξ−2) (Q = (π, π) in magnetic case, Q = 0 in the case of pairing),
while the latter means only that the corresponding susceptibility χ(q, 0) has such a Lorentzian
form. A condition for the existence of the single particle pseudogap in the vicinity of a given
phase transition is that the corresponding short-range order is quasi-static (i.e. ωSF � T ) [36].
Experimentally, one can measure directly the dynamical spin structure factor S(q, ω), and
then obtain the static structure factor through the integral S(q) =

∫
S(q, ω)dω/(2π). Even

if the zero-frequency dynamical structure factor Ssp(q, 0) is very strongly peaked at q ∼ Q it
is possible that the static structure factor Ssp(q) is only weakly momentum dependent [36].
Thus in order to know whether one should expect to see the precursors of the antiferromagnetic
bands and the corresponding pseudogap at a given doping and temperature it is necessary to
obtain the static spin structure factor from the experimentally determined dynamical structure
factor and then analyze its momentum dependence to see both if it is peaked and if it is quasi-
two-dimensional.

The second comment that we would like to make is that both the pairing and the magnetic
single-particle pseudogap discussed above are an effect of low dimensionality and hence they
exist as long as there is a large two-dimensional fluctuating regime before the real three-
dimensional phase transition. In this context, a pairing pseudogap could exist on either side
of optimal doping [79]. The much larger temperature range over which a pseudogap appears
in the underdoped compounds suggests that, in addition to pairing fluctuations, other thermal
fluctuations (charge, spin...) prohibit finite-temperature ordering [80]. An example of this
occurs in the attractive Hubbard model where charge fluctuations push the Kosterlitz-Thouless
temperature to zero at half-filling, precisely where the crossover temperature to the pseudogap
regime is largest.
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Appendix A

Sum Rules, Ward Identities and Consistency Requirements

In this appendix, we recall well known constraints on many-body theory that follow from sum-
rules and conservation laws and comment, wherever possible, on their physical meaning and
on where commonly used approaches fail to satisfy these constraints. Although we come back
on a detailed discussion of various theories in a later appendix, we find it useful to include
some of this discussion here to motivate our approach. We consider in turn various results that
would be satisfied by any exact solution of the many-body problem. They are all consequences
of either anticommutation relations alone (Pauli principle) or of anticommutation relations
and the Heisenberg equations of motion. We describe in turn: 1) the relation between self-
energy and two-body correlation functions that embodies the details of the Hamiltonian; 2)
sum rules for one-particle properties; 3) sum rules and constraints on two-particle properties,
in particular f-sum rule and Ward identities that express conservation laws; 4) a few relations
that are crucial in Fermi liquid theory, namely Luttinger’s theorem and the forward scattering
sum rule.

A.1. Equations of Motion and the Relation between the Self-Energy Σ and

Two-Particle Properties. — The self-energy (we always mean one-particle irreducible
self-energy) is related to the potential energy, and hence to two-particle correlations through
the expression equation (44), which in the Kadanoff and Baym notation can be written as

Σσ
(
1, 1
)
Gσ
(
1, 1+

)
= U 〈n↑n↓〉 · (A.1)

Here, the index with an overbar, 1, means that there is a sum over corresponding lattice
positions and an integral over imaginary time. The notation 1+ means that the imaginary
time implicit in 1 is τ1 + η where η is a positive infinitesimal number. Equation (A.1) is an
important consistency requirement between self-energy and double occupancy in the Hubbard
model that can easily be proven as follows. From the equations of motion for the single-particle
Green’s function (Eq. (3)) one finds[(

−
∂

∂τi
+ µ

)
δi,` + ti`

]
Gσ (r` − rj , τi − τj)

= δi,jδ (τi − τj)− U
〈
Tτ

(
c†i−σ (τi) ci−σ (τi) ciσ (τi) c

†
jσ (τj)

)〉
· (A.2)
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Using the short-hand notation in equations (3, 4) and the definition of self-energy (Dyson’s
equation) the above equation is also written in the form,

G−1
0 (1, 1)Gσ(1, 2) = δ (1− 2) + Σσ(1, 1)Gσ(1, 2). (A.3)

Comparing the last two equations, the well known relation equation (A.1) (or Eq. (44)) between
self-energy, Green’s function and potential energy follows.

So-called conserving [26] approaches to the many-body problem violate the above consistency
requirement (Eq. (44)) in the following sense. The right-hand side can be computed from the
collective modes using the fluctuation-dissipation theorem. In conserving approximations, this
gives a result that is different from what is computed directly from the left-hand side of the
equation, namely from the self-energy and from the Green’s function. In fact, all many-body
approaches satisfy the above consistency requirement at best in an approximate way. However,
it is a very important requirement and equation (44) plays a key role in our discussion. Seen
in Matsubara frequency, it is a sum rule, or an integral constraint that involves all frequencies,
large and small.

A.2. Constraints on Single-Particle Properties. — The spectral weight Aσ (k, ω) can
be interpreted as a probability of having an electron in a state (σ,k, ω) and it satisfies the
normalization sum rule ∫ ∞

−∞

dω

2π
Aσ(k, ω) =

〈{
ckσ, c

†
kσ

}〉
= 1. (A.4)

Formally this is a consequence of the jump in the Green’s function at τ = 0, as can be seen
from calculating

Gσ(k, 0
−)−Gσ(k, 0

+) = 1 = T
∑
ikn

(
eiknη − e−iknη

) ∫ ∞
−∞

dω

2π

Aσ(k, ω)

ikn − ω

=

∫ ∞
−∞

dω

2π
Aσ(k, ω). (A.5)

To do perturbation theory directly for the Green’s function to any finite order would require
that the interaction U be small not only in comparison with the bandwidth W but also in
comparison with the smallest Matsubara frequency ik1 = 2πT . Also, the direct perturbation
series for the Green’s function gives, after analytical continuation, poles of arbitrary high order
located at the unperturbed energies. These high-order poles are inconsistent with the simple
pole (or branch cut) structure of the Green’s function predicted by the spectral representation.
Furthermore, the high-order poles lead to a spectral weight that can be negative [81]. The
common way to get around these difficulties is to make approximations for the self-energy Σ
instead and then calculate the Green’s function using Dyson’s equation (Eq. (8)).

It is interesting to note that to satisfy the constraint equation (A.4), it suffices that Σ(k, ikn),
defined by equation (8), has a finite limit as ikn →∞. More constraints on approximations for
the self-energy may be found by continuing this line of thought. A systematic way of doing
this is to do a high-frequency expansion for both the Matsubara Green’s function and the
self-energy and to find coefficients using sum-rules. The sum-rules that we need then are [82]∫ ∞

−∞

dω

2π
ωAσ(k, ω) =

〈{
[ckσ, (H − µN)] , c†kσ

}〉
= εk − µ+ Un−σ (A.6)

∫ ∞
−∞

dω

2π
ω2Aσ(k, ω) = (εk − µ)2 + 2U(εk − µ)n−σ + U2n−σ (A.7)

where nσ = n/2 since we are in the paramagnetic state.
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Using the spectral representation (Eq. (6)) one can easily see that the above sum rules give
the coefficients of the high-frequency expansion of the Matsubara Green’s function

lim
ikn→∞

Gσ(k, ikn) =
1

ikn
+

(
1

ikn

)2 ∫
dω

2π
ωAσ(k, ω) +

(
1

ikn

)3 ∫
dω

2π
ω2Aσ(k, ω) + · · · (A.8)

The self-energy has the same analytic properties as the Green’s function. Using its high
frequency expansion in the expression for the Green’s function (Eq. (8)), one finds that the
first term in equation (A.8), leads to the requirement that the self-energy has a finite limit
at ikn → ∞. The second term fixes the value of this constant to the Hartree-Fock result,
and the last and second-term combine to give the leading term in 1/ikn of the self-energy
high-frequency expansion. In short, we find the result quoted in equation (68), namely

lim
ikn→∞

Σσ(k, ikn) = Un−σ +
U2n−σ (1− n−σ)

ikn
+ · · · (A.9)

The Kramers-Kronig relation for the self-energy

Re
[
ΣR
σ (k, ω)− ΣR

σ (k,∞)
]

= P

∫
dω′

π

Im
[
ΣR
σ (k, ω′)

]
ω′ − ω

and the high-frequency result (Eq. (A.9)) imply the following sum-rule for the imaginary part
of the self-energy

−

∫
dω′

π
Im
[
ΣR
σ (k, ω′)

]
= U2n−σ (1− n−σ) .

Important consequences of this equation are that for a given U the integrated imaginary part
of the self-energy is independent of temperature and is increasing towards half-filling. The
right-hand side of this equation is also a measure of the width of the single-particle excitation
spectrum, as can be seen from the spectral weight moments (Eqs. (A.6, A.7),

ω2 − ω2 ≡

∫ ∞
−∞

dω

2π
ω2Aσ(k, ω)−

[∫ ∞
−∞

dω

2π
ωAσ(k, ω)

]2

= U2n−σ (1− n−σ) .

An important physical point is that the asymptotic behavior (Eq. (A.9)) is a necessary condi-
tion for the existence of upper and lower Hubbard bands, as has been explained in Section 6.1.
However, it is important to realize that it is not a sufficient condition. Indeed, the following
paradox has been noticed in explicit calculations in infinite dimensions [11,74]. While ordinary
second-order perturbation theory with bare Green functions G0 reproduces correctly the ap-
pearance of the Hubbard bands with increasing U , the perturbation theory with dressed Green
function G = [G−1

0 − Σ]−1 does not. The reason for this is that although the second-order
expression for Σσ (k, ikn) in terms of full G does satisfy the asymptotics (Eq. (A.9)), it sets in
too late, namely for kn � U , instead of kn � W . The fact that the asymptotics should start
at kn ∼W even when U > W is a non-trivial consequence of the Pauli principle, as explained
in Section 6.1. Thus there are no Hubbard bands in any theory that uses self-consistent Green
functions but neglects the frequency dependence of the vertex. This is an explicit example that
illustrates what seems to be a more general phenomena: a calculation with dressed Green’s
functions but no frequency dependent vertex correction often gives worse results that the one
done with bare Green’s functions and a frequency independent vertex. We will see in the next
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subsection that this also happens in the calculation of the two-particle properties. Also, as we
have argued in Section 6, a similar situation occurs with the precursors of antiferromagnetic
bands in the renormalized classical regime in two-dimensions.

Finally, we quote two more well known sum-rules that we will need. They involve the Fermi
function f (ω) and the spectral weight. The first one follows from definition of Gσ (k, τ) and
the spectral representation

lim
τ→0−

Gσ (k, τ) =

∫
dω

2π
f (ω)Aσ (k, ω) =

〈
c†kσckσ

〉
≡ nkσ. (A.10)

The quantity nkσ is the distribution function. It is equal to the Fermi function only when the
self-energy is frequency independent. The next result, that follows simply from the equations
of motion,

lim
τ→0−

−
1

N

∑
k

∂Gσ (k, τ)

∂τ
=

1

N

∑
k

∫
dω

2π
ωf (ω)Aσ (k, ω)

=
1

N

∑
k

(εk − µ)nkσ + U 〈n↑n↓〉 (A.11)

is useful to show to what extent certain dressed-propagator approaches fail to satisfy the f -sum
rule.

A.3. Constraints on Two-Particle Properties. — For any one-band model, indepen-
dently of the Hamiltonian, the Pauli principle (anticommutation relations)〈

n2
iσ

〉
= 〈niσ〉 (A.12)

implies the following two simple identities:〈
(ni↑ ± ni↓)

2
〉

= n± 2 〈ni↑ni↓〉 · (A.13)

The correlation functions on the left-hand side are equal-time and equal-position spin and
charge correlation functions. The susceptibilities χch (ri − rj , τ) , χsp (ri − rj , τ) in equations
(17, 16) are response functions for arbitrary (ri − rj , τ) so they must reduce to the above
equal-time equal-position correlation functions when ri = rj and τ = 0. This is one special
case of the imaginary-time version of the fluctuation-dissipation theorem (Eqs. (16, 17)). This
translates into local-moment and local-charge sum-rules for the susceptibilities

T

N

∑
q

∑
iqn

χsp (q, iqn) = 2 〈n↑n↑〉 − 2 〈n↑n↓〉 = n− 2 〈n↑n↓〉 (A.14)

T

N

∑
q

∑
iqn

χch (q, iqn) = 2 〈n↑n↑〉+ 2 〈n↑n↓〉 − n
2 = n+ 2 〈n↑n↓〉 − n

2 (A.15)

where we have removed the i dependence of 〈ni↑ni↓〉 using translational invariance. The right-

hand side of the local-moment sum-rule is equal to 〈(Sz)2〉,while that of the local-charge sum
rule is equal to

〈
ρ2
〉
− n2.

If arbitrary sets of diagrams are summed, nothing can prevent the right-hand side from
taking unphysical values. For example, the Pauli principle may be violated, i.e. 〈n↑n↑〉 6= 〈n↑〉 .
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To see this, notice that when the Pauli principle is satisfied, our two sum rules equations (A.14,
A.15) lead to

T

N

∑
q

∑
iqn

[χsp (q, iqn) + χch (q, iqn)] = 2n− n2. (A.16)

It is easy to check that well known approaches to the many-body problem, such as RPA, violate
this basic requirement. Indeed, the ordinary RPA expressions for spin and charge are

χRPA
sp (q) ≡

χ0

1− U
2 χ0

(A.17)

χRPA
ch (q) ≡

χ0

1 + U
2 χ0

(A.18)

where

χ0 (q) = −2
T

N

∑
k

G(0) (k)G(0) (k + q) . (A.19)

That RPA does not satisfy the sum rule (Eq. (A.16)) already to second order in U can be
easily seen by expanding the denominators.

To satisfy the Mermin-Wagner theorem, approximate theories must also prevent 〈n↑n↓〉 from
taking unphysical values. This quantity is positive and bounded by its value for U = ∞ and
its value for non-interacting systems, namely 0 ≤ 〈n↑n↓〉 ≤ n2/4. Hence, the right-hand side of
the local-moment sum-rule (Eq. (A.14)) is contained in the interval

[
n, n− 1

2n
2
]
. Any theory

that prevents the right-hand side of the local-moment sum rule from taking infinite values
satisfies the Mermin-Wagner theorem.

Proof: Near a magnetic phase transition, the zero Matsubara-frequency component of the
spin susceptibility takes the Ornstein-Zernicke form

χsp (q + Q, 0) ∼
1

q2 + ξ−2
(A.20)

where q is measured with respect to the ordering wave vector Q and where ξ2 is the
square of the correlation length. Near its maximum, the above susceptibility is of order
ξ2 while all finite Matsubara-frequency components at the ordering wave vector are at
most of order 1/ (2πT )

2
which is much smaller than ξ2. Hence, one can keep only the

zero-Matsubara frequency contribution on the left-hand side of the local-moment sum
rule (Eq. (A.14)) obtaining

T

∫
ddq

(2π)
d

1

q2 + ξ−2
= C̃ (A.21)

where C̃ contains non-zero Matsubara frequency contributions as well as n − 2 〈n↑n↓〉 .

Since C̃ is finite, this means that in two dimensions (d = 2), it is impossible to have
ξ−2 = 0 on the left-hand side otherwise the integral would diverge logarithmically.

Finally, the f -sum rule on spin and charge susceptibilities follows as usual from the fact that the

Hamiltonian conserves particle number. Computing
〈[
ρq,

∂ρ−q

∂τ

]〉∣∣∣
τ=0

and
〈[
Sq,

∂S−q

∂τ

]〉∣∣∣
τ=0

one obtains for either charge or spin∫
dω

π
ωχ′′ch,sp (q, ω) = lim

η→0
T
∑
iqn

(
e−iqnη − eiqnη

)
iqnχch,sp (q, iqn)

=
1

N

∑
kσ

(εk+q + εk−q − 2εk)nkσ. (A.22)
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As can be seen from the spectral representations of spin and charge susceptibilities, equa-
tion (20), the quantity that obeys the f -sum rule is the coefficient of the leading term in the
1/q2

n high-frequency expansion of the susceptibilities.
The single-particle energies εk entering explicitly the right-hand side of the f -sum rule are

independent of interactions, so interactions influence the f -sum rule only very weakly through
the nkσ. In fact, in a continuum εk ∝ k2 so nkσ enters only in the form

∑
kσ nkσ = n. In this

case, the right-hand side of the f -sum rule is proportional to q2n and hence is independent
of interactions. On a lattice however, the energies cannot in general be taken out of the sum
and interactions influence the value of the right-hand side, but only through the fact that nkσ

differs from the non-interacting Fermi function fkσ. At strong-coupling, where the self-energy
is strongly frequency dependent, this difference between nkσ and fkσ becomes important.
But from weak to intermediate coupling, calculations where fkσ appears on the right-hand
side should be good approximations. In the explicit examples that we have treated, the U
dependence of the f -sum rule becomes important only close to half-filling and for U > 4,
signaling the breakdown of approximations based on frequency-independent self-energies.

While RPA-like theories that use fkσ instead of nkσ violate only weakly the f -sum rule in
the weak to intermediate coupling regime, self-consistent theories that use frequency-dependent
self-energies but no frequency-dependent vertices violate conservations laws in general, and the
f -sum rule in particular, in a much more dramatic way. The point is that susceptibilities with
a dressed bubble, χ̃RPA = χ̃0/(1 −

1
2Uχ̃0), are bad approximations because they have the

following properties, for any value of U

χ̃RPA(q = 0, iqn 6= 0) 6= 0 (A.23)∫
dω

2π
ωχ̃′′RPA (q, ω) =

1

N

∑
k,σ

(εk+q + εk−q − 2εk)nkσ + 4U (〈n↑〉 〈n↓〉 − 〈n↑n↓〉) . (A.24)

The first of these equations explicitly violates the Ward identity, equation (A.28) below, at
all frequencies, including small non-zero ones, since at zero wave vector we should have
χ(q = 0, iqn 6= 0) = 0 for all frequencies except zero. The second equation (Eq. (A.24)) violates
the f -sum rule (Eq. (A.22)) at all wave vectors, by a constant term 4U (〈n↑〉 〈n↓〉 − 〈n↑n↓〉)
which in practical calculations, say at U = 4, is of the same order as the first term, which is
the only one that should be there according to the f -sum rule.

Proof: Equations (A.23, A.24) are proven as follows. Consider the standard RPA expression
but with dressed bubbles χ̃0

χ̃RPA = χ̃0/(1−
U

2
χ̃0). (A.25)

Using the spectral representation for the Green’s function and inversion symmetry in the
Brillouin zone one finds

χ̃0 (q, iqn) =
2

N

∑
k

∫
dω

2π

∫
dω′

2π
A(k, ω)A(k + q, ω′)

(ω − ω′) (f (ω′)− f (ω))

(ω − ω′)2
+ q2

n

· (A.26)

When the bubble is not dressed, the spectral weights are delta functions so that at
q = 0 the susceptibility would vanish for all non-zero values of qn, as required by the
Ward identity. However, here because the spectral weight has a width and because the
integrand is even and positive, then the integral will not vanish, resulting in the first
anomaly (Eq. (A.23)) we mention. To prove the second equation (Eq. (A.24)), it suffices
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to remember from the spectral representation of the susceptibility (Eq. (20)) and the
derivation of the f -sum rule (Eqs. (A.22)) that we are looking for the coefficient of the
1/q2

n term in the high-frequency expansion. Given the RPA form (Eq. (A.25)), only the
numerator contributes to this limit. One obtains, for the coefficient of the 1/q2

n term,

2

N

∑
k

∫
dω

2π

∫
dω′

2π
A(k, ω)A(k + q, ω′) (ω − ω′) (f (ω′)− f (ω)) (A.27)

from which equation (A.24) follows using the sum rules for occupation number (Eq. (A.10))
and for energy (Eq. (A.11)).

Conservation laws have general consequences not only on equal-time correlation functions, as in
the f -sum rule above, but also on time-dependent correlation functions. For example, from the
Heisenberg equations of motion and anti-commutation relations, follow the Ward identities [45]∑

k

∑
σ=±1

∑
σ′=±1

(
∂

∂τ
+ (εk+q − εk)

)〈
Tτc
†
kσ (τ)σ`ck+qσ (τ) c†k′+qσ′ (τ1)σ

′`ck′σ′ (τ2)
〉

= δ (τ − τ1)
∑
σ′=±1

σ′`Gσ′ (k
′, τ2 − τ) − δ (τ − τ2)

∑
σ′=±1

σ′`Gσ′ (k
′ + q, τ − τ1) (A.28)

where ` = 0 for charge, and ` = 1 for spin. The f -sum rule above (Eq. (A.22)) follows from
the above identity by simply taking τ1 = τ+

2 , summing over k′ and subtracting the two results
for τ → τ+

1 and τ → τ−1 .
We have seen in this section that there are strong cancelations for two-particle properties

between the frequency dependence of self-energy and that of the vertex corrections, so that
putting a frequency dependence in only one of them is a bad approximation. We have adopted
the Kadanoff-Baym formalism in the main text since it can be used as a guide to make ap-
proximations that satisfy conservation laws.

A.4. When there is a Fermi Surface. — When perturbation theory converges (no phase
transition) then at zero temperature T = 0 the imaginary part of the self-energy vanishes,
Σ′′σ (k, ω = 0) = 0, for all k values and the Fermi surface defined by

εk − µ− Σ′σ (k, ω = 0) = 0 (A.29)

encloses a volume that is equal to the volume enclosed by non-interacting particles

1

N

∑
k

θ (µ− εk − Σ′σ (k, 0)) =
1

N

∑
k

θ (µ0 − εk) = nσ. (A.30)

This is the content of Luttinger’s theorem [28,83]. It implies that there is a strong cancelation
between the change of the chemical potential and the change of the self-energy on the Fermi
surface. In particular, when Σ′σ (kF, 0) does not depend on k or on the direction of kF (infinite
D Hubbard model, electron gas) the change in (µ− µ0) is exactly canceled by Σ′σ (kF, 0)

µ− µ0 = Σ′σ (kF, 0) . (A.31)

Luttinger’s theorem is satisfied when

lim
T→0

∫
∂Σσ(k, iν)

∂(iν)
Gσ(k, iν)dνdk = 0. (A.32)
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Any theory that calculates its self-energy from a functional derivative of the Luttinger-Ward
functional Σ = δΦ[G]/δG will satisfy Luttinger’s theorem [28, 83]. The latter procedure re-
quires self-consistent determination of the self-energy as a function of momentum and fre-
quency Σσ (k, ikn) and is usually quite computationally involved. However, even when this
procedure to calculate the self-energy is not followed, it turns out to be rather easy to sat-
isfy this theorem to an excellent degree of approximation in the weak to intermediate cou-
pling regime. The reason for this is that any frequency-independent self-energy will preserve
Luttinger’s theorem and weak frequency dependence will not cause great harm. For the electron
gas, Luttinger [28] suggests a way to build a perturbation theory in terms of non-interacting
Green’s functions which allows to satisfy Luttinger’s theorem to very good accuracy. The
trick is that the chemical potential for the interacting electrons µ should always enter the
calculations in the form of the difference with the shift of the self-energy on the Fermi surface
G̃0 = 1/[ikn − εk + (µ − Σ′σ (kF, 0))]. The “non-interacting” Green’s function G̃0 in this for-
malism is the Green’s function of some effective non-interacting system and, in general, it is
different from both 1/ (ikn − εk + µ) and 1/ (ikn − εk + µ0). However, when T → 0 Luttinger’s
theorem requires that (µ−Σ′σ (kF, 0))→ µ0 and one can approximate G̃0 by the Green’s func-
tion for a non-interacting system of the same density G0 = 1/ (ikn − εk + µ0). In practice, one
can also have a phase transition (or crossover) at a finite temperature Tc (TX). In these cases
Luttinger’s theorem is satisfied only approximately since the zero-temperature limit cannot be
reached without a breakdown of perturbation theory. Then the relevant question is how well
it is satisfied at Tc (TX) (see also Sect. 3.2.2 for a discussion of Luttinger’s theorem in our
approach).

When Luttinger’s theorem holds, one can usually develop a Landau Fermi liquid theory. In
this approach, the Pauli principle is implemented only for momentum states near the Fermi
surface by imposing the forward scattering sum rule. This sum rule, in two dimensions, reads∑

`

[
F s
`

1 + F s
`

+
F a
`

1 + F a
`

]
= 0 (A.33)

where F s
` and F a

` are the symmetric and antisymmetric Landau parameters expanded on the
e−iθ` basis instead of the Legendre polynomial basis. Recent renormalization group analysis
has however claimed [84] that the forward scattering sum rule comes from an inaccurate use of
crossing symmetry and is not the proper way to enforce the Pauli principle. Most approaches
to the many-body problem disregard this sum rule anyway, in the same way that they disregard
the local Pauli principle.

Appendix B

Proofs of Various Formal Results

In this appendix, we give the proofs of various relations mentioned in Sections 3 and 3.2.3.

1. The general expression for the self-energy (Eq. (27)) can be obtained as follows. Use the
equations of motion and the definition of the self-energy (Eqs. (A.2, A.3)) which in the
present notation give

Σσ
(
1, 1
)
Gσ
(
1, 2
)

= −U
〈
Tτ
[
ψ+
−σ

(
1++

)
ψ−σ

(
1+
)
ψσ (1)ψ+

σ (2)
]〉

(B.1)

= −U

[
δGσ (1, 2)

δφ−σ (1, 1+)
−G−σ

(
1, 1+

)
Gσ (1, 2)

]
. (B.2)
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Substituting the equation for the three-point susceptibility (collective modes) (Eq. (26))
in this last equation and multiplying on both sides by G−1 proves [27] the expression
(Eq. (27)) for the self-energy.

2. We now show that our approach satisfies the consistency requirement between single-
particle properties and collective modes in the form of equation (48). Using our expression
(Eq. (46)) for Σ(1) and the definition of χ0 (Eq. (A.19)) we obtain

lim
τ→0−

T

N

∑
k

Σ(1)
σ (k)G(0)

σ (k)e−iknτ = Un2
−σ −

U

4

T

N

∑
q

[Uspχsp(q) + Uchχch(q)]
χ0(q)

2
· (B.3)

Using

χsp(q) − χ0 (q) =
Usp

2
χ0 (q)χsp(q) (B.4)

χ0 (q)− χch(q) =
Uch

2
χ0 (q)χch(q) (B.5)

and the local moment (Eq. (38)) and local charge (Eq. (37)) sum rules proves the result.
The result is also obvious if we follow the steps in the first part of this appendix to
deduce the self-energy expression (Eq. (31)) using the collective mode equation (Eq. (30))
adapted to our approximation.

Appendix C

Ansatz for Relation between U sp and 〈n↑n↓〉

Using the present notation and formalism, we now give a physical derivation of equation (40)
that is equivalent to the one already given using the equations of motion approach [29]. (The
latter derivation was inspired by the local field approximation of Singwi et al. [31]). Since our
considerations on collective modes are independent of the precise value of the interaction U ,
we do have to use the equations of motion, or the equivalent, to feed that information back in
the definition of irreducible vertices. The two irreducible vertices that we need are in principle
calculable from

Γσσ′δ (1− 3) δ (2− 4) δ
(
2− 1+

)
=

δΣσ (1, 2)

δGσ′ (3, 4)
=
δ
[
Σσ
(
1, 1
)
Gσ
(
1, 2
)
G−1
σ

(
2, 2
)]

δGσ′ (3, 4)
· (C.1)

The rewriting on the right-hand side has been done to take advantage of the fact that
in the Hubbard model, the equations of motion (see Eqs. (A.2, A.3)) give us the
product Σσ

(
1, 1
)
Gσ
(
1, 2
)

as the highly local four field correlation function

−U
〈
Tτ
[
ψ+
−σ (1++)ψ−σ (1+)ψσ (1)ψ+

σ

(
2
)]〉

. Ordinary RPA amounts to a Hartree-Fock fac-
toring of this correlation function. Pursuing the philosophy that the minimum number of
approximations should be done on local correlation functions, we do this factoring in such a
way that it becomes exact when all points are identical, namely when 2 = 1+. In other words,
we write

− U
〈
Tτ
[
ψ+
−σ(1

++)ψ−σ(1
+)ψσ(1)ψ+

σ (2)
]〉
∼ U

〈n↑ (1)n↓ (1)〉

〈n↑ (1)〉 〈n↓ (1)〉
G−σ(1, 1

+)Gσ(1, 2). (C.2)
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All quantities are evaluated as functionals of G up to this point. We can now evaluate the
functional derivative

δΣσ (1, 2)

δGσ′ (3, 4)
=
δ
[
U
〈n↑(1)n↓(1)〉
〈n↑(1)〉〈n↓(1)〉G−σ (1, 1+) δ (1− 2)

]
δGσ′ (3, 4)

(C.3)

=
δ
[
U
〈n↑(1)n↓(1)〉
〈n↑(1)〉〈n↓(1)〉

]
δGσ′ (3, 4)

G−σ
(
1, 1+

)
δ (1− 2) + U

〈n↑ (1)n↓ (1)〉

〈n↑ (1)〉 〈n↓ (1)〉

δG−σ (1, 1+)

δGσ′ (3, 4)
δ (1− 2) . (C.4)

The functional derivatives are now evaluated for the actual equilibrium value of G. Hence, we
can use rotational invariance to argue that the first term is independent of σ and σ′ whereas
the last one is proportional to δ−σ,σ′ . Since Usp = Γ↑↓ − Γ↑↑, only this last term proportional
to δ−σ,σ′ contributes to Usp. To obtain this term, it suffices to note that

δG−σ (1, 1+)

δGσ′ (3, 4)
= δ−σ,σ′δ (1− 3) δ

(
4− 1+

)
(C.5)

and we obtain the desired result (Eq. (40)) for Usp.

Appendix D

Real-Frequency Analysis of the Self-Energy and Fermi Liquid Limit

It is instructive to recover the two-dimensional result for precursors of antiferromagnetic bands
using the real-frequency formalism since it also clarifies the limit in which the Fermi liquid
result is recovered. Again we neglect the contribution of charge fluctuations. Starting from
our expression for the self-energy (Eq. (46)), one uses the spectral representation for the
susceptibility and for G(0). The Matsubara frequency sums can be then done and the result is
trivially continued to real frequencies [85]. One obtains, for the contribution of classical and
quantum spin fluctuations to the self-energy in d dimensions

ΣR (k, ω) =
UUsp

4

∫
ddq

(2π)
d

∫
dω′

π
[n (ω′) + f (εk+q)]

χ′′sp (q, ω′)

ω + iη + ω′ − (εk+q − µ0)
(D.1)

where µ0 = 0 at half-filling in the nearest-neighbor model and where f is, as usual, the Fermi

function, while n (ω) =
(
eβω − 1

)−1
is the Bose-Einstein distribution. To analyze this result

in various limiting cases we need to know more about the frequency dependence of the spin
susceptibility. When the antiferromagnetic correlation length is large, the zero-frequency result
(Eq. (50)) mentioned above can be generalized to

χR
sp(q + Qd, ω) ≈ ξ2 2

Uspξ
2
0

[
1

1 + q2ξ2 − iω/ωSF

]
(D.2)

where, ωSF = D/ξ2 is the characteristic spin relaxation frequency. In the notation of reference
[33], the microscopic diffusion constant D is defined by

1

D
≡
τ0

ξ2
0

(D.3)

with the microscopic relaxation time,

τ0 =
1

χ0 (Qd)

∂χR
0 (Qd, ω)

∂iω

∣∣∣∣
ω=0

· (D.4)
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This relaxation-time is non-zero in models where the Fermi surface intersects the magnetic
Brillouin zone. Clearly, the frequency dependence of χR

sp(q + Qd, ω) is on a scale ωSF = D/ξ2.
The 1/ω decrease of χ′′sp at high-frequency is not enough to ensure that the real frequency
version of the local-moment sum rule is satisfied and the simplest way to cure this problem
is to introduce [86] a high-frequency cutoff Ωcut. The large correlation length makes the
characteristic energy of the spin fluctuations ωSF a small number (critical slowing down). We
consider in turn two limiting cases [87]. The Fermi-liquid regime appears for ωSF � T and the
non-Fermi liquid regime in the opposite (renormalized classical) regime ωSF � T.

D.1. Fermi Liquid and Nested Fermi Liquid Regime ωSF � T . — Perhaps the best
known characteristic of a Fermi liquid is that Σ′′R(kF, ω;T=0)∝ω2 and Σ′′R(kF, ω=0;T )∝T 2.
To recover this result in the regime ωSF � T far from phase transitions, we start from the
above expression (Eq. (D.1)) for the self-energy to obtain

Σ′′R (kF, ω) = −
UUsp

4

1

2vF

∫
dd−1q⊥

(2π)
d−1

∫
dω′

π

× [n (ω′) + f (ω + ω′)]χ′′sp
(
q⊥, q‖ (q⊥,kF, ω, ω

′) ;ω′
)

(D.5)

where q‖, the component of q parallel to the Fermi momentum kF, is obtained from the solution
of the equation

εk+q − µ0 = ω + ω′. (D.6)

The key to understanding the Fermi liquid versus non-Fermi liquid regime is in the relative
width in frequency of χ′′sp (q, ω′) /ω′ versus the width of the combined Bose and Fermi func-
tions. In general, the function n (ω′) + f (ω + ω′) depends on ω′ on a scale Max (ω, T ) while
far from a phase transition, the explicit frequency dependence of χ′′sp (q, ω′) /ω′ is on a scale
ωSF ∼ EF � T . Hence, in this case we can assume that χ′′sp (q, ω′) /ω′ is a constant in the fre-
quency range over which n(ω′)+ f(ω+ω′) differs from zero. Also, since χ′′sp(q, ω′)/ω′ depends
on wave vector q over a scale of order qF, one can neglect the ω + ω′ dependence of q‖ ob-
tained from equation (D.6). Hence, we can approximate our expression (Eq. (D.5)) for Σ′′R by

Σ′′R (kF, ω) ' −
UUsp

4

A (kF)

2vF

∫
dω′

π
[n (ω′) + f (ω + ω′)]ω′

= −
UUsp

4

A (kF)

4vF

[
ω2 + (πT )

2
]

(D.7)

where the substitution x = eβω allowed the integral to be done exactly and where

A (kF) ≡

∫
dd−1q⊥

(2π)
d−1

lim
ω→0

χ′′sp
(
q⊥, q‖ (q⊥,kF , 0, 0) ;ω′

)
ω′

· (D.8)

In general, A depends on the orientation of the Fermi wave vector, k̂F, because it determines
the choice of parallel and perpendicular axis q⊥, q‖. The above result (Eq. (D.7)) for Σ′′R is
the well known Fermi liquid result.

There are known corrections to the Fermi liquid self-energy that come from the non-analytic
ω′/vFq behavior of χ′′sp (q, ω′) /ω′ near the ferromagnetic (zone center) wave vector. In three
dimensions [88] this non-analyticity leads to subdominant ω3 lnω corrections, while in two
dimensions it leads to the dominant ω2 lnω behavior [89,90]. In the case under consideration,
the antiferromagnetic contribution has a larger prefactor. Even when it dominates however, it
can also lead to non-analyticities in the case of a nested Fermi surface. Indeed, we note that

ImχR
0 (Qd, ω) = πNd(

ω

2
)tanh

( ω
4T

)
· (D.9)
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In two dimensions, the logarithmic divergence of the density of states Nd(
ω
2 ) at the van

Hove singularity makes the zero-frequency limit of the microscopic relaxation time (Eq. (D.4))
ill-defined, because of the logarithmic divergence at ω = 0. However, this leads only to logarith-
mic corrections. If we drop logarithmic dependencies, then for ω < T one has
∂χR

0 (Qd, ω) /∂iω
∣∣
ω∼T

∼ 1/T and this 1/T dependence of ∂χR
0 (Qd, ω) /∂iω

∣∣
ω=0

changes the

temperature dependence of Σ′′R (kF, 0) from T 2 to T as discussed in the “Nested Fermi Liquid”
approach [91].

D.2. Non-Fermi Liquid Regime ωSF � T . — Near an antiferromagnetic phase transition,
the spin-fluctuation energy becomes much smaller than temperature. This is the renormalized
classical regime. The condition ωSF � T means that χ′′sp

(
q⊥, q‖;ω

′
)

is peaked over a frequency
interval ω′ � T much narrower than the interval ω′ ∼ T over which n (ω′)+f (ω + ω′) changes.
This situation is the opposite of that encountered in the Fermi liquid regime. To evaluate Σ′′R

(Eq. (D.5)) the Fermi factor can now be neglected compared with the classical limit of the Bose
factor, T/ω′. Then the dominant contribution to Σ′′R (kF, ω) is from classical spin fluctuations

T
∫

dω′

π
1
ω′
χ′′sp = Tχ′sp ' Ssp as we see below. More specifically, we take into account that

the integral is peaked near Q =(π, π) and measure wave vector with respect to the zone
center. For simplicity we consider below the half-filled case µ0 = 0. Then, with the help of
εk+q+Q = −εk+q we approximate the equation for q‖ (Eq. (D.6)) by vFq‖ = − (ω + ω′). This
gives us for equation (D.5) the approximation

Σ′′R (kF, ω) ≈ −
UUsp

4

1

2vF

∫
dd−1q⊥

(2π)
d−1

∫
dω′

π

T

ω′
χ′′sp

(
q⊥, q‖ = −

ω + ω′

vF
;ω′
)
. (D.10)

The dependence of χ′′sp on ω′ through q‖ = −(ω+ω′)/vF may be neglected because q‖ appears
only in the combination (ξ−2 +q2

⊥+q2
‖) and in the regime ωSF � T we have ω′/vF < ωSF/vF ∼

Dξ−2/vF � ξ−1. The latter inequality is generically satisfied when ξ−1 � 1. Using

T

∫
dω′

π

1

ω′
χ′′sp

(
q⊥, q‖ = −

ω

vF
;ω′
)

= Tχ′sp

(
q⊥, q‖ = −

ω

vF
; iqn = 0

)
(D.11)

=
2

Uspξ2
0

T

ξ−2 + q2
⊥ +

(
ω
vF

)2 (D.12)

the above equation (Eq. (D.10)) for Σ′′R (kF, ω) reduces precisely to the classical contribution
found using imaginary-time formalism (Eq. (55)). As we saw in Section 5.1.1, when the condi-
tion ξ > ξth is satisfied, then this contribution is dominant and leads to
limT→0 Σ′′R (kF, 0)→∞.

Appendix E

Expanded Discussion of Other Approaches

This appendix expands in Section 8 to discuss in detail various theories, explaining the advan-
tages and disadvantages of each in the context of the sets of constraints described in Appen-
dices A.2 and A.3.

E.1. Paramagnon Theories. — In standard Paramagnon theories [32, 46], the spin and
charge fluctuations are computed by RPA, using either bare or dressed Green’s functions. Then
the fluctuations are fed back in the self-energy. In fact there is a whole variety of paramagnon



N◦11 NON-PERTURBATIVE APPROACH TO HUBBARD MODEL 1361

theories. They are largely phenomenological. The reader is referred to reference [46] for a
review. We concentrate our discussion on recent versions [52] of the so-called Berk-Schrieffer
formula [92]. In this approach, infinite subsets of diagrams are summed and bare propagators
are used in the calculation of both the susceptibilities and the self-energy, the latter being given
by

ΣBS
σ (k) = Un−σ +

U

4

T

N

∑
q

[(
3UχRPA

sp (q)− 2Uχ0(q)
)

+ UχRPA
ch (q)

]
G0
σ(k + q). (E.1)

The RPA spin and charge susceptibilities have been defined in equations (A.17, A.18). Com-
paring with our self-energy formula (Eq. (46)), it is clear that here there is no vertex correction.
In addition, the factor of three in front of the spin susceptibility in equation (E.1) is supposed
to take into account the presence of both longitudinal and transverse spin waves and the
subtracted term is to avoid double-counting the term of order U2.

We can now see the advantages and disadvantages of this approach. First, note that the sus-
ceptibilities entering the Berk-Schrieffer formula are the RPA ones. As we saw in Appendix A,
these fail to satisfy both the local Pauli principle and the Mermin-Wagner theorem. Hence,
spurious phase transitions will influence the self-energy in uncontrollable ways. The collective
modes do however satisfy conservation laws since they are obtained with bare vertices and
Green’s functions containing a constant self-energy. The f -sum rule (Eqs. (A.22)) then is
satisfied without renormalization of the distribution function nk because the zeroth order self-
energy is constant. This is all in agreement with the definition of a conserving approximation
for the collective modes.

The high-energy asymptotics of the self-energy sets in at the correct energy scale kn > W in
this approach, but the second term of the large-frequency asymptotics is incorrect. Indeed, at
large values of ikn,

lim
ikn→∞

ΣBS
σ (k) = Un−σ +

U

4ikn

T

N

∑
q

[
3UχRPA

sp (q) + UχRPA
ch (q)− 2Uχ0(q)

]
+ · · · (E.2)

and the sums can be evaluated as follows using the fluctuation-dissipation theorem

T

N

∑
q

χRPA
sp (q) = 2 〈n↑n↑〉 − 2 〈n↑n↓〉 (E.3)

T

N

∑
q

χRPA
ch (q) = 2 〈n↑n↑〉+ 2 〈n↑n↓〉 − n

2 (E.4)

T

N

∑
q

χ0(q) = n−
n2

2
· (E.5)

The correlators on the right-hand side take their RPA value so they do not satisfy the Pauli
principle, i.e. 〈n↑n↑〉 6= 〈n↑〉 . Taking these results together we have

lim
ikn→∞

ΣBS
σ (k) = Un−σ +

U2

ikn

[
2 〈n↑n↑〉 − 〈n↑n↓〉 −

n

2

]
+ · · · (E.6)

This does not gives the correct asymptotic behavior (Eq. (68)) even if the Pauli principle
〈n↑n↑〉 = 〈n↑〉 were satisfied, because 〈n↑n↓〉 depends on the interaction U .
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The Paramagnon self-energy (Eq. (E.1)) also does not satisfy the consistency requirement
(Eq. (45)) between self-energy and collective modes imposed by the equations of motion. To
see this we first note that

lim
τ→0−

T

N

∑
k

ΣBS
σ (k)G(0)

σ (k) e−iknτ

= Un2
−σ −

U2

8

T

N

∑
q

[
3χRPA

sp (q) + χRPA
ch (q)− 2χ0(q)

]
χ0 (q) . (E.7)

Using this expression in the sum-rule (Eq. (45)) which relates one and two-particle correlators
and expanding both sides of this sum-rule in powers of U , one finds that it is satisfied only
up to order U2. On the other hand, if one replaces 3χsp − 2χ0 in equation (E.1) by χsp, the
sum-rule (Eq. (45)) is satisfied to all orders in U . In our opinion, the problem of enforcing
rotational invariance in approximate theories is highly non-trivial and cannot be solved simply
by adding factor of 3 in front of χsp and then subtracting 2χ0 to avoid double counting. For
more detailed discussions see reference [50] and the comments at the end of Section 3.2.2.

Luttinger’s theorem is trivially satisfied if the occupation number is calculated with the
initial constant self-energy since it gets absorbed in the chemical potential. If the occupation
number is calculated with the Green’s function that contains the Berk-Schrieffer self-energy
then Luttinger’s theorem is in general violated. It is advisable to use a new chemical potential.

E.2. Conserving Approximations (FLEX). — In the conserving approximation
schemes [26], one takes any physically motivated subset of skeleton diagrams to define a
Luttinger-Ward functional Φ. Skeleton diagrams contain fully dressed Green’s functions and
no self-energy insertions. This functional is functionally differentiated to generate a self-energy
that is then calculated self-consistently since it appears implicitly in the Green’s functions
used in the original set of diagrams. A further functional differentiation allows one to calculate
the irreducible vertices necessary to obtain the collective modes in a way that preserves Ward
identities. If one uses for the free energy the formula

lnZ = Tr [ln (−G)] + Tr (ΣG)− Φ (E.8)

then one obtains thermodynamic consistency in the sense that thermodynamic quantities ob-
tained by derivatives of the free energy are identical to quantities computed directly from the
single-particle Green’s function. For example, particle number can be obtained either from a
trace of the Green’s function or from a chemical potential derivative of the free energy. In this
scheme, Luttinger’s theorem is satisfied as long as perturbation theory converges since then
any initial guess for the Luttinger-Ward functional will satisfy Luttinger’s theorem.

FLEX refers to a particular choice of diagrams for Φ. This choice leads to the following
self-consistent expression for the self-energy

ΣBS
σ (k) = Un−σ +

U

4

T

N

∑
q

[(
3Uχ̃RPA

sp (q)− 2Uχ̃0(q)
)

+ Uχ̃RPA
ch (q)

]
Gσ(k + q). (E.9)

This expression for the self-energy does not contain vertex corrections, despite the fact that,
contrary to the electron-phonon case, Migdal’s theorem does not apply here. We have explained
in detail in Section 6.2 why this may lead to qualitatively wrong results, such as the absence
of precursors of antiferromagnetic bands and of the pseudogap in A(kF, ω) in two dimensions.

Another drawback of this approach is that it does not satisfy the Pauli principle in any
form, either local or through crossing symmetry [93]. Indeed, one would need to include
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all exchange diagrams to satisfy it. In practice this is never done. In the same way that there
is nothing to constrain the value of 〈n↑n↑〉 obtained by the fluctuation-dissipation theorem to
be equal to 〈n↑〉, there is nothing to explicitly constrain the value of 〈n↑n↓〉. Nevertheless, the
Mermin-Wagner theorem is believed to be satisfied in FLEX because the feedback through the
self-energy tends to prevent the divergence of fluctuations in low dimension [38,94]. Physically
however, this seems to be an artificial way of satisfying the Mermin-Wagner theorem since
this theorem should be valid even in localized spin systems where single-particle properties are
negligibly influenced by thermal fluctuations. We also point out that the proof of the Mermin-
Wagner theorem in n→∞ models implies that the finite temperature phase transition in two
dimensions is not simply removed by thermal fluctuations, but that it is replaced by a crossover
to the renormalized classical regime with exponentially growing susceptibility. The fact that
the conserving susceptibility in FLEX does not show such behavior [38] means that FLEX
is actually inconsistent with the generic phase space arguments responsible for the absence
of finite-temperature phase transition in two dimensions. The case of one dimension also
suggests that collective modes by themselves should suffice to guarantee the Mermin-Wagner
theorem without feedback on single-particle properties. Indeed, in one dimension one shows
by diagrammatic methods (parquet summation or renormalization) that the zero-temperature
phase transition is prohibited at the two-particle level even without self-energy effects [8].

Although, the second-order diagram is included correctly in FLEX, it does not have the cor-
rect coefficient in the 1/ikn expansion of the self-energy. More importantly, the high-frequency
behavior sets-in too late to give the Hubbard bands, as we have explained in Section 6.2. We
have also seen a case where FLEX, as judged from comparisons with Monte Carlo simulations
(Fig. 1a of Ref. [30]), does not reproduce the results of second-order perturbation theory even
when it is a good low-energy approximation.

One of the inconsistencies of conserving approximations that is seldom realized, is that the
self-energy is inconsistent with the collective modes. In other words, the consistency formula
(Eq. (44)) is not satisfied in the following sense. The explicit calculation of ΣG leads to an
estimate of U 〈n↑n↓〉 that differs from the one obtained by applying the fluctuation-dissipation
theorem to the conserving spin and charge susceptibilities.

E.3. Pseudo-Potential Parquet Approach. — In the parquet approach, one enforces
complete antisymmetry of the four point function by writing down fully crossing-symmetric
equations for these. There are three irreducible vertices, namely one for the particle-particle
channel, and one for each of the two particle-hole channels. They obey the so-called parquet
equations [95]. The Green’s functions are dressed by a self-energy which itself contains the four
point function. In this way, self-consistency between one-particle and two-particle quantities
is built-in. Solutions are possible for the one-impurity problem [96] and in one-dimension [8].
However, to solve the parquet equations in higher dimension with presently available computing
power is impossible. Bickers et al. [25,53] have formulated the parquet equations as a systematic
improvement over FLEX and have devised a way to do practical calculations by introducing
so-called pseudo-potentials. Since the main computational difficulty is in keeping the full
momentum and frequency dependence of the four point functions entering the calculation of
the self-energy, this is where the various fluctuations channels are approximated by RPA-like
forms (Eq. (A.25)) but with fully dressed propagators and an effective interaction (pseudo-
potential) instead of U . A different strategy is under development [94]. The criticism of the
present section applies only to the current pseudo-potential parquet approach [25,53].

It can be seen that one drawback of this approach at the physical level is that the use of
constant effective interactions with dressed single-particle propagators means that the fluctu-
ations used in the calculation of the self-energy do not satisfy conservation laws, as we just
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demonstrated in Section A.3. Furthermore, the pseudopotentials are determined by asking that
the susceptibilities extracted from the four-point functions in the parquet equations match the
corresponding RPA-pseudo-potential susceptibility at only one wave vector and frequency. The
choice of this matching point is arbitrary: should the match be done for the typical, the average,
or the maximal value of the susceptibility in the Brillouin zone?

As we have seen in Section 6, even if the expression for the self-energy in this approach
explicitly has the second-order perturbation theory diagram in it, this is not sufficient to ensure
that the correct high frequency asymptotic behavior starts at the appropriate frequency scale
ikn ∼ W . Nevertheless, in many cases the results of the calculations performed with this
approach are not so different from second-order perturbation theory, as can be seen from
Figure 1 of reference [30].

Going rapidly through the rest of our list of properties, we see that the consistency re-
quirement Σσ

(
1, 1
)
Gσ
(
1, 1+

)
= U 〈n↑n↓〉 is at least approximately built-in by construction.

Concerning the local-moment sum-rule and the Mermin-Wagner theorem, it has been shown
that the so-called “basic” parquet equations should have the same critical behavior as the
leading term in the 1/N expansion [97], and hence should satisfy the Mermin-Wagner theo-
rem [94]. The pseudo-potentials should not affect the self-consistency necessary to satisfy the
Mermin-Wagner theorem but the fact that they are matched at a single point might introduce
difficulties, especially if the wave-vector at which χsp becomes unstable is unknown from the
start. As far as the Pauli principle is concerned, it should be at least approximately satisfied
both locally and in momentum space. Nothing however in the approach enforces conservation
laws.

E.4. Present Approach. — The role of the above sum-rules in our approach has been
discussed in detail in the main text. Here we will discuss only a few additional points.

If we concentrate on the q = 0 properties, our spin and charge correlations behave as a special
case of the “local Fermi liquid” defined in reference [98]. A “local Fermi liquid” is a description
of q = 0 properties that applies when the self-energy, and consequently irreducible vertices,
depend only on frequency, not on momentum. In a local Fermi liquid there are only two Landau
parameters, which in our case are F a

0 = −Uspχ0 (0+, 0) /2 and F s
0 = Uchχ0 (0+, 0) /2. Unitarity

and the forward scattering sum rule, if valid, imply that there is no ferromagnetism in the
repulsive case [98], as we have found. One can check explicitly that the forward scattering sum
rule is satisfied to within about 15% in our usual Monte Carlo parameter range. However, as
discussed in Appendix A.4, the forward scattering sum-rule refers only to wave vectors on the
Fermi surface, not to the local version of the Pauli principle. Furthermore, the validity of this
sum rule has been questioned [84]. The effective mass at this level of approximation is the bare
one, as in a transitionally invariant local Fermi liquid [98]. Recall however that our microscopic
calculations are not phenomenological: they explicitly give a value for the Landau parameters.
Also, our results extend well beyond the q = 0 quantities usually considered in Fermi liquid
theory.

The quasi-particle weight Z calculated with Σ
(1)
σ can differ substantially from the initial one.

This means that if we were to calculate the susceptibility with the corresponding frequency and
momentum dependent irreducible vertices Γ(1) there would be sizeable compensation between

vertices and self-energy because our calculations with Σ
(0)
σ (Z = 1) and constant renormalized

vertices already gave excellent agreement with Monte Carlo simulations.
Finally, consider the high-frequency asymptotics. Since we use bare propagators, the high-

frequency asymptotics comes in at the appropriate frequency scale, namely ikn ∼ W and the
Hubbard bands do exist in our theory. However, the coefficient of proportionality in front
of the asymptotic form 1/ikn is incorrect. Using equations (46, A.14, A.15) we can write
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the high-frequency asymptotics in the following form

lim
ikn→∞

Σσ (k, ikn) = Un−σ +
U

ikn

[(
Usp + Uch

2

)〈
n2
−σ

〉
−Uchn

2
−σ +

(
Usp − Uch

2

)
〈n↑n↓〉

]
+ · · · (E.10)

This form is useful to understand what is necessary to obtain the quantitatively correct high-
frequency behavior. Indeed, one would recover the exact result (Eq. (68)), if one were to
take into account that: i) the irreducible vertices become equal to the bare one U at high-
frequencies; ii) the local Pauli principle

〈
n̂2
−σ

〉
= n−σ is satisfied. Contrary to most other

approaches, our theory does satisfy the local Pauli principle (Eq. (A.12)) exactly. However,
since our irreducible vertices are constant and tuned to describe the low energy physics, we
violate the first of the above requirements. It is thus clear that for a correct quantitative
description of both the low energy physics and the Hubbard bands one needs to work with
frequency-dependent irreducible vertices.
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Abstract. The grand potential of a system of interacting electrons is considered as a stationary point
of a self-energy functional. It is shown that a rigorous evaluation of the functional is possible for self-
energies that are representable within a certain reference system. The variational scheme allows to construct
new non-perturbative and thermodynamically consistent approximations. Numerical results illustrate the
practicability of the method.

PACS. 71.10.-w Theories and models of many-electron systems – 71.15.-m Methods of electronic structure
calculations – 74.20.-z Theories and models of superconducting state – 75.10.-b General theory and models
of magnetic ordering – 71.30.+h Metal-insulator transitions and other electronic transitions

1 Introduction

Systems of strongly correlated electrons continue to repre-
sent a central subject of current research. Different inter-
esting correlation phenomena, such as high-temperature
superconductivity [1], Mott metal-insulator transitions [2]
or itinerant ferromagnetism [3], are far from being finally
clarified. Progress in this field crucially depends on the
development of new theoretical methods as even highly
idealized model systems pose notoriously difficult prob-
lems. There are only a few general approaches which are
able to access the equilibrium thermodynamics as well as
excitation properties of an extended system of correlated
electrons.

General methods can be based on the Green’s-function
formalism of Luttinger and Ward [4] and Baym and
Kadanoff: [5] Here the grand potential Ω is expressed in
terms of the time- or frequency-dependent one-electron
Green’s function G. The functional Ω[G] can be shown
to be stationary at the physical G. In principle, this is an
exact variational approach which provides information not
only on static equilibrium but also on dynamic excitation
properties. The functional dependence Ω[G], however, is
generally not known explicitly as it must be constructed
by summation of an infinite series of renormalized skeleton
diagrams. In the standard approximation the exact but
unknown functional is replaced by an explicitly known but
approximate one which is based on an incomplete summa-
tion of the diagram series. This leads to the well-known

a Present address: Institut für Theoretische Physik und
Astrophysik, Universität Würzburg, Am Hubland, 97074
Würzburg, Germany
e-mail: potthoff@physik.uni-wuerzburg.de

perturbational (“conserving”) theories [5]. Higher-order
approaches as the fluctuation-exchange approximation [6]
are mainly applied to discrete lattice models while for con-
tinuum systems, e.g. for the inhomogeneous electron gas,
one has to be content with lowest-order theories as the
GW method [7–9].

A second type of general methods is based on density-
functional (DF) approaches [10,11]. Normally these aim at
the inhomogeneous electron gas but can also be applied
to Hubbard-type lattice models [12]. Compared with the
Green’s-function formalism, there is a conceptually similar
situation for DF approaches: In the latter the ground-state
energy E (or the grand potential Ω) [13] is given as a func-
tional of the (static) density n. The variational principle
associated with the functional E[n] is rigorous but cannot
be evaluated as E[n] is generally unknown. In the standard
local-density approximation (LDA) the (unknown part of
the) functional is replaced by an explicitly known but
approximate functional which is taken from the homoge-
neous system. For systems with weakly varying density the
LDA should be justified. Information on excitation prop-
erties is contained in dynamic response functions which
are in principle accessible via time-dependent DF theory
[14] where the action A is considered as a functional of the
time-dependent density n. Again, the exact but unknown
functional A[n] is approximated to make it explicit and
the variational principle is exploited afterwards.

The method proposed here rests on a variational prin-
ciple which uses the electron self-energy Σ as the basic
dynamic variable. A new functional Ω[Σ] is constructed
which can be shown to be stationary at the physical self-
energy. The main result is that the variational princi-
ple can be exploited without any approximation of the
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functional dependence. Namely, a rigorous evaluation of
the functional Ω[Σ] is possible on a certain subspace of
trial self-energies. Trial self-energies must be representable
within an exactly solvable reference system sharing the
same interaction with the original system.

This result has important consequences as it opens a
route for constructing a novel class of approximations. Al-
though the self-energy essentially contains the same infor-
mation as the Green’s function or the (time-dependent)
density, the new approach is conceptually contrary to the
Green’s-function approach and to the DF approach as
there is no approximation to be tolerated for the central
functional. Instead of approximating the functional itself,
it is considered on a restricted domain. The self-energy-
functional approach is completely general and yields ap-
proximations which are non-perturbative, thermodynam-
ically consistent and systematic. Opposed to numerical
techniques directly applied to systems of finite size, the
self-energy-functional approach provides a variational or
self-consistent embedding of finite systems and thus yields
results in the thermodynamical limit. Such techniques are
needed to construct phase diagrams from standard corre-
lated lattice models. A potentially fruitful field of applica-
tion are systems with competing types of order resulting
from spin, charge or orbital correlations as it is typical e.g.
for numerous transition-metal oxides [1–3].

In the present paper the approach is introduced and a
number of general aspects are discussed in detail (Sect. 2).
To demonstrate its usefulness, two applications will be
considered for the single-band Hubbard model: In Sec-
tion 3 it is shown that the dynamical mean-field the-
ory (DMFT) [15] can be recovered within the self-energy-
functional approach, namely by choosing a decoupled set
of impurity Anderson models as a reference system. The
DMFT generally requires the treatment of a quantum-
impurity problem with an infinite number of degrees of
freedom (ns = ∞). In Section 4 a new approximation
is discussed which is based on an impurity model with
a finite number of degrees of freedom only and which ap-
proaches the DMFT for ns = ∞. The method is closely re-
lated to the exact-diagonalization approach (ED) [16,17].
Opposed to the ED, however, thermodynamical consis-
tency is guaranteed at any stage of the approximation.
New approaches beyond the mean-field level will be dis-
cussed elsewhere. The conclusions and an outlook are
given in Section 5.

2 Self-energy-functional approach

Consider a general Hamiltonian H = H0(t)+H1(U) with
one-particle (“hopping”) parameters t and two-particle in-
teraction parameters U:

H =
∑

αβ

tαβc†αcβ +
1
2

∑

αβγδ

Uαβδγc†αc†βcγcδ . (1)

Here α, β, ... refer to an orthonormal and complete set of
one-particle basis states. We are interested in the equi-
librium thermodynamics and in elementary one-particle

excitations of the system for temperature T and chem-
ical potential µ. This is described by the one-particle
Green’s function Gαβ(iω) = 〈〈cα; c†β〉〉 of the imaginary
fermionic Matsubara frequencies iω = i(2n+1)πT with in-
teger n [18]. The Green’s function can be calculated from
the self-energy Σαβ(iω) via the Dyson equation. Using a
matrix notation, this reads as G = G0 + G0ΣG where
G0 = 1/(iω + µ − t) is the “free” Green’s function. The
self-energy is given by Σ = Σ[G] = T−1δΦ[G]/δG, where
Φ[G] is the so-called Luttinger-Ward functional [4,5].
This allows to derive the Green’s function from a vari-
ational principle: One has δΩ[G]/δG = 0 where Ω[G] =
Φ[G]+Tr ln(−G)−Tr((G−1

0 −G−1)G) and using the no-
tation TrA = T

∑

ω,α Aαα(iω). In general, however, the
functional Φ[G] is not known explicitly which prevents an
evaluation of Ω[G] for a given G. So-called conserving
approximations [5] provide an explicit but approximate
functional Φpert.[G] ≈ Φ[G]. However, these are weak-
coupling approaches where a certain subclass of Φ dia-
grams is summed up.

Here a different but still rigorous variational principle
is proposed which is based on a functional G = G[Σ] de-
fined as the inverse of Σ = Σ[G]. We can assume the latter
to be invertible (locally) provided that the system is not
at a critical point for a phase transition (see Appendix A).
Consider then:

Ωt[Σ] ≡ Tr ln(−(G−1
0 − Σ)−1) + F [Σ] (2)

where F [Σ] ≡ Φ[G[Σ]] − Tr(ΣG[Σ]) is the Legendre
transform of Φ[G]. The subscript t indicates the explicit t
dependence of Ω due to the free Green’s function G0. Us-
ing T−1δF [Σ]/δΣ = G[Σ], one finds that

δΩt[Σ]/δΣ = 0 ⇔ G[Σ] = (G−1
0 − Σ)−1 . (3)

Thus Ωt[Σ] is stationary at the exact (physical) self-
energy and its value is the exact grand potential of the
system. Again, the problem is that the functional Ωt[Σ]
is in general not known explicitly.

As the domain of the self-energy functional Ωt[Σ] we
define the class of all t′ representable self-energies. Σ is
termed t′ representable, if there is a set of hopping param-
eters t′ such that Σ is the exact self-energy of the model
H0(t′) + H1(U). This implies that any self-energy in the
domain of Ωt[Σ] can be parameterized as Σ = Σ(t′). The
interaction parameters U are taken to be fixed. Suppose
we are interested in the model H = H0(t)+H1(U). Then
the function Ωt(t′) ≡ Ωt[Σ(t′)] is stationary at t′ = t.
Thus ∂Ωt(t′)/∂t′ = 0 at t′ = t.

It is important to note that F [Σ] is universal: The
functional dependence is the same for any t, i.e. it re-
mains unchanged for an arbitrary reference system H ′
with the same interaction but modified hopping param-
eters: H ′ = H0(t′) + H1(U). F [Σ] is universal as it is
the Legendre transform of Φ[G] which in turn is univer-
sal because it can be constructed formally as the sum
of all closed, irreducible, and renormalized skeleton dia-
grams which, apart from G, include the vertices U only.
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Consequently, one has:

Ωt′ [Σ] = Tr ln(−(G′
0
−1 − Σ)−1) + F [Σ] , (4)

for the reference system H ′ with G′
0
−1 = iω + µ − t′.

The self-energy functionals Ωt[Σ], equation (2), and
Ωt′ [Σ], equation (4), are different if t �= t′, i.e. if the
original and the reference system are different. Ωt[Σ] is
stationary at Σ = Σ(t) while Ωt′ [Σ] is stationary at
Σ = Σ(t′). The important point is that both function-
als share the same (unknown but universal) part F [Σ]
and that both functionals are defined globally. Therefore,
combining equations (2) and (4), F [Σ] can be eliminated:

Ωt[Σ] = Ωt′ [Σ] + Tr ln(−(G−1
0 − Σ)−1)

− Tr ln(−(G′
0
−1 − Σ)−1) . (5)

This form of the self-energy functional Ωt[Σ] is still exact.
In the next step the functional has to be evaluated

to search for a stationary point. Evaluating Ωt[Σ] for
self-energies taken from the reference system, i.e. for self-
energies parameterized as Σ = Σ(t′), one obtains:

Ωt[Σ(t′)] = Ω′ + Tr ln(−(G−1
0 −Σ(t′))−1)−Tr ln(−G′) .

(6)
Here it has been used that Ωt′ [Σ(t′)] = Ω′, the exact
grand potential of the reference system H ′, and (G′

0
−1 −

Σ(t′))−1 = G′, the exact Green’s function of H ′. Sup-
pose that the reference system H ′ is much simpler than
the original system H so that it can be solved exactly
for any t′ belonging to a certain subspace of the entire
space of hopping parameters. The resulting equation (6)
is remarkable, as it shows that the functional Ωt[Σ] can
be evaluated rigorously for trial self-energies Σ = Σ(t′)
taken from the reference system H ′.

This is the main result. Contrary to previous ap-
proaches (e.g. conserving theories, LDA), there is no need
to approximate the functional dependence in a fundamen-
tal variational principle. Approximations are constructed
by searching for a stationary point of Ωt[Σ] on a restricted
set of trial self-energies Σ(t′).

The stationary point is determined by the Euler equa-
tion: ∂Ωt[Σ(t′)]/∂t′ = 0. Calculating the derivative,

T
∑

ω

∑

αβ

(

1
G−1

0 − Σ(t′)
− G′

)

βα

∂Σαβ(t′)
∂t′

= 0. (7)

Note that the equation involves, apart from G0, quantities
of the reference system H ′ only. The linear response of the
self-energy of H ′ due to a change of the hopping t′ can
be calculated along the lines of reference [5]. It turns out
that ∂Σ(t′)/∂t′ is given by a two-particle Green’s function
of H ′. Since G′ = G[Σ(t′)], the exact self-energy of the
system H is determined by the condition that the bracket
in (7) be zero. Hence, one can consider equation (7) to
be obtained from the exact equation that determines the
“vector” Σ in the self-energy space through projection
onto the hypersurface of t′ representable trial self-energies
Σ(t′) by taking the scalar product with vectors ∂Σ(t′)/∂t′
tangential to the hypersurface.

An analysis of the second derivative
∂2Ωt[Σ(t′)]/∂t′αβ∂t′γδ shows that a stationary point
is not an extremum point in general. This feature is
shared with the time-dependent DF approach [14], the
Green’s-function approach [5] and also with a recently
considered variant [19]. Only in the static DF theory there
is a convex (density) functional [10,11,13]. Nevertheless,
the proposed self-energy-functional approach is system-
atic: For any sequence of reference systems H ′ including
more and more degrees of freedom and converging to the
original system H there is, from the variational principle,
a corresponding sequence of grand potentials which must
converge to the exact Ω = Ωt[Σ(t)] as the subspace of
trial self-energies increases and eventually includes the
exact self-energy Σ(t).

It is also possible to build the theory on the Green’s
function G instead of the self-energy Σ as the basic vari-
able. One may start e.g. from the Green’s-function func-
tional Ωt[G] of reference [19]. This can be split into a
universal part and a part depending on the hopping ex-
plicitly. Introducing the concept of the reference system
and using arguments similar to those that have lead to
equations (4, 5), and (6), one can show that an exact
evaluation of Ωt[G] is possible on a certain subspace of t′
representable Green’s functions. Here it is preferred to use
the self-energy as the basic variable, however, as it is ad-
vantageous to approximate an irreducible rather than a
reducible quantity.

3 Relation to the DMFT

Given an original model H , what could a suitable reference
system H ′ look like? Consider, for example, H to be the
Hubbard model [20] which is shown in Figure 1a schemati-
cally: A filled dot represents a correlated site i with on-site
Hubbard interaction U , and a line connecting two sites i
and j represents the nearest-neighbor hopping ti,j . The
number of sites is L �→ ∞. Figure 1c shows a conceivable
reference system H ′. H ′ is obtained from H (Fig. 1a) by (i)
adding to each correlated site i a number of ns − 1 uncor-
related (“bath”) sites k = 2, ..., ns (open dots) which are
disconnected from the rest of the system, by (ii) switch-
ing off the hopping ti,j between the correlated sites and
(iii) switching on a hopping Vi,k to the bath sites. After
step (i) the Hamiltonian Figure 1b (in the figure ns = 5)
has an enlarged Hilbert space but the same self-energy. It
is important to note that steps (i) - (iii) leave the inter-
action part unchanged and thus preserve the functional
dependence F [Σ]. Actually, the system H ′ is a set of L
decoupled single-impurity Anderson models (SIAM) [21]
with ns sites each. Compared to H , the problem posed by
H ′ is strongly simplified. This is achieved at the cost of re-
stricting the set of trial self-energies. In particular, as the
correlated sites are decoupled in H ′, the trial self-energies
are local: Σij(iω, t′) ∝ δij . One has to consider H ′ for arbi-
trary one-particle parameters, namely the on-site energies
of the correlated (“c”) and of the bath sites (“a”), ε

(c)
i and

ε
(a)
i,k , respectively, and the hopping (“hybridization”) Vi,k

tremblay
The resulting equation (6)
is remarkable, as it shows that the functional Ωt[Σ] can

tremblay
be evaluated rigorously for trial self-energies Σ = Σ(

tremblay
taken from the reference system H�.
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(a) (b) (c)

Fig. 1. Schematic representation of the Hubbard model H
(a), an equivalent model (b), and a possible reference system
H ′ (c). See text for discussion.

between them and take these as variational parameters in
the principle δΩt[Σ(t′)] = 0.

Let us discuss the case ns �→ ∞. For a homogeneous
phase of the (translationally invariant) original system,
Ωt[Σ(t′)] will be stationary at a homogeneous set of vari-
ational parameters: t′ = {ε(c)i , ε

(a)
i,k , Vi,k} = {ε(c), ε(a)

k , Vk}.
Consequently, it is sufficient to consider one SIAM only.
As the different equivalent SIAM’s are spatially decoupled,
not only the self-energy but also its linear response is lo-
cal: ∂Σij(t′)/∂t′ ∝ δij . To solve the Euler equation (7), it
is thus sufficient to fulfill the “locally projected” equation

(

1
G−1

0 (iω) − Σ(iω)

)

ii

= G′
ii(iω) . (8)

This is just the self-consistency equation of the
DMFT [15]: the SIAM parameters have to be found such
that the on-site (“impurity”) Green’s function at a cor-
related site i coincides with the on-site Green’s function
of the Hubbard model which is calculated from G0 and
the (“impurity”) self-energy of H ′ by means of the Dyson
equation. Therefore, one can state that the DMFT (as an
approximation for any finite-dimensional system or as the
exact theory in infinite dimensions) is recovered as a sta-
tionary point of Ωt[Σ] when restricting the search to local
self-energies representable by a SIAM.

Within the DMFT the computation of the self-energy
requires an iterative procedure: Σold �→ Σnew. Here it
turns out that this corresponds to a certain (discrete)
path on the hypersurface of SIAM trial self-energies. Con-
vergence of the iteration (Σold = Σnew), however, is by
no means guaranteed physically but depends on the con-
tracting properties of the map Σold �→ Σnew. The self-
energy-functional approach offers an alternative as instead
of solving equation (8) one may calculate Ωt[Σ(t′)] by
equation (6) and determine the stationary point. Hence,
the DMFT can also be obtained by a more direct compu-
tation avoiding any iterations – similar (in this respect)
to the random-dispersion approximation [22]. Note that
in case of more than a single stationary point there is also
an equally direct access to metastable phases.

For any inhomogeneous situation, equation (8) repre-
sents a system of self-consistency equations to fix the pa-
rameters of non-equivalent impurity models labeled by the
site index i. The models can be solved independently but
are coupled indirectly due to the matrix inversion in (8).

This exactly recovers the DMFT generalized to systems
with reduced translational symmetry [23,24].

4 A consistent ED method

A brief discussion of two limiting cases of the Hubbard
model may be instructive. Consider the band limit with
U = 0 first. Here H =

∑

ijσ tijc
†
iσcjσ describes a system

of non-interacting electrons. This case is exceptional as
obviously the functional F [Σ] ≡ 0 and therefore Ωt[Σ] =
Tr ln(−(G−1

0 −Σ)−1). Any valid reference system H ′ must
have the same (i.e. a vanishing) interaction part as H , and
thus Σ(t′) ≡ 0 and Ωt[Σ(t′)] = Tr ln(−G−1

0 ), the exact
grand potential for non-interacting electrons.

The atomic limit, H =
∑

iσ(t0c
†
iσciσ + (U/2)niσni−σ)

is more interesting as Φ[G] and F [Σ] cannot be con-
structed explicitly. Within the self-energy-functional ap-
proach one has to compute Σ(t′), G′, and Ω′ for a suitable
reference system H ′ and to insert into equation (6) for op-
timization. The only meaningful choice for the reference
system is H ′ = H in this case. Obviously, this yields the
exact solution. Generally, whenever the original model H
is exactly solvable, the choice H ′ = H will do.

For a non-trivial model H , the choice H ′ = H is use-
less for a practical computation. Any simplified reference
system, however, yields a consistent approximation. The
case of the DMFT discussed in Section 3 is an illustra-
tive example. On the other hand, in the context of the
DMFT actually both, H and H ′, are highly non-trivial
models, and further approximations or large-scale numer-
ics are needed to treat the reference system H ′. More sim-
ple approximations for the Hubbard model which are still
consistent are generated by considering reference systems
with a finite number of degrees of freedom. The reference
system of Figure 1c with ns < ∞ is an interesting example
which shall be discussed in the following. For small ns one
can easily obtain numerical results as a complete diago-
nalization of H ′ is feasible.

Consider the Hubbard model

H =
∑

ijσ

tijc
†
iσcjσ +

U

2

∑

iσ

niσni−σ (9)

at temperature T = 0 and chemical potential µ = U/2. For
symmetric conditions this implies half-filling. The Hamil-
tonian of the reference system is given by H ′ =

∑

i H ′(i)
with

H ′(i) =
∑

σ

ε
(c)
i c†iσciσ +

U

2

∑

σ

niσni−σ

+
ns
∑

σ,k=2

ε
(a)
i,k a†

ikσaikσ +
∑

σ,k

(

Vi,kc†iσaikσ + h.c.
)

.

(10)

For the sake of simplicity we consider a homogeneous para-
magnetic phase and the most simple case ns = 2 where one
is left with three independent variational parameters only,
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Ω
Tr ln(-G)

V

Tr ln(-G’)

Fig. 2. Grand potential Ω (per lattice site) and the different
contributions (per lattice site) according to equation (6): Ω′,
Tr ln(−(G−1

0 − Σ(t′))−1), and Tr ln(−G′) for U = 4, T = 0,
and µ = U/2 (half-filling) as functions of V . Stationary points
(arrows) at V = ±0.519 (metal) and at V = 0 (insulator).
εc = 0 and εa = 2.

namely V ≡ Vi,k=2, εa ≡ ε
(a)
i,k=2, and εc ≡ ε

(c)
i . The compu-

tation of the different contributions to the grand potential,
equation (6), is straightforward: Diagonalization of H ′
yields the ground-state energy E′

0 and Ω′ = E′
0 − µ〈N ′〉

as well as the excitation energies, the ground state and
the excited states. The Green’s function G′ and the free
Green’s function G′

0 can be computed from their respec-
tive Lehmann representations. The self-energy of the ref-
erence system is obtained as Σ(t′) = G′

0
−1 −G′−1. Since

the self-energy is local, as in the DMFT, the lattice struc-
ture enters via the free (U = 0) density of states only.
Therefore, the k-sum which appears in the first trace in
equation (6) can be performed conveniently by a one-
dimensional density-of-states integration. A semi-elliptical
free density of states with the band width W = 4 is used
for the calculations. This sets the energy scale for the re-
sults discussed below.

Figure 2 shows the grand potential Ω and the three
different contributions as functions of V . The interaction
is kept fixed at U = W = 4. The remaining variational pa-
rameters are set to εc = 0 and εa = U/2 = 2, as required
by particle-hole symmetry. Each of the three contributions
strongly depends on V and none of them has a station-
ary point at a finite V �= 0. Two of them show a singular
behavior at V = 0. Contrary, the resulting Ω is regu-
lar for any V and shows a much weaker V dependence.
There are three stationary points which are indicated by
the arrows. The maximum at V = 0 corresponds to an
insulating phase since Σ(ω) for ns = 2 and V = 0 is the
Hubbard-I self-energy which implies a vanishing spectral
density −(1/π)ImG(ω + i0+) at ω = 0. The minima at
V = ±0.519 correspond to a metallic phase. Ω as well as
the different contributions are symmetric functions of V .
As Σ(V, ω) = Σ(−V, ω), however, this symmetry is trivial
and does not yield an additional physical phase (see also
Appendix A). Due to the lower Ω the metallic phase is
stable as compared to the insulating one.
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Fig. 3. Ω as a function of εc for V = 0.519 (metal) and εa = 2.
U = 4. Inset: impurity- and bath-orbital filling, nc and na, as
functions of εc.
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Fig. 4. Ω and the impurity- and bath-orbital filling, nc and na,
as functions of εa for V = 0.519 and εc = 0. U = 4.

The minimum at V = 0.519 is actually a saddle point
if the entire space of variational parameters is considered.
This is demonstrated by Figure 3 which shows Ω as a
function of εc for fixed V = 0.519 and εa = 2. While Ω(V )
is at a minimum for V = 0.519, Ω(εc) is at a maximum
for εc = 0. In the (V, εc) space one therefore encounters
a saddle point. As already noted in Section 2, there is
no reason to expect an extremum in general. It is worth
mentioning that stationarity at εc = 0 is consistent with
the requirements of particle-hole symmetry. For any εc �= 0
the impurity model is asymmetric. This can be seen from
the inset where the average occupations of the impurity
and of the bath site are plotted as functions of εc. The total
particle number 〈N ′〉 =

∑

σ(〈c†σcσ〉+ 〈a†
σaσ〉) = nc +na (i

and k = 2 fixed) is constant: 〈N ′〉 = 2.
With respect to the third variational parameter εa,

the grand potential Ω is at a maximum for εa = 2 = µ,
see Figure 4. Again, this value is required by particle-
hole symmetry. If εa exceeds a certain critical value (away
from the stationary point), the ground-state of the ref-
erence system H ′ no longer lies within N ′ = 2 subspace
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but is found in the N ′ = 1 or N ′ = 3 subspace, respec-
tively (see inset of Fig. 4). While Ω′ is continuous at the
level crossing, the symmetry of the ground state changes.
Consequently, there is a discontinuous change of the trial
self-energy which implies a discontinuous change of Ω.

Consider now the original model at slightly modified
parameters, e.g. U , µ, or T . Clearly, the stationary point
of Ω will be expected then at slightly different values of
the variational parameters V , εc, εa. This implies that all
physical quantities which derive from the thermodynami-
cal potential Ω will be continuous functions of the (origi-
nal) model parameters in general – irrespective of the fact
that the reference system includes a finite number of de-
grees of freedom only: It is a typical feature of any mean-
field approach that results are directly provided for the
thermodynamical limit. A discontinuous jump of Ω due
to a symmetry change of the ground state of the reference
system (see Fig. 4) usually occurs away from stationarity
and is thus irrelevant physically. It is conceivable, however,
that the stationary point moves to a point of discontinu-
ity as a function a parameter of the original model. In this
case the approach would generate an artifact which is a
reminiscence of the finiteness of H ′.

So far we discussed the case U = 4 = W only. As a
function of U the half-filled paramagnetic Hubbard model
at T = 0 is expected to undergo a transition from a metal
to a Mott-Hubbard insulator [2]. This is marked by a di-
vergence of the effective mass or, equivalently, by a van-
ishing quasi-particle weight z = 1/(1− dΣ(ω)/dω|ω=0) as
U approaches a critical value Uc from below [15,25]. The
result for z(U) as obtained by the use of the two-site refer-
ence system (“dynamical impurity approximation”, DIA
with ns = 2) is shown in Figure 5. As there are less degrees
of freedom contained in H ′, the approximation should be
considered to be inferior as compared to the full DMFT
the results of which are in Figure 5, too. It is remarkable
that the simple ns = 2-DIA (which requires the diagonal-
ization of a dimer model only) yields z(U) in an almost
quantitative agreement with the full DMFT.

The results of the ns = 2-DIA may also be compared
with those of the recently developed “linearized” or “two-
site” DMFT [26,28] where the Hubbard model is mapped
onto the two-site SIAM (10) by means a strongly simpli-
fied self-consistency condition. As compared to the two-
site DMFT, the present self-energy-functional approach
not only represents a clear conceptual improvement but
also improves the actual results for z(U) and for Uc (see
Fig. 5 and note that Uc = 6 within the linearized DMFT,
Uc = 5.8450 within the DIA for ns = 2, and Uc = 5.84
and Uc = 5.88 from numerical evaluations [27,29] of the
full DMFT).

The self-energy-functional approach with reference
system of Figure 1c and small ns actually represents a
new variant of the DMFT-exact-diagonalization method
(ED) [16,17]. As compared to previous formulations of
the ED, the convergence with respect to ns appears to be
faster: Compare the results for ns = 2, ns = 4 and ns = ∞
(full DMFT) in Figure 5 with those of reference [16]. More
important, however, there is no need for a fit procedure in
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DIA, ns=4

DIA, ns=oo

Fig. 5. U dependence of the quasi-particle weight z =
1/(1 − dΣ(ω = 0)/dω) within different approximations. BR:
Brinkman-Rice (Gutzwiller) approach [25]. 2-site DMFT: a
non-variational two-site approach [26]. DIA, ns = 2: self-
energy-functional approach with a reference system H ′ con-
sisting of decoupled two-site impurity models. DIA, ns = 4:
dynamical-impurity approximation with ns = 4 sites. DIA,
ns = ∞: DMFT limit (circles: NRG [27], line: ED using 8 sites).

the present approach; any arbitrariness in the method to
find the SIAM parameters is avoided completely. Further-
more, consistent results will be obtained for any finite ns

while in the usual ED this can be expected in the DMFT
limit ns �→ ∞ only.

5 Conclusions and outlook

Concluding, the proposed self-energy-functional method
is a systematic scheme for the construction of new non-
perturbative and consistent approximations for extended
systems of interacting fermions. For Hubbard-type lattice
models with on-site interaction several relations to and
generalizations of existing approaches are obtained im-
mediately. The numerical results obtained by considering
a rather simple reference system clearly demonstrate the
practicability of the theory. Its generality promises that
the approach may successfully be applied also in different
contexts.

For a Hubbard-type system including M > 1 orbitals
per site, a consistent DMFT can only be defined when
using M baths. There is no such necessity within the self-
energy-functional approach. While clearly the optimal lo-
cal approximation requires M baths, any M ′ < M will
nevertheless lead to a fully consistent approximation. This
represents an interesting option for numerical studies of
multi-band systems. Non-local trial self-energies can be
constructed by grouping the sites into identical clusters of
finite size Ns, switching off the inter-cluster hopping and
treating the intra-cluster hopping as variational parame-
ters. Each of the Ns sites in a cluster can be coupled to
ns − 1 additional bath sites. The relation of such an ap-
proach to cluster extensions of the DMFT [30,31] and to
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the cluster perturbation theory [32–34] will be the sub-
ject of a forthcoming paper. Extensions and applications
of the method to continuous models (inhomogeneous elec-
tron gas) and to Bose systems deserve further investiga-
tions.

The work is supported by the Deutsche Forschungsgemein-
schaft (Sonderforschungsbereich 290).

Appendix A: The functional G[Σ]

For the definition of G[Σ], invertibility of the func-
tional Σ[G] is required. The local invertibility of
Σ[G] is controlled by the Jacobian Γαβ′α′β(iω, iω′) =
δΣαβ(iω)/δGα′β′(iω′). The two-particle self-energy [5]
Γ = δΣ/δG can be assumed to be non-singular in general.

For a further analysis we need the following lemma:
Consider the interaction U to be fixed. Then two differ-
ent Green’s functions G1 and G2 must result from two
different sets of one-particle parameters t′1 and t′2, respec-
tively. The proof is straightforward: Consider the high-
frequency expansion of the Green’s function Gαβ(ω) =
∑∞

n=1 M
(n)
αβ ω−n. The coefficients are given by the mo-

ments M
(n)
αβ =

∫

dω ωn(−1/π) ImGαβ(ω + i0+) =
〈[Lncα, cβ ]+〉 with LO ≡ [O, H ]−. Using the symmetry
Uαβγδ = Uβαδγ one has:

Gαβ(ω) = δαβ
1
ω

+
(

t′αβ +
∑

γδ

(Uαγβδ − Uαγδβ) 〈c†γcδ〉
) 1

ω2

+ O(ω−3). (A.1)

Now t′1 �= t′2 implies the ω−2 coefficients to be different
because

〈c†αcβ〉 = − 1
π

∫ ∞

−∞
dω

1
eω/T + 1

Im Gβα(ω + i0+). (A.2)

Consequently, we must have G1 �= G2.
The lemma shows that the relation t′ ↔ G is one-

to-one. Consequently, we can write Σ[G] = Σ[t′[G]] and
Γ = δΣ/δG = δΣ/δt′ · δt′/δG with a non-singular Ja-
cobian δt′/δG. Hence, a singular Γ = δΣ/δG implies a
singular δΣ/δt′ and vice versa. However, δΣ/δt′ is just the
“projector” in the Euler equation (7). We conclude that
local non-invertibility of the functional Σ[G] at G = G(t′)
is indicated by ∂Σ[t′]/∂t′n = 0 with t′n = t′ · n for a cer-
tain “direction” n in the space of hopping parameters. For
such a direction, the Euler equation (7) would be satisfied
trivially.

Referring to the present numerical results, one can
state that generally the projector δΣ/δt′ is non-singular
in fact, as has been expected. There is one exception, how-
ever, namely points in the hopping-parameter space where
one or more bath sites are decoupled from the rest of the
system (vanishing hybridization V ). Here the one-particle

energy of a decoupled bath site can be varied without
changing the trial self-energy. Even for this case, how-
ever, there are no formal difficulties with the inverse func-
tional G[Σ]: To ensure the local invertibility of Σ[G], one
simply has to restrict the space of variational parameters
t′ by excluding the one-particle energies of the decoupled
bath sites, i.e. one has to focus on the physically rele-
vant parameters. This implies a respective restriction of
the space of t′-representable Green’s functions G(t′) and
ensures the local invertibility of Σ[G] on the restricted
domain. Similarly, a restriction of the t′ space becomes
necessary to ensure the local invertibility of Σ[G] in case
of a system where the self-energy is trivial (as e.g. for a
model of spinless fermions with nearest-neighbor Coulomb
interaction in the limit of infinite spatial dimensions where
the self-energy is given by the Hartree term, cf. Ref. [35]).

Finally, it should be mentioned that generally the func-
tional Σ[G] cannot be inverted globally. Consider, for ex-
ample, the Hubbard model on the infinite-dimensional hy-
percubic lattice with nearest-neighbor hopping t at half-
filling. Due to manifest particle-hole symmetry, a sign
change of the hopping t �→ −t leaves the (local) self-energy
invariant but transforms (the non-local elements of) the
Green’s function G. We conclude that G[Σ] in general
cannot be defined uniquely. Due to this non-uniqueness,
and also due to non-linearity, there may be more than
a single solution of equation (3). However, this does not
cause any problem since for any Σ satisfying (3) we have:

G[Σ] = (G−1
0 − Σ)−1

⇒ Σ = Σ(G−1
0 − Σ)−1

⇒ Σ = Σ[G] and G = (G−1
0 − Σ)−1 . (A.3)

This means that Σ is given by the (formal) sum of all
skeleton diagrams built up by a propagator G which is
constructed via the Dyson equation from the same Σ in
turn. Hence, any stationary point should be regarded as
a physically meaningful solution. Among different physi-
cal solutions (corresponding e.g. to different phases) the
minimum grand potential selects the stable one.
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Non-perturbative construction of the Luttinger-Ward functional

Michael Potthoff
Institut für Theoretische Physik und Astrophysik, Universität Würzburg, Germany

For a system of correlated electrons, the Luttinger-Ward functional provides a link between static
thermodynamic quantities on the one hand and single-particle excitations on the other. The func-
tional is useful to derive several general properties of the system as well as for the formulation of
thermodynamically consistent approximations. Its original construction, however, is perturbative as
it is based on the weak-coupling skeleton-diagram expansion. Here, it is shown that the Luttinger-
Ward functional can be derived within a general functional-integral approach. This alternative and
non-perturbative approach stresses the fact that the Luttinger-Ward functional is universal for a
large class of models.

PACS numbers: 71.10.-w, 71.15.-m

I. INTRODUCTION

For a system of correlated electrons in equilibrium,
there are several relations1,2,3 between static quantities
which describe the thermodynamics of the system and
dynamic quantities which describe its one-particle exci-
tations. Static quantities are given by the grand poten-
tial Ω and its derivatives with respect to temperature
T , chemical potential µ etc. The one-electron Green’s
function G = G(iωn) or the self-energy Σ = Σ(iωn),
on the other hand, are dynamic quantities which yield
(equivalent) information on an idealized (photoemission
or inverse photoemission) excitation process.

The Luttinger-Ward functional ̂Φ[G] provides a special
relation between static and dynamic quantities with sev-
eral important properties:4 First, the grand potential is
obtained from the Luttinger-Ward functional evaluated

at the exact Green’s function, Φ = ̂Φ[G], via

Ω = Φ + Tr ln G − TrΣG . (1)

Second, the functional derivative of the Luttinger-Ward
functional,

1

T

δ̂Φ[G]

δG
= ̂Σ[G] , (2)

defines a functional ̂Σ[G] which gives the exact self-
energy of the system if evaluated at the exact Green’s

function. The relation Σ = ̂Σ[G] is independent from
the Dyson equation G−1 = G

−1
0 −Σ. Third, in the non-

interacting limit:

̂Φ[G] ≡ 0 for U = 0 . (3)

Finally, the functional dependence ̂Φ[G] is completely
determined by the interaction part of the Hamiltonian
and independent from the one-particle part:

̂Φ[G] universal . (4)

This universality property can also be expressed as fol-
lows: Two systems with the same interaction U but

different one-particle parameters t (on-site energies and
hopping integrals) in the respective Hamiltonian are de-
scribed by the same Luttinger-Ward functional. Using

Eq. (2), this implies that the functional ̂Σ[G] is univer-
sal, too.

If Ref. 4 it is shown by Luttinger and Ward that
̂Φ[G] can be constructed order by order in diagrammatic
weak-coupling perturbation theory. Φ is obtained as the
limit of the infinite series of closed diagrams without any
self-energy insertions and with all free propagators in
a diagram replaced by fully interacting ones (see Fig.
1). Generally, this skeleton-diagram expansion cannot

be summed up to get a closed form for ̂Φ[G]. So, un-

fortunately, the explicit functional dependence ̂Φ[G] is
actually unknown – even for the most simple Hamiltoni-
ans such as the Hubbard model.5 The defining properties,
Eqs. (1–4), however, are easily verified.4

The Luttinger-Ward functional is useful for several

general considerations: With the help of ̂Φ[G] and the
Dyson equation, the grand potential can be considered

as a functional of the Green’s function Ω = ̂Ω[G] or

as functional of the self-energy Ω = ̂Ω[Σ], such that Ω
is stationary at the physical G or Σ.4,6 This represents
a remarkable variational principle which connects static
with dynamic physical quantities. The Luttinger-Ward
functional is also used in the microscopic derivation of
some zero- or low-temperature properties of Fermi liq-
uids as discussed in Refs. 4,7. The derivative of the
functional, Eq. (2), shows the self-energy to be gradi-
ent field when considered as a functional of the Green’s
function, ̂Σ[G]. This fact is related to certain symme-
try properties of two-particle Green’s functions as orig-

= + + +Φ

FIG. 1: Classical definition of the Luttinger-Ward functional
̂Φ[G]. Double lines: fully interacting propagator G. Dashed
lines: interaction U .
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inally noted by Baym and Kadanoff.8 Furthermore, the
Luttinger-Ward functional is of great importance in the
construction of thermodynamically consistent approxi-
mations. So-called conserving approximations virtually
start from the Luttinger-Ward functional.6,8 This is es-
sential to prove these approximations to respect a number
of macroscopic conservation laws. The Hartree-Fock and
the random-phase approximations are well-known exam-
ples. These “classical” conserving approximations are
essentially limited to the weak-coupling regime. How-
ever, the Luttinger-Ward functional can also be used to
construct non-perturbative approximations. This was
first realized in the context of the dynamical mean-
field theory (DMFT) for lattice models of correlated
electrons.9,10,11,12 Here, one exploits the universality of
the functional, Eq. (4), to achieve an (approximate) map-
ping of the original lattice model onto a simpler impu-
rity model with the same interaction part. The fact that
̂Φ[G] is the same for a large class of systems, has re-
cently been shown13,14 to be the key feature that allows
to construct several non-perturbative and thermodynam-
ically consistent approximations.15,16 This idea has been
termed “self-energy-functional approach” (SFA).

Such general considerations remain valid as long as the
Luttinger-Ward functional is well defined. This presup-
poses that the skeleton-diagram expansion is convergent
or at least that formal manipulations of diagrammatic
quantities are consistent in themselves and eventually
lead to physically meaningful results. Provided that one
can assure that no singular point is passed when start-
ing from the non-interacting Fermi gas and increasing
the interaction strength, this seems to be plausible. A
strict proof that the skeleton-diagram expansion is well-
behaved, however, will hardly be possible in most con-
crete situations. On the contrary, it is well known that
the expansion is questionable in a number of cases, e.g.
in case of a symmetry-broken state or a state that is not
“adiabatically connected” to the non-interacting limit,
such as a Mott insulator. The skeleton-diagram expan-
sion may break down even in the absence of any sponta-
neous symmetry breaking in a (strongly correlated) state
that gradually evolves from a metallic Fermi liquid. This
has explicitly been shown by Hofstetter and Kehrein17

for the narrow-band limit of the single-impurity Ander-
son model (see Refs. 18,19 for a discussion of possible
physical consequences). Generally speaking there is no
strict argument available that ensures the convergence
of the skeleton-diagram expansion in the strong-coupling
regime.

The purpose of the present paper is to show that a
construction of the Luttinger-Ward functional is possible
that does not make use of the skeleton-diagram expan-
sion. The proposed construction is based on a standard
functional-integral approach and avoids the formal com-
plications mentioned above. Thereby, one achieves an
alternative and in particular non-perturbative route to
the general properties of correlated electron systems de-
rived from the functional, to the dynamical mean-field

theory as well as to the self-energy-functional approach.
It should be stressed that the intended construction of
the Luttinger-Ward functional requires more than a sim-
ple definition of the quantity Φ (which could trivially be
achieved by using Eq. (1): Φ ≡ Ω − Tr ln G + TrΣG).

The task is rather to provide a functional ̂Φ[G] with the
properties Eqs. (1–4).

Previous approaches are either perturbative or can-
not prove Eqs. (1–4): A construction of the Luttinger-
Ward functional different from the original one4 has

been given by Baym:6 The existence of ̂Φ[G] is deduced
from a “vanishing curl condition”, δΣ(1, 1′)/δG(2′, 2) =
δΣ(2, 2′)/δG(1′, 1), which is derived from an analysis of
the functional dependence of G on an arbitrary (time-
dependent) external perturbation J . However, an in-

dependent functional relation Σ = ̂Σ[G] is required in
addition. In Ref. 6 the latter is assumed to be given by
the (full or by a truncated) skeleton-diagram expansion,
and consequently this approach is perturbative again.

As also shown in Ref. 6, the Green’s function in the
presence of an external field J can be derived from the

grand potential ̂Ω′[J ] as ̂G(J) = (1/T )δ̂Ω′[J ]/δJ . Us-

ing the inverse functional, ̂J [G], Legendre transforma-

tion yields ̂Ω[G] = ̂Ω′[ ̂J [G]] − Tr G ̂J [G]. This (non-
perturbative) functional and the Dyson equation can

be used to define ̂Φ[G] ≡ ̂Ω[G] − Tr ln G + Tr (G−1
0 −

G−1)G. This idea is in the spirit of the effective action
approach.20,21,22 Here, however, the problem is that the

universality of ̂Φ[G], Eq. (4), cannot be proven. The
Luttinger-Ward functional constructed in this way ex-
plicitly depends on G0 and thus on the one-particle pa-
rameters t.

The paper is organized as follows: The next section
briefly introduces the notations and the quantities of in-
terest. The construction of the Luttinger-Ward func-
tional is described in Sec. III. Sec. IV gives a brief dis-
cussion of the properties of the functional and its use
within the dynamical mean-field theory and the self-
energy-functional approach. The results are summed up
in Sec. V.

II. STATIC AND DYNAMIC QUANTITIES

Consider a system of electrons at temperature T and
chemical potential µ in thermal equilibrium and let H =
H(t, U) = H0(t) + H1(U) be its Hamiltonian where

H0(t) =
∑

αβ

tαβ c†αcβ ,

H1(U) =
1

2

∑

αβγδ

Uαβδγ c†αc†βcγcδ . (5)

An index α refers to an arbitrary set of quantum numbers
characterizing a one-particle basis state. If N is the to-
tal particle-number operator, the grand potential of the
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system is given by Ωt,U = −T ln Zt,U where

Zt,U = tr exp(−(H(t, U) − µN)/T ) (6)

is the partition function. Here and in the following the
dependence of all quantities on the one-particle parame-
ters t and the interaction parameters U is made explicit
through the subscripts.

Using a matrix notation, the free one-particle Green’s
function is denoted by Gt,0. Its elements (for fixed µ)
are given by:

Gt,0,αβ(iωn) =

(

1

iωn + µ − t

)

αβ

. (7)

Here iωn = i(2n + 1)πT is the n-th Matsubara
frequency. The fully interacting Green’s function
is denoted by Gt,U . Using Grassmann variables

ξα(iωn) = T 1/2
∫ 1/T

0 dτ eiωnτ ξα(τ) and ξ∗α(iωn) =

T 1/2
∫ 1/T

0
dτ e−iωnτ ξ∗α(τ), its elements can be written as3

Gt,U ,αβ(iωn) = −〈ξα(iωn)ξ∗β(iωn)〉t,U

=
−1

Zt,U

∫

DξDξ∗ξα(iωn)ξ∗β(iωn) exp (At,U ,ξξ∗)

(8)

where

At,U ,ξξ∗ =
∑

n,αβ

ξ∗α(iωn)((iωn + µ)δαβ − tαβ)ξβ(iωn)

−
1

2

∑

αβγδ

Uαβδγ

∫ 1/T

0

dτ ξ∗α(τ)ξ∗β(τ)ξγ (τ)ξδ(τ) (9)

is the action. Finally, the self-energy is defined as

Σt,U = G
−1
t,0 − G

−1
t,U . (10)

The goal is to construct a functional ̂ΦU [G] (where
G is considered as a free variable) which vanishes in

the non-interacting case, ̂Φ0[G] = 0 [Eq. (3)], which is
universal, i.e. independent of t [Eq. (4)], which yields
̂ΦU [Gt,U ] = Ωt,U − Tr ln Gt,U + Tr(Σt,UGt,U ) if eval-
uated at the exact Green’s function G = Gt,U [Eq.

(1)], and the derivative of which is a functional ̂Σ[G]

with ̂Σ[Gt,U ] = Σt,U [Eq. (2)]. (Here the notation

TrA ≡ T
∑

n

∑

α eiωn0+

Aαα(iωn) is used. 0+ is a posi-

tive infinitesimal. Functionals ̂A = ̂A[· · · ] are indicated
by a hat and should be distinguished clearly from physi-
cal quantities A.)

For the classical construction of ̂ΦU [G] via the
skeleton-diagram expansion (Fig. 1), these properties are
easily verified: The universality of the functional [Eq.
(4)] is obvious as any diagram depends on U and on
G only; there is no explicit dependence on the free
Green’s function Gt,0, i.e. no explicit dependence on

t. Since there is no zeroth-order diagram, ̂ΦU [G] triv-
ially vanishes for U = 0 [Eq. (3)]. The functional

derivative of ̂Φ[G] with respect to G corresponds to
the removal of a propagator from each of the Φ dia-
grams. Taking care of topological factors,1,4 one ends
up with the skeleton-diagram expansion for the self-
energy, i.e. one gets Eq. (2). Using Eq. (2), the Dyson

equation (10), and Φt,U ≡ ̂ΦU [Gt,U ], the µ deriva-
tive of the l.h.s and of the r.h.s of Eq. (1) are equal
for any fixed interaction strength U and temperature
T . Namely, (∂/∂µ)(Φt,U + Tr lnGt,U − TrΣt,UGt,U ) =

TrG
−1
t,U (∂Gt,U/∂µ)−TrGt,U (∂Σt,U/∂µ) = −TrGt,U =

−〈N〉t,U = ∂Ωt,U/∂µ. Integration over µ then yields Eq.
(1). (Note that Eq. (1) holds trivially for µ → −∞, i.e.
for 〈N〉t,U → 0 since Σt,U = 0 and Φt,U = 0 in this
limit). An equivalent derivation of Eq. (1) can be given
by a coupling-constant integration.4

III. LUTTINGER-WARD FUNCTIONAL

The starting point is the standard functional-integral
representation of the partition function as given in Ref.
3, for example: Define the functional

̂ΩU [G−1
0 ] = −T ln ̂ZU [G−1

0 ] (11)

with

̂ZU [G−1
0 ] =

∫

DξDξ∗ exp
(

̂AU ,ξξ∗ [G−1
0 ]
)

(12)

and

̂AU ,ξξ∗ [G−1
0 ] =

∑

n,αβ

ξ∗α(iωn)G−1
0,αβ(iωn)ξβ(iωn)

−
1

2

∑

αβγδ

Uαβδγ

∫ 1/T

0

dτ ξ∗α(τ)ξ∗β(τ)ξγ(τ)ξδ(τ) . (13)

̂ΩU [G−1
0 ] parametrically depends on U . G

−1
0 is consid-

ered as a free variable. At the (matrix inverse of the)
exact free Green’s function, G

−1
0 = G

−1
t,0 , the functional

yields the exact grand potential,

̂ΩU [G−1
t,0 ] = Ωt,U , (14)

of the system with Hamiltonian H = H0(t)+H1(U). Its

derivative defines a functional ̂GU [G−1
0 ],

1

T

δ̂ΩU [G−1
0 ]

δG−1
0

= −
1

̂ZU [G−1
0 ]

δ ̂ZU [G−1
0 ]

δG−1
0

≡ −̂GU [G−1
0 ] ,

(15)
with the property

̂GU [G−1
t,0 ] = Gt,U (16)

which is easily verified using Eq. (8).

The strategy to be pursued is the following: ̂GU [G−1
0 ]

is a universal (t independent) functional and can be used
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to construct a universal relation G = ̂GU [Σ] between
the one-particle Green’s function and the self-energy in-
dependent from the Dyson equation. Using the universal

functionals ̂ΩU [G−1
0 ] and ̂GU [Σ], a universal functional

̂FU [Σ] is defined the derivative of which essentially yields
̂GU [Σ]. The Luttinger-Ward functional can then be ob-
tained by Legendre transformation and is universal by
construction.

To start with, consider the equation

̂GU [G−1 + Σ] = G . (17)

This is a relation between the variables G and Σ which,
for a given Σ, may be solved for G. This defines a func-

tional ̂GU [Σ], i.e.

̂GU [ ̂GU [Σ]−1 + Σ] = ̂GU [Σ] . (18)

For a given self-energy Σ, the Green’s function G =
̂GU [Σ] is defined to be the solution of Eq. (17). From
the Dyson equation (10) and Eq. (16) it is obvious
that the relation (17) is satisfied for G and Σ being
the exact Green’s function and the exact self-energy,
G = Gt,U and Σ = Σt,U , of a system with the in-
teraction U and some set of one-particle parameters t

(H = H0(t) + H1(U)). Hence,

̂GU [Σt,U ] = Gt,U . (19)

A brief discussion of the existence and the uniqueness
of possible solutions of the relation (17) is given in Ap-
pendix A.

With the help of the functionals ̂ΩU [G−1
0 ] and ̂GU [Σ],

a functional ̂FU [Σ] can be defined as:

̂FU [Σ] = ̂ΩU [ ̂GU [Σ]−1 + Σ] − Tr ln ̂GU [Σ] . (20)

Using Eq. (15) one finds:

1

T

δ ̂FU [Σ]

δΣ
= −̂GU [ ̂GU [Σ]−1 + Σ] ·

(

δ ̂GU [Σ]−1

δΣ
+ 1

)

− ̂GU [Σ]−1 ·
δ ̂GU [Σ]

δΣ
, (21)

and, using Eq. (18),

1

T

δ ̂FU [Σ]

δΣ
= − ̂GU [Σ] . (22)

So ̂GU [Σ] can be considered as the gradient of the

(scalar) self-energy functional ̂FU [Σ]. Therewith, the

Legendre transform of ̂FU [Σ] can be constructed:

̂ΦU [G] = ̂FU [̂ΣU [G]] + Tr(̂ΣU [G] G) . (23)

Here ̂ΣU [G] is the inverse of the functional ̂GU [Σ]. The
functional can be assumed to be invertible (locally) pro-
vided that the system is not at a critical point for a
phase transition (see also Ref. 13). Eq. (23) defines the
Luttinger-Ward functional.

IV. DISCUSSION

A. Properties of the Luttinger-Ward functional

The properties of the Luttinger-Ward functional, Eqs.
(1–4), can be verified easily: Eqs. (10), (14), (19) and
(20) imply

̂FU [Σt,U ] = Ωt,U − Tr ln Gt,U , (24)

and with ̂ΣU [Gt,U ] = Σt,U the evaluation of the
Luttinger-Ward functional at G = Gt,U yields

Φt,U ≡ ̂ΦU [Gt,U ] = Ωt,U − Tr ln Gt,U + Tr(Σt,UGt,U ) ,
(25)

i.e. Eq. (1). From Eqs. (22) and (23), one immediately
has:

1

T

δ̂ΦU [G]

δG
= ̂ΣU [G] , (26)

i.e. Eq. (2). In the limit U = 0, the functionals ̂GU=0[Σ]

and ̂FU=0[Σ] are ill-defined (the domain of the function-
als shrinks to a single point, Σ = 0, see Appendix A).
However, from Eq. (25), one directly has ΦU=0[Gt,0] = 0
for any t [see Eq. (3)] since Σt,0 = 0 and Ωt,0 = Tr lnGt,0

(a proof for the latter can be found in Ref. 4). Finally,

the universality of ̂ΦU [G], Eq. (4) is obvious as the defi-
nition (23) of the Luttinger-Ward functional involves the

universal (t independent) functionals ̂FU [Σ] and ̂ΣU [G]
only.

B. Variational principle

Using the Legendre transform of the Luttinger-Ward

functional ̂FU [Σ], one may define

̂Ωt,U [Σ] = Tr ln
1

G
−1
t,0 − Σ

+ ̂FU [Σ] . (27)

The functional derivative is easily calculated:

1

T

δ̂Ωt,U [Σ]

δΣ
=

1

G
−1
t,0 − Σ

− ̂GU [Σ] . (28)

The equation

̂GU [Σ] =
1

G
−1
t,0 − Σ

(29)

is a (highly non-linear) conditional equation for the self-
energy of the system H = H0(t) + H1(U): Eqs. (10)
and (19) show that it is satisfied by the exact self-energy
Σ = Σt,U . Note that the l.h.s of (29) is independent

of t but depends on U (universality of ̂G[Σ]), while the
r.h.s is independent of U but depends on t via G

−1
t,0 . The

obvious problem of finding a solution of Eq. (29) is that
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there is no closed form for the functional ̂GU [Σ]. Solving
Eq. (29) is equivalent to a search for the stationary point
of the grand potential as a functional of the self-energy:

δ̂Ωt,U [Σ]

δΣ
= 0 . (30)

Similarly, one can also construct a variational princi-
ple using the Green’s function as the basic variable,

δ̂Ωt,U [G]/δG = 0.

C. Dynamical mean-field theory

The dynamical mean-field theory9,10,11,12 basically ap-
plies to lattice models of correlated electrons with on-site
interactions such as the Hubbard model,5 for example.
The DMFT aims at an approximate solution of Eq. (29)
and is based on two ingredients:

(i) It is important to note that the Luttinger-Ward

functional ̂ΦU [G] is the same for the lattice (e.g. Hub-
bard) model and for an impurity model (single-impurity
Anderson model). Actually a (decoupled) set of impurity
models has to be considered – one impurity model with
the according local interaction at each site of the original
lattice. This ensures that the interaction (U) term is the
same as in the lattice model. (In case of translational
symmetry the a priori different impurity models can be
assumed to be equivalent). As U is the same in the
lattice and in the impurity model, the Luttinger-Ward

functional, as well as ̂GU [Σ], is the same.
(ii) Let the lattice model be characterized by one-

particle parameters t and the impurity model by pa-
rameters t′. The fundamental equation (29) for the lat-
tice model would then be solved by the exact self-energy
Σt,U . As an ansatz for an approximate solution Σ of Eq.
(29), the self-energy is assumed to be local within the
DMFT and to be representable as the exact self-energy
of the impurity model for some parameters t′:

Σ = Σt′,U . (31)

The universality of the Luttinger-Ward functional (i)
and the local approximation for the self-energy (ii) are
sufficient to derive the DMFT: Inserting the ansatz (31)
into Eq. (29) yields a conditional equation for the one-
particle parameters of the impurity model t′. The l.h.s

becomes ̂GU [Σt′,U ] = Gt′,U , i.e. the exact Green’s
function of the impurity model, while the r.h.s reads
(G−1

t,0 −Σt′,U )−1. The resulting equation for the param-

eters t′ can be fulfilled only locally, i.e. by equating the
local elements of the respective Green’s functions at the
impurity and the original site respectively:

(Gt′,U )loc =

(

1

G
−1
t,0 − Σt′,U

)

loc

. (32)

This is the so-called self-consistency equation of the
DMFT.12

This consideration can be seen as an independent
and, in particular, non-perturbative re-derivation of the
DMFT which supplements known approaches such as the
cavity method.12

D. Self-energy-functional approach

The universality of the Luttinger-Ward functional or of

its Legendre transform ̂FU [Σ] is central to the recently
developed self-energy-functional approach.13,14 The SFA
is a general variational scheme which includes the DMFT
as a special limit. The idea is to take as an ansatz for
the self-energy of a model H = H0(t) + H1(U) the exact
self-energy Σt′,U of a so-called reference system H ′ =
H0(t

′) + H1(U) that shares with the original model the
same interaction part. The parameters t′ of the one-
particle part are considered as variational parameters to
search for the stationary point of the grand potential as
a functional of the self-energy. This means to insert the
ansatz Σ = Σt′,U into the general expression (27) and to

solve the Euler equation ∂̂Ωt,U [Σt′,U ]/∂t
′ = 0, i.e.:

∂

∂t′

(

Tr ln
1

G
−1
t,0 − Σt′,U

+ ̂FU [Σt′,U ]

)

= 0 (33)

for t′. If the search for the optimum set of one-particle
parameters t′ was unrestricted, the approach would be
exact in principle as the Euler equation would then be
equivalent with the Euler equation (29) of the general
variational principle Eq. (30).

A restriction of the space of variational parameters

becomes necessary to evaluate the quantity ̂Ωt,U [Σt′,U ]
which, in general, is impossible as a closed form for the

functional ̂FU [Σ] is not known. With a proper restric-
tion, however, the reference system H ′ can be made ac-
cessible to an exact (numerical) solution which allows to
derive the exact grand potential and the exact Green’s
function of the system H ′. Therewith, making use of the

universality of ̂FU [Σ] and using Eqs. (23) and (25) for
the reference system,

̂FU [Σt′,U ] = Ωt′,U − Tr ln Gt′,U . (34)

Note that this implies that an exact evaluation of ̂FU [Σ]
is possible for self-energies of a exactly solvable reference
system with the same interaction part as the original one.
Using this result in Eq. (33), one obtains:

∂

∂t′

(

Ωt′,U + Tr ln
1

G
−1
t,0 − Σt′,U

− Tr ln Gt′,U

)

= 0 ,

(35)
which can be evaluated to fix t′ and therewith the optimal
self-energy and grand potential (see Refs. 13,14,15,16 for
details and concrete examples).
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E. Luttinger’s theorem

Finally, the role of the Luttinger-Ward functional in
the derivation of general properties of correlated electron
systems shall be discussed. As an important example, the
Luttinger theorem4 is considered. For a translationally
invariant system, the theorem states that in the limit
T → 0 the average particle number is equal to the volume
enclosed by the Fermi surface in k space:

〈N〉 = VFS . (36)

The Fermi surface is defined by the set of k points in the
first Brillouin zone that satisfies µ− ηk = 0 where ηk are
the eigenvalues of the matrix t +Σ(ω) at vanishing exci-
tation energy ω = 0. Hence, to formulate the Luttinger
theorem, one obviously has to presuppose that there is a
Fermi surface at all, i.e. that Σ(ω = 0) is Hermitian.25

The original proof of the theorem4 is perturbative as it
makes use of the skeleton-diagram expansion. A non-
perturbative proof, based on topological considerations,
was proposed recently23 and is based on the assumption
that the system is a Fermi liquid.

To discuss the Luttinger theorem in the present con-
text, consider the following shift transformation of the
Green’s function

S
(z)

G(iωn) = G
(z)(iωn) = G(iωn + iz) (37)

with z = 2πkT and k integer (z is a bosonic Matsubara
frequency). S(z) is a linear and unitary transformation.
The shift transformation leaves the functional integral
Eq. (11) unchanged:

̂ΩU [S(z)
G

−1
0 ] = ̂ΩU [G−1

0 ] . (38)

To verify this invariance, one has to note that the shift
of the Matsubara frequencies in G

−1
0 by z can be trans-

formed into a shift ωn → ωn − z in the Grassmann num-
bers:

ξα(iωn) → ξα(iωn − iz) . (39)

In imaginary-time representation this shift is equivalent
with the multiplication of a phase:

ξα(τ) → e−izτ ξα(τ) , ξ∗α(τ) → eizτξ∗α(τ) . (40)

This, however, leaves the functional integral unchanged
as the transformation Eq. (39) or Eq. (40) is linear and
the Jacobian is unity. Note that antiperiodic boundary
conditions ξα(τ = 1/T ) = −ξα(τ = 0) are respected for
a bosonic shift frequency z.

Denoting Ωt,U (z) ≡ ̂ΩU [S(z)
G

−1
t,0 ], Eq. (38) states that

Ωt,U (z) = Ωt,U (0). Following the steps in the con-
struction of the Luttinger-Ward functional in Sec. III,
one easily verifies that this implies Φt,U (z) = Φt,U (0)

where Φt,U (z) ≡ ̂ΦU [S(z)
Gt,U ]. For the Legendre trans-

form, one has Ft,U (z) = Ft,U (0) where Ft,U (z) ≡

̂FU [S(z)Σt,U ]. Now, in the limit T → 0, z becomes a
continuous variable. Hence,

d

dz
lim
T→0

Ft,U (z) = 0 . (41)

If the limit and the derivative can be interchanged,

d

dz
lim
T→0

Ft,U (z) = lim
T→0

d

dz
Ft,U (z) , (42)

Eqs. (24) and (41) imply

− lim
T→0

dΩt,U (z)

dz
= − lim

T→0

dTr ln S(z)Gt,U

dz
. (43)

The z dependence of the grand potential is the same
as its µ dependence, and thus −(d/dz)Ωt,U (z = 0) =
−∂Ωt,U/∂µ = 〈N〉. The evaluation of the r.h.s in Eq.
(43) is straightforward and can be found in Ref. 4, for
example. It turns out that at z = 0 the r.h.s is just the
Fermi-surface volume VFS.

Consequently, the non-perturbative construction of the
Luttinger-Ward functional allows to reduce the proof of
the Luttinger theorem to the proof of Eq. (42). This,
however, requires certain assumptions on the regularity
of the T → 0 limit which are non-trivial generally.

V. SUMMARY

To summarize, the present paper has shown that the
Luttinger-Ward functional can be constructed within the
framework of functional integrals under fairly general as-
sumptions. In particular, there no need for an adiabatic
connection to the non-interacting limit and no expan-
sion in the interaction strength as was required in the
original approach of Luttinger and Ward.4 The construc-
tion merely assumes the very existence of the functional
integral over Grassmann fields, i.e. the existence of the
Trotter limit, for the representation of the partition func-
tion.

It is well known that the Luttinger-Ward functional
can be employed for different purposes, some of which
have been discussed here: The functional is used to de-
rive some general properties of correlated electron sys-
tems, such as the Luttinger theorem. It allows to formu-
late a variational principle involving a thermodynamical
potential as a functional of the Green’s function or the
self-energy and thereby provides a unique and thermo-
dynamically meaningful link between static and dynamic
quantities which is helpful for interpretations and for the
construction of approximations. An independent deriva-
tion of the dynamical mean-field is possible using the
special properties of the Luttinger-Ward functional and
the universality of the functional in particular. The latter
is of central importance in the context of the self-energy-
functional approach which is a general framework to con-
struct thermodynamically consistent approximations.
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Referring to the standard definition of the Luttinger-
Ward functional that is based on the weak-coupling
skeleton-diagram expansion, the above-mentioned and
any further considerations based on the functional and
its unique properties meet with criticism when applied
to strongly correlated, non-Fermi liquid or symmetry-
broken states. This is exactly the point where the pre-
sented non-perturbative construction of the Luttinger-
Ward functional is useful.
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APPENDIX A

As the relation (17) is highly non-linear, the existence
and the uniqueness of possible solutions have to be dis-
cussed:

Take U to be fixed and assume that the self-energy

given is the exact self-energy of a system H = H0(t) +
H1(U) with some hopping parameters t. So the
self-energy Σ is assumed to be given from the space
SU of t representable self-energies SU ≡ {Σ |Σ =
Σt,U , t arbitrary} (U fixed). With the help of Eq. (16)
it is then obvious that the exact Green’s function of
this system, G = Gt,U , solves Eq. (17) as the Dyson

equation (10) shows that G
−1
t,U + Σt,U is the exact free

Green’s function of this system. Concluding, one has
̂GU [Σt,U ] = Gt,U , and thus the existence of a solution
is guaranteed on the space SU . Note that it is very
convenient to consider SU as the domain of the func-
tional ̂GU [Σ] since this ensures the correct analytical and
causal properties of the variable Σ.

Under the functional ̂GU [Σ] the space SU is mapped
onto the space GU of t representable Green’s functions
GU ≡ {G |G = Gt,U , t arbitrary} (U fixed). Generally,

the map ̂GU : SU → GU is not unique.13 Hence, the

uniqueness of the functional ̂GU [Σ] must be enforced by
a proper restriction of the range GU , i.e. of the solution
set of Eq. (17). The considerations in Secs. III and IV,
however, are unaffected and hold for any choice of the
range, see also the related discussion in Ref. 13.
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Correlated Electron Systems
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Hubland, 97074 Würzburg, Germany

Abstract. The self-energy-functional approach (SFA) is discussed in the context
of different variational principles for strongly correlated electron systems. Formal
analogies between static and dynamical variational approaches, different types of
approximation strategies and the relations to density-functional and dynamical
mean-field theory are emphasized. The discussion elucidates the strengths of the
SFA in the construction of new non-perturbative approximations but also the lim-
itations of the approach and thereby opens up future perspectives.

Variational approaches have a long and successful tradition in the theory
of condensed-matter systems as they offer a smart, controlled and system-
atic way to treat the problem of electron-electron interaction. A well-known
variational approach is Hartree-Fock (HF) theory. It is based on the Rayleigh-
Ritz principle and provides a practicable and consistent mean-field descrip-
tion of an interacting electron system. As quantum fluctuations are neglected
completely, HF theory must be classified as a static mean-field approxima-
tion. This may be contrasted with dynamical mean-field theory (DMFT) [1,2]
which includes temporal fluctuations in the mean-field picture. The DMFT,
however, cannot be derived from the Ritz principle. It must be constructed
from some dynamical variational principle which involves a dynamical (i.e.
time- or frequency-dependent) quantity as the basic object. Dynamical varia-
tional principles have already been suggested in the sixties [3,4] but, compared
to the Ritz principle, were employed with rather limited success only. This
brings up the following questions: What are the similarities and the differ-
ences between different variational principles and approximation strategies?
How can the DMFT be considered as an approximation within a variational
concept? Can dynamical variational principles be used for constructing prac-
ticable and non-perturbative approximations different from the DMFT? An
attempt to answer these questions straightforwardly leads to the self-energy-
functional approach (SFA) [5] suggested recently. The purpose of this paper
is to discuss different variational approaches and to place the SFA into this
context with the objective to explore possible future developments.

1 Variational Principles and Approximation Strategies

Consider a many-electron system in the volume V , at temperature T and
with chemical potential µ. It is characterized by a Hamiltonian Ht,U =
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H0(t) + H1(U) consisting of a one-particle and an interaction term H0 and
H1, respectively, which depend on the “model parameters” t and U (a matrix
notation is used). In second-quantized form,

Ht,U =
∑

αβ

tαβ c†αcβ +
1

2

∑

αβγδ

Uαβδγ c†αc†βcγcδ , (1)

where an index (e.g. α) refers to the states of a one-particle basis.
The characteristic of a variational approach is a certain physical quantity

X to be varied, as e.g. the statistical operator, the electron density, the (local)
Green’s function, the self-energy etc. Clearly, at equilibrium this quantity will
depend on the model parameters: Xt,U (and on V, T and µ).

In a variational approach, the quantity is considered to be a variable. The
first task is to express a thermodynamical potential Ω (the grand potential,
for example) as a function(al) of this variable: Ωt,U [X]. As this functional is
characteristic for the model system (1), it will depend on the model parame-
ters. At the equilibrium or “physical” value, i.e. at X = Xt,U , one must have
Ωt,U [Xt,U ] = Ωt,U where Ωt,U = −T ln tr exp(−(H0(t) + H1(U)− µN)/T ).

Furthermore, the functional Ωt,U [X] should be constructed such that
it becomes stationary at the physical value: δΩt,U [X = Xt,U ] = 0. This
variational principle determines Xt,U once the functional is known. Note that
the domain of the functional must be specified in addition since in most cases
Xt,U must satisfy some constraint or sum rule or normalization condition.

Even if the functional is known, however, it is usually impossible to eval-
uate Ωt,U [X ] for a given X, and one has to resort to approximations. One
may distinguish between three types of approximation strategies:

In a type-I approximation one derives the Euler equation δΩt,U [X]/δX =
0 first and then chooses (a physically motivated) simplification of the equa-
tion afterwards to render the determination of Xt,U possible. This is the
most general but worst type, as normally the approximated Euler equation
no longer derives from some approximate functional. This may result in ther-
modynamical inconsistencies.

A type-II approximation modifies the form of the functional dependence,
Ωt,U [· · ·] → ˜Ωt,U [· · ·], to get a simpler one that allows for a solution of the

resulting Euler equation δ ˜Ωt,U [X]/δX = 0. This type is more particular but
yields a thermodynamical potential consistent with Xt,U . Generally, how-
ever, it is not easy to find a sensible approximation of a functional form.

Finally, in a type-III approximation one restricts the domain of the func-
tional. The restriction comes in addition to those conditions that are physi-
cally necessary anyway (e.g. normalizations) and requires a precise definition
of the domain. This type is most specific and, from a conceptual point of
view, should be preferred as compared to type-I or type-II approximations as
the exact functional form is retained. In addition to conceptual clarity and
thermodynamical consistency, type-III approximations are truely systematic
since improvements can be obtained by an according extension of the domain.
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Note that any type-III approximation can always be understood as a type-II
one (and type-II approximations as type-I) but not vice versa.

2 Various Variational Approaches

In the following different variational principles and possible approximations
shall be discussed according to this scheme, starting with Hartree-Fock and
density-functional theory as illuminating examples.

2.1 Ritz Variational Approach

In the Ritz variational approach the ground-state energy is considered as a
functional of the quantum state |Ψ〉. There is a generalization of the Ritz
principle to arbitrary temperatures by Mermin [6]. Here the basic variable is
the statistical operator ρ characterizing the system’s (mixed) state, and the
grand potential as a functional of ρ reads:

Ωt,U [ρ] = tr(ρ(Ht,U − µN + T ln ρ)) . (2)

Following the classical calculation of Gibbs, it can easily be shown [6] that
on the set of normalized and positive definite operators, stationarity of the
functional (2) is achieved for ρ = ρt,U = e−(Ht,U−µN)/T /tr(e−(Ht,U−µN)/T ).
One also has Ωt,U [ρt,U ] = Ωt,U . An additional feature of the functional (2)
consists in the fact that Ωt,U [ρ] ≥ Ωt,U [ρt,U ] for any ρ. This “upper-bound
property” is extremely helpful but specific to the Ritz principle.

For a many-electron system and an arbitrary ρ, the computation of the
trace in Eq. (2) is an exponentially hard problem. A nice type-III approxi-
mation is the HF approach: Here the variational search is restricted to the
subclass of disentangled statistical operators, i.e. statistical operators corre-
sponding to independent-electron states. This can be made precise by intro-
ducing the important concept of a reference system:

A reference system is a system with a different (microscopic) Hamiltonian
Ht′,U ′ (t′ 6= t, U

′ 6= U) but with a macroscopic state characterized by the
same values of the thermodynamic state variables as the original system (1):
V ′ = V , T ′ = T and µ′ = µ. The sole purpose of the reference system is
to specify the domain of the functional (2): Trial statistical operators are
taken from the reference system, ρ = ρt′,U ′ , and are varied by varying the
parameters t

′ and U
′ within a certain subspace. Hence, the choice of the

reference system (and the parameter subspace) defines the approximation.
The HF approximation is given by the choice U

′ = 0 and t
′ arbitrary, i.e.

by trial states ρt′,0 = e−(H
t′,0

−µN)/T /Zt′,0. Inserting into Eq. (2) yields

Ωt,U [ρt′,0] = Ωt′,0 + tr(ρt′,0(H0(t) + H1(U) − H0(t
′)) . (3)

The remaining trace can be computed easily using Wick’s theorem as ρt′,0

derives from a non-interacting Hamiltonian. The variational parameters t
′ are
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fixed by the conditions δΩt,U [ρt′,0]/δt′ = 0. These are exactly the well-known
HF equations as can be seen by some straightforward manipulations.

One learns that type-III approximations can be constructed conveniently
by the concept of a reference system. On the one hand, the reference system
should comprise a large space of parameters t

′ and U
′ to generate a powerful

approximation. On the other hand, the parameter space must be restricted
strongly to keep the calculations feasible.

2.2 Density-Functional Approach

For a many-electron system the statistical operator or, at T = 0, the ground-
state wave function actually is an object that is by far too complex. The
relevant information is much more efficiently stored in integral quantities,
such as the electron density. This is the starting point of density-functional
theory (DFT) [7,8,9]. The density, i.e. the quantum-statistical average of the
one-particle density operator n(r) = tr(ρn̂(r)), represents the basic variable.
Normally DFT aims at the inhomogeneous electron gas at T = 0 but can
also be applied to discrete lattice models [10] and finite temperatures [6].

The grand potential Ωt,U obviously depends on the model parameters.
Due to the Hohenberg-Kohn theorem [7], however, it can also be considered
as a functional of the density n which is stationary at the physical density:
δΩt,U [n] = 0 for n = nt,U . Furthermore, if evaluated at n = nt,U , it
yields the exact grand potential: Ωt,U [nt,U ] = Ωt,U . Keeping the notations
introduced above, n is a matrix with nαβ = tr(ρ c†αcβ), and the functional
reads (cf. Refs. [6,10]):

Ωt,U [n] = tr(tn) + FU [n] . (4)

Here the trace refers to the one-particle orbitals α, and FU [n] is a universal
functional, i.e. it depends on the interaction parameters only. Using the Kohn-
Sham idea [8,10], the resulting Euler equation has the form of a one-particle
Schrödinger equation.

The variational principle δΩt,U [n] = 0 is rigorous but cannot be eval-
uated as FU [n] is generally unknown (after separating the Hartree and a
kinetic-energy term, the remaining exchange-correlation functional is not ex-
plicit). Due to the universality of FU [n], however, the density-functional for
a reference system with modified one-particle parameters t

′ reads Ωt′,U [n] =
tr(t′ n) + FU [n], and thus Ωt,U [nt′,U ] = Ωt′,U + tr((t − t

′)nt′,U ) which can
be exploited for a type-III approximation. Choosing as a reference system
Ht′,U the homogeneous electron gas, however, turns out to be too restrictive,
as this implies a spatially constant density. The local density approximation
(LDA) [7,8], on the other hand, has proven to be very successful [9]. At least
for systems with weakly varying density it is well justified. The LDA, how-
ever, is no longer a type-III approximation but a type-II one as the form of
the (exchange-correlation part of the) functional FU [n] is approximated to
have a local dependence on the density only.
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As the proof of the Hohenberg-Kohn theorem is based on the Ritz prin-
ciple [7], the upper-bound property is transferred to the exact functional (4),
i.e. Ωt,U [n] ≥ Ωt,U for any n, but is lost within the LDA due to the type-II
character of the approximation.

2.3 Time-Dependent DFT

The weak point of the DFT consists in its inability to describe excitations
(see, however, Ref. [11]). This is due to the fact that the Hohenberg-Kohn
variational principle is built on the static electron density. Information on ex-
citation properties is contained in dynamic response functions which are ac-
cessible in principle via time-dependent density-functional theory (TD-DFT)
[12]. In TD-DFT one considers a situation with a time-dependent Hamilto-
nian and focuses on the time-dependent density n(r, t) = 〈Ψ(t)|n̂(r)|Ψ(t)〉
resulting from a solution |Ψ(t)〉 of the time-dependent Schrödinger equation
as the basic variable. Here the action A =

∫

dt〈Ψ(t)|i∂/∂t − H(t)|Ψ(t)〉 can
be understood as a functional of n(r, t),

At,U [n] = −

∫ t1

t0

dt tr(n(t)t(t)) + BU [n] , (5)

where t(t) are explicitly time-dependent one-particle parameters. Contrary
to usual DFT, the variational principle δAt,U [n] = 0 does not derive from the
Ritz principle, and consequently there is no upper-bound property available.
Type-II approximations can be constructed by approximating the universal
but unknown part BU [n] of the functional to make it explicit. Far from
equilibrium, however, there is no general recipe.

2.4 Dynamical Variational Principle

In the linear-response regime close to equilibrium, excitations are described
by Green’s functions. The one-electron Green’s function Gαβ(ω) = 〈〈cα; c†β〉〉ω
is the basic quantity in the dynamical variational approach of Luttinger,
Ward, Baym and Kadanoff [3,4]. Employing a coupling-constant integration
[3], the grand potential can be understood as a functional of G:

Ωt,U [G] = Tr lnG − Tr((G−1
t,0 − G

−1)G) + ΦU [G] , (6)

where Tr = T
∑

n eiωn0+

tr and ωn = (2n + 1)πT are fermion Matsub-
ara frequencies. Furthermore, Gt,0 = (ω + µ − t)−1 is the U = 0 (free)
Green’s function and ΦU [G] the (universal) Luttinger-Ward (LW) functional
defined as the sum of all dressed closed skeleton diagrams [3]. By construc-
tion, Ωt,U [Gt,U ] = Ωt,U . In arbitrary order in perturbation theory one has
δΦU [G]/δG = TΣU [G]. Therewith, the Euler equation δΩt,U [G]/δG = 0 is
given by G

−1 − G
−1
t,0 + ΣU [G] = 0 which is Dyson’s equation. This shows

that Ωt,U [G] is stationary at the physical Green’s function G = Gt,U .
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The LW functional is formally given by a diagrammatic sum that cannot
be carried out in practice. A self-evident type-II strategy is to sum up a
suitable subclass of diagrams to obtain an approximate but explicit expression
for ΦU [G]. In this way the HF approximation can be recovered but there are
also new approximations like the fluctuation-exchange approximation [13,14].
These “conserving approximations”, however, are necessarily restricted to the
weak-coupling regime.

A type-III approximation, on the other hand, would be non-perturbative
by construction. Consider a reference system with modified one-particle pa-
rameters: Ht′,U = H0(t

′) + H1(U). This defines the domain of the func-
tional (6) to consist of Green’s functions Gt′,U with arbitrary t

′. The in-
teraction is kept fixed (U ′ = U). To evaluate the functional (6) at Gt′,U

requires the evaluation of ΦU [Gt′,U ], in particular. Due to the universal-
ity of ΦU [· · ·] (no t dependence) and due to the choice U

′ = U , one has
ΦU [Gt′,U ] = Ωt′,U − Tr ln Gt′,U + Tr((G−1

t′,0 − G
−1
t′,U )Gt′,U ). Thus,

Ωt,U [Gt′,U ] = Ωt′,U − Tr(G−1
t,0Gt′,U ) + Tr(G−1

t′,0Gt′,U ) . (7)

Hence, on any domain specified by a suitable subspace of one-particle pa-
rameters t

′ which renders the solution of the reference system possible (for
fixed U), the functional (6) can be evaluated exactly. A possible (but over-
simplified) example is the choice t

′ = 0. It reduces the reference model to the
atomic limit where the computation of Gt′,U and Ωt′,U in (7) is easy. Cluster
approximations represent straightforward generalizations of this example.

Unfortunately, this type-III approach for Eq. (6) yields nothing new: Since
Tr(G−1

t,0 − G
−1
t′,0)Gt′,U = tr(t − t

′)nt′,U with the one-electron density of the

reference system nt′,U = T
∑

n eiωn0+

Gt′,U (iωn), one gets Ωt,U [Gt′,U ] =
Ωt,U [ρt′,U ] with Ωt,U [ρ] given by Eq. (2), i.e. the same as in the Ritz varia-
tional approach. Interestingly, this implies that upper bounds for the grand
potential can be obtained, i.e. Ωt,U [Gt′,U ] ≥ Ωt,U for arbitrary t

′.

2.5 Dynamical Mean-Field Approach

Equipped with these insights, one can address the question of deriving the
DMFT from a variational principle. Originally, the DMFT was introduced as
the exact theory of lattice models with local (Hubbard-type) interactions in
infinite spatial dimensions D = ∞ [2]. Later on, it was recognized [15,16] that
in D = ∞ the lattice model Ht,U can be self-consistently mapped onto an
impurity model Ht′,U with the same interaction U . Using this self-consistent
mapping procedure as an approximation (“dynamical mean-field approxima-
tion”), one can treat lattice models for any finite D.

Instead of considering Dyson’s equation in the form, G = (G−1
t,0−ΣU [G])−1

(with ΣU [G]) = (1/T ) δΦU [G])/δG), which is solved by the exact Gt,U , the
DMFT considers the following simplified equation between local quantities at
lattice site i:

(G)ii = (G−1
t,0 − ˜ΣU [G])−1

ii . (8)
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Here ˜ΣU [G] is the derivative of the LW functional but with local vertices
only as it is the case for an impurity model. Clearly, this is a type-I ap-
proximation. Eq. (8) is often called the DMFT self-consistency condition.
This is because its solution is achieved by an iterative procedure in prac-
tice: Starting with a guess for Σ, one computes the local lattice Green’s
function as (G)ii = (G−1

t,0 − Σ)−1
ii at first. This is not yet a solution of Eq.

(8) since in general Σ 6= ˜ΣU [G] for this G. For the necessary update of
Σ define (Gt′,0)ii = 1/(1/(G)ii + (Σ)ii). Assuming that Gt′,0 can be un-
derstood as the free impurity Green’s function of an impurity model Ht′,U

for some t
′, the (numerical) solution of the impurity problem yields a new

Σ = ˜ΣU [(G)ii] = ˜ΣU [G]. Iteration of this cycle until self-consistency yields
a solution G of Eq. (8). Note that the resulting DMFT self-energy is local.

Here, the question is whether Eq. (8) can be interpreted as an Euler
equation of some variational principle. Starting with the functional (6), one
can try a type-II approximation by replacing ΦU [G] with the LW functional

of the impurity model ˜ΦU [G]. This implies (1/T )δ˜ΦU [G]/δG = ˜ΣU [G], and

the resulting Euler equation reads: G
−1 = G

−1
t,0 − ˜ΣU [G]. This equation

is easily seen to be equivalent with Eq. (8) since ˜ΣU [(G)ii] = ˜ΣU [G] by
definition. Hence, DMFT can be understood as a type-II approximation.

Another functional has been suggested recently [17]:

Ωt,U [G] = Tr ln
1

G
−1
t,0 − ΣU [G]

− Tr(ΣU [G]G) + ΦU [G] . (9)

Clearly, Ωt,U [Gt,U ] = Ωt,U , and furthermore the corresponding Euler equa-
tion,

(

(G−1
t,0 − ΣU [G])−1 − G

)

·(δΣU [G]/δG) = 0, is equivalent with Dyson’s

equation, G = (G−1
t,0 − ΣU [G])−1 (assuming local invertibility of the func-

tional ΣU [G]). The functional (9) therefore yields a valid variational prin-

ciple. As a type-II approximation, one may replace ΦU [G] → ˜ΦU [G] and

ΣU [G] → ˜ΣU [G] = (1/T )δ˜ΦU [G]/δG in the functional (9). The resulting
Euler equation is equivalent with the DMFT self-consistency equation (8)
which implies that DMFT can also be understood as a type-II approxima-
tion to the functional (9).

Attempts to prove that a stationary point of the type-II approximated
functionals (6) or (9) must be an extremum have failed [17]. Furthermore,
while (as shown above) a type-III approximation to the principle based on
Eq. (6) with U fixed yields upper bounds to the grand potential, the DMFT
cannot be obtained as a type-III approximation starting from Eqs. (6) or (9):
Choosing an impurity model Ht′,U as a reference system to generate trial
Green’s functions and to define a restricted domain of the functional (6) or
(9), respectively, concurrently means that the optimal Green’s function will
be local. This is obviously a very poor approximation for the Green’s function
of a lattice model and differs from the DMFT result. The discussion shows
that the question whether or not the DMFT grand potential is an upper
bound to the true grand potential is still open.
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2.6 Functionals of the Local Green’s Function

It is also possible [18,19] to focus on the local Green’s function G
(loc) = (G)ii

(instead of the full G) and to set up a variational principle of the form

δΩt,U [G(loc)] = 0 . (10)

A functional which is stationary at the physical G
(loc) = G

(loc)
t,U and which

yields Ωt,U [G
(loc)
t,U ] = Ωt,U can be constructed order by order in the interac-

tion strength [18]. Unfortunately, the diagrammatic formalism is much more
cumbersome as compared to the construction of the LW functional. As is
shown in Ref. [19], the dynamical mean-field approximation is equivalent
with a simple (U -independent) approximation to the kinetic-energy part of
the functional. So the DMFT appears as a type-II approximation again.

2.7 Self-Energy-Functional Approach

The motivation to characterize the DMFT as a type-III approximation is
the following: If it is possible to recover the DMFT merely by restricting
the domain of the functional corresponding to an exact variational principle,
different choices of the domain will place the DMFT in a systematic series
of different and possibly new approximations which, as the DMFT, are all
non-perturbative and thermodynamically consistent.

For this purpose it is helpful to focus on the self-energy. Within the self-
energy-functional approach (SFA) [5], the self-energy functional

Ωt,U [Σ] = Tr ln
1

G
−1
t,0 − Σ

+ FU [Σ] (11)

is considered. Here, FU [Σ] = ΦU [G[Σ]] − Tr(Σ GU [Σ]) is the Legendre
transform of the Luttinger-Ward functional which is well defined provided
that the functional ΣU [G] is invertible locally. FU [Σ] is universal (indepen-
dent of t) by construction and −(1/T )δFU [Σ]/δΣ = GU [Σ] which is the
inverse of the functional ΣU [G]. Obviously, Ωt,U [Σt,U ] = Ωt,U . The Euler
equation δΩt,U [Σ]/δΣ = 0 is given by (G−1

t,0 −Σ)−1 = G[Σ] and equivalent
with Dyson’s equation.

To construct a type-III approximation, a reference system Ht′,U = H0(t
′)+

H1(U ) with unchanged interaction part is considered. The one-particle pa-
rameters t

′ are taken such that the different “correlated” sites (non-zero on-
site interaction) are decoupled. Instead, t

′ shall include an arbitrary hopping
to “bath” sites (zero on-site interaction) with arbitrary one-particle energies.
In case of the Hubbard model on a lattice with L sites, the corresponding ref-
erence system constructed in this way is a set of L decoupled single-impurity
Anderson models (which in case of translational symmetry are equivalent).
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Trial self-energies Σt′,U are local by construction. The Euler equation result-
ing from this type-III approach reads ∂Ωt,U [Σt′,U ]/∂t

′ = 0, i.e.:

(

(G−1
t,0 − Σt′,U )−1 − GU [Σt′,U ]

)

·
∂Σt′,U

∂t′
= 0 . (12)

Now let t
′ (the bath parameters) be such that Gt′,U solves the DMFT self-

consistency condition (8). Since ˜ΣU [Gt′,U ] = Σt′,U , one has (Gt′,U )ii =
(G−1

t,0 − Σt′,U )−1
ii . Hence, this t

′ solves Eq. (12). (Note that ∂Σt′,U/∂t′ is
local). So by a restriction of the domain of the self-energy functional (11) to
local self-energies, the DMFT is characterized as a type-III approximation.

Interestingly, a type-II approximation does not work: A replacement of
the form FU [Σ] → ˜FU [Σ] in Eq. (11) yields the Euler equation ˜GU [Σ] =

(G−1
t,0 − Σ)−1 where ˜GU [Σ] = −(1/T )δ ˜FU [Σ]/δΣ. If this was equivalent

with the DMFT self-consistency condition, a local self-energy would be a
solution. This would imply, however, that ˜GU [Σ] is non-local for a local Σ.

Hence, ˜FU [Σ] cannot be the Legendre transform of ˜ΦU [G] where ˜ΦU [G] (as
above) is the Luttinger-Ward functional with vertices restricted to a single

site. An alternative choice for ˜FU [Σ], however, does not suggest itself.
One can conclude that a functional of the self-energy is necessary and

sufficient to obtain the DMFT as a type-III approximation while a functional
of the Green’s function is necessary and sufficient to get the DMFT as a
type-II approximation. The decisive point is that rather a local self-energy
can be tolerated as an approximation than a local Green’s function.

3 New Approximations

The immediate return of these considerations is a number of non-perturbative
and thermodynamically consistent type-III approximations as shown in Fig.
1. These differ from the DMFT by a different restriction of the domain for the
self-energy functional (11), i.e. by a different reference system with a differ-
ent subspace of variational parameters t

′ but the same interaction (U ′ = U).
The evaluation of a type-III approximation requires the repeated computa-
tion of the grand potential and the Green’s function or self-energy of the
reference system to get Ωt,U [Σt′,U ] which must be optimized with respect
to t

′ subsequently.
The class of possible reference systems is essentially spanned by two pa-

rameters, namely ns − 1 which is the number of additional bath sites per
correlated site and Nc which is the number of correlated sites in a cluster
that is decoupled from the rest of the correlated sites (Fig. 1). The DMFT
is obtained for Nc = 1 and ns = ∞ since a continuous bath (ns = ∞) is
necessary to represent an arbitrary local free Green’s function.

The choice Nc = 1 but ns < ∞ yields new approximations (“dynamical
impurity approximations”, DIA) which are inferior as compared to the full
DMFT but allow for much simpler and faster calculations when ns is small.
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Fig. 1. Different possible approximations within the SFA (see text).

The most simple but non-trivial approximation (ns = 2-DIA) has been shown
[5,20] to already cover the essence of the DMFT scenario [1] for the Mott
metal-insulator transition in the Hubbard model. At the critical point for
T = 0 the calculations can be done even analytically [20], and with increas-
ing ns the grand potential, static quantities and the entire phase diagram
rapidly converge to the full DMFT results [5,21]. The DIA is similar but su-
perior as compared to the exact-diagonalization approach [1]. Even for small
ns the approach is thermodynamically consistent and, off half-filling, respects
the Luttinger sum rule, for example. The DIA has also been employed suc-
cessfully to study the influence of phonons on metal-insulator transitions in
the Holstein-Hubbard model [22,23].

Nothing new is obtained for ns = ∞ and Nc > 1: Here the SFA recovers
the cellular DMFT [24]. (Note that the dynamical cluster approximation [25]
is a type-II approximation). More interesting is the case ns = 1 and Nc > 1
which turns out [26] to represent a variational generalization of the cluster-
perturbation theory [27]. This V-CPT is well suited to describe phases with
spontaneously broken symmetry and has been employed to study one-particle
excitations and antiferromagnetic order in the D = 2 and D = 1 Hubbard
model at half-filling [28] and charge ordering in the extended Hubbard model
[29]. A further application concerns antiferromagnetism in quarter-filled lad-
der systems [30]. An impressing example of the power of the V-CPT approach
has been given recently in a study of the competition between antiferromag-
netism and d-wave superconductivity in the hole- and electron-doped Hub-
bard model [31]. The question of phase separation is addressed in Ref. [32].

Summing up, the SFA is able to unify different cluster theories and lo-
cal approximations within a single and consistent framework which offers a
large flexibility in the use of bath sites, ficticious fields, boundary conditions
and particle reservoirs [26]. The formalism provides a controlled compromise
between the demands for a non-perturbative and systematic theory working
in the thermodynamic limit on the one hand, and the limited computational
capabilities to diagonalize finite-size systems on the other.
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4 Open Problems

The self-energy-functional approach allows to construct a series of consistent
approximations which improve systematically as Nc → ∞. It is by no means
clear, however, whether bath sites ns > 1 help to speed up the convergence
with respect to Nc and whether a cluster extension of DMFT or the V-CPT is
more efficient. This can be clarified only empirically by considering different
lattice models in different dimensions. As a few bath sites have turned out
to be sufficient for reproducing the essential mean-field (Nc = 1) physics in
a number of studies of the single-band Hubbard model, further applications
of the DIA are worthwhile to explore e.g. the mean-field phase diagrams of
more complex (multi-orbital) models. Furthermore, one may also envisage the
application of a simplified DMFT where a single (but continuous, ns = ∞)
bath is optimized for a multi-orbital model. This might be well justified for
not too low temperatures.

On the technical side, there are two main future tasks: The full diago-
nalization and the Lanczos method which have been used so far, should be
supplemented by a “reference system solver” based on stochastic techniques
to improve the scaling of the numerical effort with the system size. Secondly,
it would be advantageous to have an iterative technique at hand that directly
yields a solution of the SFA Euler equation without the need for numerical
differentiation. First results using full diagonalization [21] are encouraging.

On the conceptual side, the question for the possibility to give strict upper
bounds to the grand potential is still open. Probably, a positive answer re-
quires to establish a link to the Ritz variational principle. On the other hand,
no example is known yet where the SFA grand potential at a stationary point
is lower than the exact one.

There are different directions into which the formalism may be extended.
As the coherent-potential approximation for the disorder Anderson model has
the same (mean-field) status as the DMFT for the Hubbard model, it sug-
gests itself that a self-energy-functional approach can also be constructed for
systems with disorder (and interaction). First applications [33] demonstrate
that such a theory [34] is feasible. A challenge consists in the extension of the
theory to include two-particle Green’s functions in a generalized variational
principle. Here the recently proposed functional-integral formulation of the
SFA [35] can be helpful. Two-particle correlation functions are interesting by
themselves and may furthermore facilitate an even greater flexibility in the
choice of reference systems. At the same time such an approach could provide
a conceptual clear way to treat models with non-local interactions. Currently,
this problem is circumvented by a more pragmatic decoupling procedure [29].

The author would like to thank M. Aichhorn, E. Arrigoni, F.F. Assaad,
M. Balzer, R. Bulla, C. Dahnken, W. Hanke, A. Millis, and W. Nolting for
discussions. Support by the Deutsche Forschungsgemeinschaft within the Son-
derforschungsbereich 410 and the Forschergruppe 538 is acknowledged.



12 Michael Potthoff

References

1. A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, Rev. Mod. Phys. 68,
13 (1996).

2. W. Metzner and D. Vollhardt, Phys. Rev. Lett. 62, 324 (1989).
3. J. M. Luttinger and J. C. Ward, Phys. Rev. 118, 1417 (1960).
4. G. Baym and L. P. Kadanoff, Phys. Rev. 124, 287 (1961).
5. M. Potthoff, Euro. Phys. J. B 32, 429 (2003).
6. N. D. Mermin, Phys. Rev. 137, A 1441 (1965).
7. P. Hohenberg and W. Kohn, Phys. Rev. 136, 864 (1964).
8. W. Kohn and L. J. Sham, Phys. Rev. 140, 1133 (1965).
9. R. M. Dreizler and E. K. U. Gross, Density Functional Theory, Springer, Berlin

(1990).
10. K. Schönhammer, O. Gunnarsson, and R. M. Noack, Phys. Rev. B 52, 2504

(1995).
11. L. J. Sham and W. Kohn, Phys. Rev. 145, 561 (1966).
12. E. Runge and E. K. U. Gross, Phys. Rev. Lett. 52, 997 (1984).
13. N. E. Bickers, D. J. Scalapino, and S. R. White, Phys. Rev. Lett. 62, 961

(1989).
14. N. E. Bickers and D. J. Scalapino, Ann. Phys. (N.Y.) 193, 206 (1989).
15. A. Georges and G. Kotliar, Phys. Rev. B 45, 6479 (1992).
16. M. Jarrell, Phys. Rev. Lett. 69, 168 (1992).
17. R. Chitra and G. Kotliar, Phys. Rev. B 63, 115110 (2001).
18. R. Chitra and G. Kotliar, Phys. Rev. B 62, 12715 (2000).
19. A. Georges, cond-mat/0403123.
20. M. Potthoff, Euro. Phys. J. B 36, 335 (2003).
21. K. Pozgajcic, cond-mat/0407172.
22. W. Koller, D. Meyer, Y. Ono, and A. C. Hewson, 66, 559 (2004).
23. W. Koller, D. Meyer, A. C. Hewson, and Y. Ono, cond-mat/0406241.
24. G. Kotliar, S. Y. Savrasov, G. Pálsson, and G. Biroli, Phys. Rev. Lett. 87,

186401 (2001).
25. M. H. Hettler, A. N. Tahvildar-Zadeh, M. Jarrell, T. Pruschke and H. R. Kr-

ishnamurthy, Phys. Rev. B 58, R7475 (1998).
26. M. Potthoff, M. Aichhorn, and C. Dahnken, Phys. Rev. Lett. 91, 206402 (2003).
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