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spin-1/2 on a triangular lattice
- spin liquids and the RVB idea -

Andersons resonating valance bond

the eternal triangle
(RVB) state

b g S singlet

actual ground state of Heisenberg

ﬂ model on triangular lattice
1 20 -

. 3-sublattice
frustration, i.e. you can’t please all Néel state
of the spins, all of the fime

for a review, see e.g. Misguich and Lhullier in "Quantum Spin Systems” (2004 Diep)
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2D incarnation - He III on graphite

P M 3rd layer - ignore

: 2nd layer - 2D FL/magnet
O 0 0 O (o) O 9
0000000000000 000 1st layer - paramagnetic solid

GRAPHITE

c s e g s I
Fermi liquid in second layer becomes *He /He / gr
4/7 commensurate

magnetic solid with increasing density : B phase Mot solid"
. (gapless spin liquid)

I I I

high density solid is FM

strongly correlated ,.'

Temperature (K)

/ domain wall phase (?)

Fermi fluid
H . normal Fermi quic\ 4 incon—1 ensurate solid
something very special happens : n(ferroj:lagnetlc)
8 10
Areal density (|I1m'2)
"half filling"

at low densities...
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the first true spin liquid...

...in a 2D triangular lattice frustrated FM
K. Ishida ef al., PRL 79, 3451 (1997)

linear specific heat

(c.f. 2D FM) double peak structure

J(3)

() v O O
J(4)
© O ()

2nd layer magnetism controlled
by competition between
FM 3-spin exchange
and AF 4-spin exchange

no magnetic order down to 0.1 mK !!!
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the “simplest” frustrated ferromagnet

extended FM Heisenberg model on square lattice

= 2J; Z S:S; +2J, Z S:S; + K Z Pioss + Ppys,

(i3)1 (i7)2 (1234)

FM n.n.
interaction
J1 <0

AF n.n.n.
interaction
J2>0

AF 4-spin

cyclic “=sublattice g
exchange

K>O0

mean field phase diagram
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quantum critical points
- and ferromagnetism -

what happens here ?!!! '

tttt

transition femperature

- - g

control parameter '

manganites
(g=doping)

- phase separation

weak itinerant

ferromagnets
(g=pressure)

- superconductivty

frustrated
quantum spin

systems
(g=density,
chemical pressure)

- spin liquid 21!
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how does the FM die ?

- nature of spin excitations at boundary with AF -

“one magnon” dispersion :

8(|J1| — 2K — J2) — 4(]J1]| — 2K)[cos gz + cos q,] + 8J2 cos ¢, cos g,

limiting case #1 : limiting case #2 :
Jl=-1, J2 = 1/2, K=0 Jl=-1, J2 = O, K=1/2

5 S
o =
3 £
£ = g

- E
(Q\]

« W
I 59
]

3
) wv

line zeros for qx = 0, qy = O entire dispersion vanishes !!!
J=-1, J2=1/2, K=0
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what kind of excitation works ?

- two magnons are better than one -

square lattice MSE model
Jl=-1, J2 = 0, K=1/2

individual magnons are
localized

but pairs of magnons can
propagate coherently

simple trial wave function
for two-magnon bound state :

{ g /{{>_ i g>} exp(iq.r/2)

d-wave symmetry

for special point
Jl=-1,J2 = 0, K=1/2
this wave function is an

exact eigenstate
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so what is the first instability of the FM ?

- two magnons are better than one -

calculate energies of one-magnon band and
two-magnon trial wave function in applied
magnetic field and see which becomes
negative first : conventional
one-magnon
instability

A

saturated FM
two-magnon \ /
instability T T . canted AF
c2

J2/IJ1I
or K/IJll
|
0.7

what is the nature of this phase ?!!!
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a new idea - nematic order
- systems that dont know up from down -

nematic (quadropolar) order :

(27)>(2”)=(0%) (07)=(2")=(2%)

site-wise nematic works for spin-1 : doesnt work for spin-1/2 :

favour 3
Sz=+/-1

equally only
Sz=+/-1/2

states
exist

disfavour Sz=0

for a spin-1 example see, e.g. : K. Harada and N. Kawashima, PRB 65, 052403(2002)
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- what do nematics and spin-1/2 FMs have in common ? -

what if we project spin-1/2's into a spin-1 space ?

consider the traceless second rank tensor :

(8 1 (8 (87 1 (8
OB (r;, 1)) = 5 (S S9 4+ 575%) — 50 8(8;-S;)

/ |

symmeterized product
of spin-1/2's
l.e. spin-1 object

removes trivial
self-correlation

relationship with wave function for two-magnon bound state through :

*c.f. 1D example : A. V. Chubukov, Phys. Rev. B. 44, 4693 (1991)

S S7 = 0% — OW — 20

1

..i.e. bond nematic can form through bi-magnon condensation *
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can we see the nematic in numerics ?
- two-magnon instability in applied field -
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what about the ground state ?
- absence of Neel order in the FM J1-J2 model -
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what about the ground state ?
- absence of Neel order in the FM J1-J2 model
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what about the ground state ?
- absence of Neel order in the FM J1-J2 model -
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thermodynamics...
- formation of triplets and "emergent” nematic order -

spin-1/2

capacity

J2/J1 = -00

entropy in peak is
associated with nematic

ordering of spin-1 bond
degrees of freedom
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“emergent” natural energy
energy scale scale ~J
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new compound CaZnVO(PO4)2 looks promising...
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experiment sees a gapless spin liquid bordering on the FM
- could this be another nematic state ?




J1=—4.00 K=1

e
-+
O
-
-+
O
Q
—
Q
o
—
O
O
-
2

- going beyond nematic structure -

TRI N=36 (6,0,0,6)




saturated ferromagnet

J1=—4.00 K=1

e
-+
O
-
-+
O
Q
—
Q
o
—
O
O
-
2

- going beyond nematic structure -

TRI N=36 (6,0,0,6)




magnon

saturated ferromagnet
excitations

flat band of single-

J1=—4.00 K=1

e
-+
O
-
-+
O
Q
—
Q
o
—
O
O
-
2

- going beyond nematic structure -




who ordered that ?
- going beyond nematic structure -

—4.00 K=1

saturated ferromagnet

BB

flat band of single-magnon
excitations

O A

two-magnon state

| gl

ZS
=S
=S
2N
=
==
s
=
==
=
HETSH
S
=z
Lo
(B
(=S,
s
i
Ky
T
L
==
et
=
iz
Lo 2ar
==
e
A
23
=




who ordered that ?
- going beyond nematic structure -

—4.00 K=1

saturated ferromagnet

BB

flat band of single-magnon
excitations

O A

two-magnon state

| gl

ZS
=S
=S
2N
=
==
s
=
==
=
HETSH
S
=z
Lo
(B
(=S,
s
i
Ky
T
L
==
et
=
iz
Lo 2ar
==
e
A
23
=

three-magnon state




magnon

excitations
three-magnon state

saturated ferromagnet
two-magnon state

flat band of single-

J1=—4.00 K=1

e
-+
O
-
-+
O
Q
—
Q
o
—
O
O
-
2

- going beyond nematic structure -

SRR R Gl R
u@@@hﬂﬁsﬁ meumum,@uﬁ@u R w&%ﬁ%

TRI N=36 (6,0,0,6)

—-215 B




who ordered that ?
- going beyond nematic structure -

!
iﬁ}:* 5
WA
>

P

Ll
3

T
N
A

saturated ferromagnet

T
RS

flat band of single-magnon
excitations

i
dij

D
AR
R B

55

AR

i

two-magnon state

if

ST

» (0

I
£t

three-magnon state

i
5
=
o

DR RR]

|

= AS=3
I BT IR B S R B A 1
10 12 14 16 18 \:29
S K

- structure is period-3 not period-2 -




e
-+
O
-
-+
O
Q
—
Q
o
—
O
O
-
2

- going beyond nematic structure -

magnon

excitations
three-magnon state

two-magnon state

saturated ferromagnet

flat band of single-

] ]
© © < o
<] o <] o

uoiyoziyaubow

J1=—4.00 K=1

IR G AT G
R R T

SRR @R

TRI N=36 (6,0,0,6)

IREIEEEED [ (e = —————-

A

o

a2

a2
_

VW 3 ﬁﬁnﬁﬁvﬂw Ew@umrrmsmﬁ@ @w@w_@m
(o)
¥

14

S

magnetic field

- structure is period-3 not period-2 -




=3

J | as

magnon

excitations
magnetic field

three-magnon state
- structure is period-3 not period-2 -

two-magnon state

| IR T S T T |
© © < N
o o o o

uoiyoziyaubow

saturated ferromagnet

i U L B

flat band of single-

J1=—4.00 K=1

RN O e =~ mmmmm - - - AT
TR G I R
R T e e,

e
-+
O
-
-+
O
Q
—
Q
o
—
O
O
-
2

S

- going beyond nematic structure -
14

SRR @R
VW 3 ﬁwﬁﬁmﬁ wmw@umrrmsmﬁ@ @Hﬂ@m
(o)
¥

TRI N=36 (6,0,0,6)

o

a2

a2
_




another new quantum phase !
- three-spin bound states at high magnetic field -




another new quantum phase !
- three-spin bound states at high magnetic field -

“wiggle-on” l

R
vt

AR
R

three spins propagate
coherently under action of
cyclic exchange




another new quantum phase !
- three-spin bound states at high magnetic field -

“wiggle-on” l

R
t Vg 48

AR A
R

three spins propagate
coherently under action of
cyclic exchange




another new quantum phase !
- three-spin bound states at high magnetic field -

“wiggle-on” l

R
S

AL AR A
R

three spins propagate
coherently under action of
cyclic exchange




another new quantum phase !
- three-spin bound states at high magnetic field -

“wiggle-on” l

R
S

A A
R

three spins propagate
coherently under action of
cyclic exchange




another new quantum phase !
- three-spin bound states at high magnetic field -

“wiggle-on” l

R
R A

Yy
R

three spins propagate
coherently under action of
cyclic exchange




another new quantum phase !
- three-spin bound states at high magnetic field -

“wiggle-on” l

R
R A

Yy
R

three spins propagate
coherently under action of
cyclic exchange




another new quantum phase !
- three-spin bound states at high magnetic field -

“wiggle-on” l

R
R A

Yy
R

three spins propagate
coherently under action of
cyclic exchange




another new quantum phase !
- three-spin bound states at high magnetic field -

“wiggle-on” l _ | 1-magnon

instability

1 i.e. canted Néel

{} {? ﬁ‘ ‘],} state (exact)
R VA

Yy
R

three spins propagate
coherently under action of
cyclic exchange




another new quantum phase !
- three-spin bound states at high magnetic field -

“wiggle-on” l

R
R A

Yy
R

three spins propagate
coherently under action of
cyclic exchange

1-magnon
instability
i.e. canted Néel
state (exact)

2-magnon instability
i.e. nematic state (exact)




another new quantum phase !
- three-spin bound states at high magnetic field -

“wiggle-on” l

R
R A

Yy
R

three spins propagate
coherently under action of
cyclic exchange

1-magnon
instability
i.e. canted Néel
state (exact)

3-magnon
instability
i.e. “triatic”
state
(variational

028 lower bound)

2-magnon instability
i.e. nematic state (exact)




symmetries of the triatic phase
- three-spin bound states at high magnetic field -




symmetries of the triatic phase
- three-spin bound states at high magnetic field -

order parameter is | Re{S; 57 Sy} = 25757 ST 257 5Y.SY—25Y 57.5Y—25Y 5V S}
rank 3 fensor = | 7 (579750} = 25757 S 4257 Y 7425 ST ST —25Y 5Y 5




symmetries of the triatic phase
- three-spin bound states at high magnetic field -

order parameter is Re {51;_5]'_5/;} = ZSfoS,f—QS;”SJySg—ZSfoSZ—ZSfS?S;f
rank 3 fensor = | 7 (579750} = 25757 SY 297 Y 7425 ST ST —25Y 5Y 5
matrix elements of order parameter
are linear combinations of fully

symmetrized spin operators on
triangular plaquette




symmetries of the triatic phase
- three-spin bound states at high magnetic field -

order parameter is Re {51;_53'_5/;} = 25555;?51?_25?5?32_25?3?52_QSfS?SZ
wELS & I Im{S; S; S, } = 287 S7Sy+-257 Y Si+25Y 57 Sf—28Y5Y S}
matrix elements of order parameter
are linear combinations of fully

symmetrized spin operators on

s triangular plaquette
>

in applied magnetic field, order
parameter is planar and maps onto
itself under rotations through 2m/3

Re(Oy >0, Im(O) =0 Re(O) =0, Im(O) <0

AY
‘ <

Re(Oy <0, Im(O) =0 Re(O) =0, Im(O) >0




symmetries of the triatic phase
- three-spin bound states at high magnetic field -

order parameter is Re {51;_5_7_5/;} = 25555;?51?_25?5?32_25?3?52_QSfS?SZ
rank 3 1ensor | 7y, (95,5, ) = 257 ST SY-258 SYSE+25Y STSE—25Y SV 5
matrix elements of order parameter
are linear combinations of fully

symmetrized spin operators on
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in applied magnetic field, order
parameter is planar and maps onto
itself under rotations through 2m/3

Re(Oy >0, Im(O) =0 Re(O) =0, Im(O) <0
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that’s all folks...
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