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     Motivation

 ∞ find new interesting low dimensional quantum spin systems

 ∞ Vanadium oxides:

   - both S = 1/2 (V4+) and S = 1 (V3+) possible

      → most interesting quantum spin cases

   - possibility for intermediate valent systems V3+ < v < V5+

      → charge degrees of freedom

   - possible (almost-) degeneracy of orbital states

      → orbital degrees of freedom

   - huge number of low dimensional complex Vanadium oxides

 

     Our work

 ∞ start with Sr2V3O9 and Ba2V3O9

    - quasi one-dimensional S = 1/2 (V4+) systems

    - unusual increase of the susceptibility at low temperatures

 → Dzyaloshinsky-Moriya interaction ?

 → unstable asymmetric position of V in Octahedra?

 ∞ heterovalent substitution

    - SrNa2V3O9, CaNa2V3O9    → S = 1/2  chains

 ∞ homovalent substitution

    - Sr2VO(PO4)2      →  S = 1/2  square lattice

    - Pb2VO(PO4)2

 → new compound

 → completely different structure

 → second example of frustrated AF square lattice

J2

J1

 ∞ J2 = 0    → simple AF square lattice

 ∞ J1 = 0    → two decoupled square lattices

 ∞ in between: complex phase diagram

            (not yet established)

Frustrated antiferromagnetic lattice

Neel Spin Liquid

0 0.5 1 J2/J10.34

Collinear

0.65

Spin

columnar 

Dimerized

 ∞ interesting physics (spin liquid?)

 ∞ lot of theoretical work

 ∞ but until 2000 no experimental realization

 ∞ first example: → Li2VSiO4 (Melzi et al., 2000)

Li2VOSiO4

J1

J2

 ∞ susceptibility, specific heat  → J1+J2 ≅ 9 K

 ∞ magnetic transition at 2.8 K

 ∞ NMR  →  collinear AF-magnetic structure

 ∞ ratio between J2/J1 under discussion

    - Melzi et al. (2000)      →  J1  ≅ J2 

    - Rosner at al. (2002)  →  J1 << J2

 ∞ Rosner at al.: (from LDA)

    → interlayer coupling quite significant

     (distance between layers not very large)

 ∞ structure

 - layers of

VO5-pyramids

 - connected by

    SiO4 tetrahedra

 - forming a square lattice

 ∞ exchange J1 between

     “up” and “down” 

         pyramids

 ∞ exchange J2 between

     “up” (or “down”)

           pyramids

Pb2VO(PO4)2 : Structure

 ∞ structure very similar

     to that of Li2VSiO4

 ∞ layers slightly modulated

 ∞ much larger distance

      between layers

 → interlayer coupling expected to be very weak

P

O

V

Pb

 ∞ large magnetic specific heat

       in the temperature range

             3 K < T < 10 K

      → AF fluctuations

      → suppressed by

  magnetic field

 ∞ Cp(T) can be well fitted

    with theoretical result

            [G. Uhrig]

        for square lattice  

 ∞ anomaly at Tm

      - very small for B = 0

      - strongly enhanced

    at large B

      → entropy shifts from

    broad maximum

     (AF-fluctuation)

         to peak

 (magnetic ordering)

Pb2VO(PO4)2 : Specific heat

Polycrystals Single crystal

B - T Phase diagram

 ∞ square lattice with

 - AF exchange J1

   between nearest neighbors

 - AF exchange J2

   between next nearest neighbors

Pb2VO(PO4)2 : Magnetic susceptibility

Polycrystals Single crystal

 ∞ temperature dependence as expected for a

    AF square lattice

 ∞ Tχmax = 8.2 K  →  J1 + J2  ≅ 12 K

 ∞ clear anomaly at Tm = 3.6 K

   → Antiferromagnetic order at Tm 

 ∞ strong anisotropy for T < Tm

    -  low susceptibility for B along b-axis

    → Magnetic moments aligned along b-axis

       suggested

 magnetic structure

or

 ∞ found a new interesting compound:

                  Pb2VO(PO4)2

 ∞ second example for a frustrated square

         antiferromagnetic lattice system

 ∞ two-dimensionality much better than

                     in Li2VSiO4 

 ∞  J1 + J2  ≅ 12 K,   we suspect J2 > J1

 ∞ magnetic order (likely collinear order)

                     at Tm = 3.6 K 

 ∞ precise determination of J1 and J2 

                   under way

 (need more precise theoretical results)

 Summary

spin-1/2 V4+ in layered pyramids

E. Kaul et al.,  JMMM 272-276 (II), 922 (2004)  
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6 Frustrated square lattices: Pb2VO(PO4)2 and related compounds

Figure 6.11: χ(T) of polycrystalline Pb2VO(PO4)2 at 1000G, 1T and 5T. The continuous
line is the calculated polycrystalline χ(T) averaging the anisotropic single crystal susceptibility
(see fig. 6.15). Inset: 1/χ(T) vs. T corresponding to the measurement at 1000G, the line is the

Curie-Weiss fit to this data.

The χ(T) of Pb2VO(PO4)2 is characterized by a paramagnetic Curie-Weiss behaviour
at high temperatures. At lower temperatures, χ(T) deviates from the CW behaviour pass-
ing through a broad maximum at Tχ

Max =8.92K and decreasing towards a finite value at
lower temperatures. At TN ! 3.53K (1000G), a kink in χ(T ) indicates that the com-
pound undergoes a magnetic phase transition into an ordered state. In the inset of fig.
6.11 we plot 1/χ(T) vs. T (1000G data) for polycrystalline Pb2VO(PO4)2. The line in this
plot is a Curie-Weiss fit (eq. 6.7) which adjust very well to the data down to T! 40K.
From this fit we obtained θCW =-5.2K, µeff ! 1.70µB and χConst =-1.6× 10−5 emu/mol.
The value of µeff is slightly smaller than the expected of 1.73µB. This reduction in the
effective moment of the sample may either be intrinsic or due to a very small amount of
a non-magnetic foreign phase, probably unreacted Pb2P2O7. However, the presence of
paramagnetic foreign phases or impurities is ruled out by the lack of any evidence for an
upturn of χ(T) below TN . The presence of unreacted VO2 is ruled out by the χ(T) results
because this compound presents a large step[305] in χ(T) at about Tc =345K. This step
originates from a structural phase transition from a high-temperature paramagnetic Ru-
tile structure to a low-temperature Monoclinic one with non-magnetic V–V dimers. This
structural transition is also accompanied by a metal (above Tc) to insulator (below Tc)
transition[25, 306].

The value of θCW (-5.2K) is rather small if we compare it with Tχ
Max =8.92K. In

the case of the unfrustrated two-dimensional Heisenberg square lattice antiferromagnet,
the temperature of the maximum in χ(T) is directly related to the magnetic exchange

78

linear χ-inverse ⇒ frustrated magnet
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6 Frustrated square lattices: Pb2VO(PO4)2 and related compounds

Figure 6.11: χ(T) of polycrystalline Pb2VO(PO4)2 at 1000G, 1T and 5T. The continuous
line is the calculated polycrystalline χ(T) averaging the anisotropic single crystal susceptibility
(see fig. 6.15). Inset: 1/χ(T) vs. T corresponding to the measurement at 1000G, the line is the

Curie-Weiss fit to this data.

The χ(T) of Pb2VO(PO4)2 is characterized by a paramagnetic Curie-Weiss behaviour
at high temperatures. At lower temperatures, χ(T) deviates from the CW behaviour pass-
ing through a broad maximum at Tχ

Max =8.92K and decreasing towards a finite value at
lower temperatures. At TN ! 3.53K (1000G), a kink in χ(T ) indicates that the com-
pound undergoes a magnetic phase transition into an ordered state. In the inset of fig.
6.11 we plot 1/χ(T) vs. T (1000G data) for polycrystalline Pb2VO(PO4)2. The line in this
plot is a Curie-Weiss fit (eq. 6.7) which adjust very well to the data down to T! 40K.
From this fit we obtained θCW =-5.2K, µeff ! 1.70µB and χConst =-1.6× 10−5 emu/mol.
The value of µeff is slightly smaller than the expected of 1.73µB. This reduction in the
effective moment of the sample may either be intrinsic or due to a very small amount of
a non-magnetic foreign phase, probably unreacted Pb2P2O7. However, the presence of
paramagnetic foreign phases or impurities is ruled out by the lack of any evidence for an
upturn of χ(T) below TN . The presence of unreacted VO2 is ruled out by the χ(T) results
because this compound presents a large step[305] in χ(T) at about Tc =345K. This step
originates from a structural phase transition from a high-temperature paramagnetic Ru-
tile structure to a low-temperature Monoclinic one with non-magnetic V–V dimers. This
structural transition is also accompanied by a metal (above Tc) to insulator (below Tc)
transition[25, 306].

The value of θCW (-5.2K) is rather small if we compare it with Tχ
Max =8.92K. In

the case of the unfrustrated two-dimensional Heisenberg square lattice antiferromagnet,
the temperature of the maximum in χ(T) is directly related to the magnetic exchange
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Figure 6.11: χ(T) of polycrystalline Pb2VO(PO4)2 at 1000G, 1T and 5T. The continuous
line is the calculated polycrystalline χ(T) averaging the anisotropic single crystal susceptibility
(see fig. 6.15). Inset: 1/χ(T) vs. T corresponding to the measurement at 1000G, the line is the

Curie-Weiss fit to this data.

The χ(T) of Pb2VO(PO4)2 is characterized by a paramagnetic Curie-Weiss behaviour
at high temperatures. At lower temperatures, χ(T) deviates from the CW behaviour pass-
ing through a broad maximum at Tχ

Max =8.92K and decreasing towards a finite value at
lower temperatures. At TN ! 3.53K (1000G), a kink in χ(T ) indicates that the com-
pound undergoes a magnetic phase transition into an ordered state. In the inset of fig.
6.11 we plot 1/χ(T) vs. T (1000G data) for polycrystalline Pb2VO(PO4)2. The line in this
plot is a Curie-Weiss fit (eq. 6.7) which adjust very well to the data down to T! 40K.
From this fit we obtained θCW =-5.2K, µeff ! 1.70µB and χConst =-1.6× 10−5 emu/mol.
The value of µeff is slightly smaller than the expected of 1.73µB. This reduction in the
effective moment of the sample may either be intrinsic or due to a very small amount of
a non-magnetic foreign phase, probably unreacted Pb2P2O7. However, the presence of
paramagnetic foreign phases or impurities is ruled out by the lack of any evidence for an
upturn of χ(T) below TN . The presence of unreacted VO2 is ruled out by the χ(T) results
because this compound presents a large step[305] in χ(T) at about Tc =345K. This step
originates from a structural phase transition from a high-temperature paramagnetic Ru-
tile structure to a low-temperature Monoclinic one with non-magnetic V–V dimers. This
structural transition is also accompanied by a metal (above Tc) to insulator (below Tc)
transition[25, 306].

The value of θCW (-5.2K) is rather small if we compare it with Tχ
Max =8.92K. In

the case of the unfrustrated two-dimensional Heisenberg square lattice antiferromagnet,
the temperature of the maximum in χ(T) is directly related to the magnetic exchange
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modified by competing interactions. At the boundary with the
NAF phase for !c = −"/2, the dispersion is that of a pure J2
FM, which has the same magnetic BZ as the NAF phase, and
therefore zeroes at q = (" ,") and symmetry points, in addi-
tion the usual q= (0,0) Goldstone mode. Deep within the FM
phase for ! = −"+ tan−1(1/2), the dispersion behaves as

%(q) ∼ Dq2 (14)

where the stiffness constant D is given by

D = −(J1+2J2)S (15)

in the zone centre, but vanishes on the zone boundary. The vari-
ation of D as a function of ! is plotted in Figure 6 For ! = −"
the dispersion is that of the familiar pure J1 FM. And, finally, on
the boundary between FM and CAF for !c = " − tan−1(1/2),
the dispersion vanishes on the lines qx = 0 and qy = 0. These
lines of zeros are a direct manifestation of the special local
symmetry discussed in Section 2.1.

The heat capacity of a FM in 2D is linear at low tempera-
tures, reflecting a constant density of states at zero energy, and

scales as

CV =
& (2)

2"

(

T

D

)

(16)

where & (2) = "2/6. The coefficient of T as function of ! is
plotted in Figure 7. It diverges at the transition between the
FM and the CAF, but approaches a constant at the transition
between FM and NAF.

2.2.2 NAF phase

The spinwave spectrum for the NAF is given by

%(q) =
√

A2q−B2q (17)

where the coupling between spins on a given sublattice is

Aq = 4S[J1− J2(1− cxcy)] (18)

and the coupling between the two sublattices is

Bq = 2J1S(cx+ cy) (19)

Where J2 is FM, it acts to stabilize the NAF order, where J2 is
AF, it acts to destroy it. Once again this competition is visible
in the spin wave dispersion, as show in Figure 8.

At the boundary with the FM phase for !c = −"/2, the
dispersion is that of a pure J2 NAF, and exactly matches that
of the FM on this phase boundary. Deep within the NAF phase
for !c = − tan−1(1/2), the low energy spin wave dispersion
behaves as

%(q) ∼ vs | q−q∗ | (20)

where the isotropic spin wave velocity is given by

vs = 2S
√

2J1(J1−2J2) (21)

and q∗ = (" ,"), as expected. However it exhibits a marked dis-
persion about the magnetic zone boundary, as compared to the
pure J1 NAF for ! = 0. Finally, on the boundary with the CAF
phase for !c = tan−1(1/2), the dispersion vanishes on the lines
qx = 0, qx = ±" and qy = 0, qy = ±" . Values of the spinwave
velocity vS are shown in Figure 6, in units in such that the lat-
tice spacing a= 1 and the overall energy scale Jc = 1.
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modified by competing interactions. At the boundary with the
NAF phase for !c = −"/2, the dispersion is that of a pure J2
FM, which has the same magnetic BZ as the NAF phase, and
therefore zeroes at q = (" ,") and symmetry points, in addi-
tion the usual q= (0,0) Goldstone mode. Deep within the FM
phase for ! = −"+ tan−1(1/2), the dispersion behaves as

%(q) ∼ Dq2 (14)

where the stiffness constant D is given by

D = −(J1+2J2)S (15)

in the zone centre, but vanishes on the zone boundary. The vari-
ation of D as a function of ! is plotted in Figure 6 For ! = −"
the dispersion is that of the familiar pure J1 FM. And, finally, on
the boundary between FM and CAF for !c = " − tan−1(1/2),
the dispersion vanishes on the lines qx = 0 and qy = 0. These
lines of zeros are a direct manifestation of the special local
symmetry discussed in Section 2.1.

The heat capacity of a FM in 2D is linear at low tempera-
tures, reflecting a constant density of states at zero energy, and

scales as

CV =
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where & (2) = "2/6. The coefficient of T as function of ! is
plotted in Figure 7. It diverges at the transition between the
FM and the CAF, but approaches a constant at the transition
between FM and NAF.

2.2.2 NAF phase

The spinwave spectrum for the NAF is given by
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√

A2q−B2q (17)

where the coupling between spins on a given sublattice is

Aq = 4S[J1− J2(1− cxcy)] (18)

and the coupling between the two sublattices is

Bq = 2J1S(cx+ cy) (19)

Where J2 is FM, it acts to stabilize the NAF order, where J2 is
AF, it acts to destroy it. Once again this competition is visible
in the spin wave dispersion, as show in Figure 8.

At the boundary with the FM phase for !c = −"/2, the
dispersion is that of a pure J2 NAF, and exactly matches that
of the FM on this phase boundary. Deep within the NAF phase
for !c = − tan−1(1/2), the low energy spin wave dispersion
behaves as

%(q) ∼ vs | q−q∗ | (20)

where the isotropic spin wave velocity is given by

vs = 2S
√

2J1(J1−2J2) (21)

and q∗ = (" ,"), as expected. However it exhibits a marked dis-
persion about the magnetic zone boundary, as compared to the
pure J1 NAF for ! = 0. Finally, on the boundary with the CAF
phase for !c = tan−1(1/2), the dispersion vanishes on the lines
qx = 0, qx = ±" and qy = 0, qy = ±" . Values of the spinwave
velocity vS are shown in Figure 6, in units in such that the lat-
tice spacing a= 1 and the overall energy scale Jc = 1.

J=-1, J2=K=0

ω

qx
qy

Nic Shannon et al.: Finite temperature properties and frustrated ferromagnetism in a square lattice Heisenberg model 5

Fig. 5. Evolution of spinwave dispersion in FM phase. From left to right – border with NAF, deep within FM phase, pure nearest neighbour

exchange, border with CAF.

-1.0 -0.5 0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0

!/"

#(
!
),

 $
(!

)

FM NAF CAF FM

#

$
$

#

Fig. 7. Evolution of the heat capacity CV as a function of the frus-

tration angle ! . In FM regions the quantity plotted is the prefactor #

of CV = #T , and in AF regions the prefactor $ of CV = $T 2, where

temperature is measured in units of Jc.

modified by competing interactions. At the boundary with the
NAF phase for !c = −"/2, the dispersion is that of a pure J2
FM, which has the same magnetic BZ as the NAF phase, and
therefore zeroes at q = (" ,") and symmetry points, in addi-
tion the usual q= (0,0) Goldstone mode. Deep within the FM
phase for ! = −"+ tan−1(1/2), the dispersion behaves as

%(q) ∼ Dq2 (14)

where the stiffness constant D is given by

D = −(J1+2J2)S (15)

in the zone centre, but vanishes on the zone boundary. The vari-
ation of D as a function of ! is plotted in Figure 6 For ! = −"
the dispersion is that of the familiar pure J1 FM. And, finally, on
the boundary between FM and CAF for !c = " − tan−1(1/2),
the dispersion vanishes on the lines qx = 0 and qy = 0. These
lines of zeros are a direct manifestation of the special local
symmetry discussed in Section 2.1.

The heat capacity of a FM in 2D is linear at low tempera-
tures, reflecting a constant density of states at zero energy, and

scales as

CV =
& (2)
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(
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D
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(16)

where & (2) = "2/6. The coefficient of T as function of ! is
plotted in Figure 7. It diverges at the transition between the
FM and the CAF, but approaches a constant at the transition
between FM and NAF.

2.2.2 NAF phase

The spinwave spectrum for the NAF is given by

%(q) =
√

A2q−B2q (17)

where the coupling between spins on a given sublattice is

Aq = 4S[J1− J2(1− cxcy)] (18)

and the coupling between the two sublattices is

Bq = 2J1S(cx+ cy) (19)

Where J2 is FM, it acts to stabilize the NAF order, where J2 is
AF, it acts to destroy it. Once again this competition is visible
in the spin wave dispersion, as show in Figure 8.

At the boundary with the FM phase for !c = −"/2, the
dispersion is that of a pure J2 NAF, and exactly matches that
of the FM on this phase boundary. Deep within the NAF phase
for !c = − tan−1(1/2), the low energy spin wave dispersion
behaves as

%(q) ∼ vs | q−q∗ | (20)

where the isotropic spin wave velocity is given by

vs = 2S
√

2J1(J1−2J2) (21)

and q∗ = (" ,"), as expected. However it exhibits a marked dis-
persion about the magnetic zone boundary, as compared to the
pure J1 NAF for ! = 0. Finally, on the boundary with the CAF
phase for !c = tan−1(1/2), the dispersion vanishes on the lines
qx = 0, qx = ±" and qy = 0, qy = ±" . Values of the spinwave
velocity vS are shown in Figure 6, in units in such that the lat-
tice spacing a= 1 and the overall energy scale Jc = 1.
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modified by competing interactions. At the boundary with the
NAF phase for !c = −"/2, the dispersion is that of a pure J2
FM, which has the same magnetic BZ as the NAF phase, and
therefore zeroes at q = (" ,") and symmetry points, in addi-
tion the usual q= (0,0) Goldstone mode. Deep within the FM
phase for ! = −"+ tan−1(1/2), the dispersion behaves as

%(q) ∼ Dq2 (14)

where the stiffness constant D is given by

D = −(J1+2J2)S (15)

in the zone centre, but vanishes on the zone boundary. The vari-
ation of D as a function of ! is plotted in Figure 6 For ! = −"
the dispersion is that of the familiar pure J1 FM. And, finally, on
the boundary between FM and CAF for !c = " − tan−1(1/2),
the dispersion vanishes on the lines qx = 0 and qy = 0. These
lines of zeros are a direct manifestation of the special local
symmetry discussed in Section 2.1.

The heat capacity of a FM in 2D is linear at low tempera-
tures, reflecting a constant density of states at zero energy, and

scales as

CV =
& (2)
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(16)

where & (2) = "2/6. The coefficient of T as function of ! is
plotted in Figure 7. It diverges at the transition between the
FM and the CAF, but approaches a constant at the transition
between FM and NAF.

2.2.2 NAF phase

The spinwave spectrum for the NAF is given by

%(q) =
√

A2q−B2q (17)

where the coupling between spins on a given sublattice is

Aq = 4S[J1− J2(1− cxcy)] (18)

and the coupling between the two sublattices is

Bq = 2J1S(cx+ cy) (19)

Where J2 is FM, it acts to stabilize the NAF order, where J2 is
AF, it acts to destroy it. Once again this competition is visible
in the spin wave dispersion, as show in Figure 8.

At the boundary with the FM phase for !c = −"/2, the
dispersion is that of a pure J2 NAF, and exactly matches that
of the FM on this phase boundary. Deep within the NAF phase
for !c = − tan−1(1/2), the low energy spin wave dispersion
behaves as

%(q) ∼ vs | q−q∗ | (20)

where the isotropic spin wave velocity is given by

vs = 2S
√

2J1(J1−2J2) (21)

and q∗ = (" ,"), as expected. However it exhibits a marked dis-
persion about the magnetic zone boundary, as compared to the
pure J1 NAF for ! = 0. Finally, on the boundary with the CAF
phase for !c = tan−1(1/2), the dispersion vanishes on the lines
qx = 0, qx = ±" and qy = 0, qy = ±" . Values of the spinwave
velocity vS are shown in Figure 6, in units in such that the lat-
tice spacing a= 1 and the overall energy scale Jc = 1.
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modified by competing interactions. At the boundary with the
NAF phase for !c = −"/2, the dispersion is that of a pure J2
FM, which has the same magnetic BZ as the NAF phase, and
therefore zeroes at q = (" ,") and symmetry points, in addi-
tion the usual q= (0,0) Goldstone mode. Deep within the FM
phase for ! = −"+ tan−1(1/2), the dispersion behaves as

%(q) ∼ Dq2 (14)

where the stiffness constant D is given by

D = −(J1+2J2)S (15)

in the zone centre, but vanishes on the zone boundary. The vari-
ation of D as a function of ! is plotted in Figure 6 For ! = −"
the dispersion is that of the familiar pure J1 FM. And, finally, on
the boundary between FM and CAF for !c = " − tan−1(1/2),
the dispersion vanishes on the lines qx = 0 and qy = 0. These
lines of zeros are a direct manifestation of the special local
symmetry discussed in Section 2.1.

The heat capacity of a FM in 2D is linear at low tempera-
tures, reflecting a constant density of states at zero energy, and

scales as

CV =
& (2)
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(
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D

)

(16)

where & (2) = "2/6. The coefficient of T as function of ! is
plotted in Figure 7. It diverges at the transition between the
FM and the CAF, but approaches a constant at the transition
between FM and NAF.

2.2.2 NAF phase

The spinwave spectrum for the NAF is given by

%(q) =
√

A2q−B2q (17)

where the coupling between spins on a given sublattice is

Aq = 4S[J1− J2(1− cxcy)] (18)

and the coupling between the two sublattices is

Bq = 2J1S(cx+ cy) (19)

Where J2 is FM, it acts to stabilize the NAF order, where J2 is
AF, it acts to destroy it. Once again this competition is visible
in the spin wave dispersion, as show in Figure 8.

At the boundary with the FM phase for !c = −"/2, the
dispersion is that of a pure J2 NAF, and exactly matches that
of the FM on this phase boundary. Deep within the NAF phase
for !c = − tan−1(1/2), the low energy spin wave dispersion
behaves as

%(q) ∼ vs | q−q∗ | (20)

where the isotropic spin wave velocity is given by

vs = 2S
√

2J1(J1−2J2) (21)

and q∗ = (" ,"), as expected. However it exhibits a marked dis-
persion about the magnetic zone boundary, as compared to the
pure J1 NAF for ! = 0. Finally, on the boundary with the CAF
phase for !c = tan−1(1/2), the dispersion vanishes on the lines
qx = 0, qx = ±" and qy = 0, qy = ±" . Values of the spinwave
velocity vS are shown in Figure 6, in units in such that the lat-
tice spacing a= 1 and the overall energy scale Jc = 1.
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modified by competing interactions. At the boundary with the
NAF phase for !c = −"/2, the dispersion is that of a pure J2
FM, which has the same magnetic BZ as the NAF phase, and
therefore zeroes at q = (" ,") and symmetry points, in addi-
tion the usual q= (0,0) Goldstone mode. Deep within the FM
phase for ! = −"+ tan−1(1/2), the dispersion behaves as

%(q) ∼ Dq2 (14)

where the stiffness constant D is given by

D = −(J1+2J2)S (15)

in the zone centre, but vanishes on the zone boundary. The vari-
ation of D as a function of ! is plotted in Figure 6 For ! = −"
the dispersion is that of the familiar pure J1 FM. And, finally, on
the boundary between FM and CAF for !c = " − tan−1(1/2),
the dispersion vanishes on the lines qx = 0 and qy = 0. These
lines of zeros are a direct manifestation of the special local
symmetry discussed in Section 2.1.

The heat capacity of a FM in 2D is linear at low tempera-
tures, reflecting a constant density of states at zero energy, and

scales as

CV =
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(16)

where & (2) = "2/6. The coefficient of T as function of ! is
plotted in Figure 7. It diverges at the transition between the
FM and the CAF, but approaches a constant at the transition
between FM and NAF.

2.2.2 NAF phase

The spinwave spectrum for the NAF is given by

%(q) =
√

A2q−B2q (17)

where the coupling between spins on a given sublattice is

Aq = 4S[J1− J2(1− cxcy)] (18)

and the coupling between the two sublattices is

Bq = 2J1S(cx+ cy) (19)

Where J2 is FM, it acts to stabilize the NAF order, where J2 is
AF, it acts to destroy it. Once again this competition is visible
in the spin wave dispersion, as show in Figure 8.

At the boundary with the FM phase for !c = −"/2, the
dispersion is that of a pure J2 NAF, and exactly matches that
of the FM on this phase boundary. Deep within the NAF phase
for !c = − tan−1(1/2), the low energy spin wave dispersion
behaves as

%(q) ∼ vs | q−q∗ | (20)

where the isotropic spin wave velocity is given by

vs = 2S
√

2J1(J1−2J2) (21)

and q∗ = (" ,"), as expected. However it exhibits a marked dis-
persion about the magnetic zone boundary, as compared to the
pure J1 NAF for ! = 0. Finally, on the boundary with the CAF
phase for !c = tan−1(1/2), the dispersion vanishes on the lines
qx = 0, qx = ±" and qy = 0, qy = ±" . Values of the spinwave
velocity vS are shown in Figure 6, in units in such that the lat-
tice spacing a= 1 and the overall energy scale Jc = 1.
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modified by competing interactions. At the boundary with the
NAF phase for !c = −"/2, the dispersion is that of a pure J2
FM, which has the same magnetic BZ as the NAF phase, and
therefore zeroes at q = (" ,") and symmetry points, in addi-
tion the usual q= (0,0) Goldstone mode. Deep within the FM
phase for ! = −"+ tan−1(1/2), the dispersion behaves as

%(q) ∼ Dq2 (14)

where the stiffness constant D is given by

D = −(J1+2J2)S (15)

in the zone centre, but vanishes on the zone boundary. The vari-
ation of D as a function of ! is plotted in Figure 6 For ! = −"
the dispersion is that of the familiar pure J1 FM. And, finally, on
the boundary between FM and CAF for !c = " − tan−1(1/2),
the dispersion vanishes on the lines qx = 0 and qy = 0. These
lines of zeros are a direct manifestation of the special local
symmetry discussed in Section 2.1.

The heat capacity of a FM in 2D is linear at low tempera-
tures, reflecting a constant density of states at zero energy, and

scales as

CV =
& (2)

2"

(

T

D

)

(16)

where & (2) = "2/6. The coefficient of T as function of ! is
plotted in Figure 7. It diverges at the transition between the
FM and the CAF, but approaches a constant at the transition
between FM and NAF.

2.2.2 NAF phase

The spinwave spectrum for the NAF is given by

%(q) =
√

A2q−B2q (17)

where the coupling between spins on a given sublattice is

Aq = 4S[J1− J2(1− cxcy)] (18)

and the coupling between the two sublattices is

Bq = 2J1S(cx+ cy) (19)

Where J2 is FM, it acts to stabilize the NAF order, where J2 is
AF, it acts to destroy it. Once again this competition is visible
in the spin wave dispersion, as show in Figure 8.

At the boundary with the FM phase for !c = −"/2, the
dispersion is that of a pure J2 NAF, and exactly matches that
of the FM on this phase boundary. Deep within the NAF phase
for !c = − tan−1(1/2), the low energy spin wave dispersion
behaves as

%(q) ∼ vs | q−q∗ | (20)

where the isotropic spin wave velocity is given by

vs = 2S
√

2J1(J1−2J2) (21)

and q∗ = (" ,"), as expected. However it exhibits a marked dis-
persion about the magnetic zone boundary, as compared to the
pure J1 NAF for ! = 0. Finally, on the boundary with the CAF
phase for !c = tan−1(1/2), the dispersion vanishes on the lines
qx = 0, qx = ±" and qy = 0, qy = ±" . Values of the spinwave
velocity vS are shown in Figure 6, in units in such that the lat-
tice spacing a= 1 and the overall energy scale Jc = 1.
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2 Nic Shannon et al.: Finite temperature properties and frustrated ferromagnetism in a square lattice Heisenberg model

Motivated by Pb2VO(PO4)2, in this paper we provide an
overview of the ground state and finite temperature properties
of the J1-J2 with mixed FM and AF couplings. We present a
comprehensive semiclassical analysis of the three dominant or-
dered phases of the model – a uniform FM phase, and q =
(π ,π) Néel (NAF) and q∗ = (π ,0),(0,π) collinear (CAF) an-
tiferromagnetic phases – together with an exact analytic diago-
nalization of an eight site cluster, and finite temperature Lanc-
zos results for the heat capacity and magnetic susceptibility for
16 and 20 site clusters.

We argue that, in addition to the known spin liquid region
for J1 > 0, J2 ∼ J1/2, where the NAF and CAF phases com-
pete, a new spin liquid regionmay exist for J1 < 0, J2∼−J1/2,
where the FM and CAF phases compete. We also propose that,
because of their low magnetic energy scales, diffuse neutron
scattering at finite temperatures can provide a very useful source
of information about the nature of the competing magnetic in-
teractions in these materials. With this in mind, we present the
first quantitative numerical estimates of the magnetic structure
factor S(q, T) for the J1-J2 model.

2 Zero temperature properties

2.1 Classical phase diagram and general arguments

We consider the spin 1/2 Heisenberg model on a square lattice

H = J1 �
〈i j〉1

Si.S j + J2 �
〈ik〉2

Si.Sk (1)

where the sum on 〈i j〉1 runs over nearest neighbour and the
sum 〈ik〉2 over diagonal next-nearest neighbour bonds. We al-
low the exchange constants J1 and J2 to be negative (FM) as
well as positive (AF)

Since the properties of the J1-J2 model depend on the rela-
tive and not the absolute size of the exchange couplings J1 and
J2, it is convenient to characterize it by an overall energy scale

Jc =
√

J21 + J22 (2)

and a frustration angle φ such that

J1 = Jc cos(φ) J2 = Jc sin(φ)

φ = tan−1(J2/J1) (3)

As discussed in Section 3, Jc can in principle be determined di-
rectly from the asymptotic behaviour of heat capacity and sus-
ceptibility at high temperatures. However the different physical
properties of the model depend on the angle φ , and this is much
harder to determine from experiment.

Let us first consider the simplest possible classical analysis
of the model. We assume that the system orders at zero temper-
ature in such a way that all the spins are oriented in a common
plane [7]. In this case the ground state energy of the J1-J2 model
is minimised by an order parameter with wave vector q = q∗
such that the energy per spin

E(q∗) =
1
2
zS2 [J1γ1(q∗)+ J2γ2(q∗)] (4)

φ

Fig. 1. Classical phase diagram. Numbers are ratios of exchange cou-
plings J2/J1 for phase boundaries as determined from the classical
ground state energy. The boundary between FM and NAF phase is
the line J1 = 0, J2 < 0 (J2/J1 = −× in the figure). Values of J2/J1
in parentheses show where zero point fluctuations destroy the relevant
order parameter at a semiclassical level, as discussed in Section 2.2.
The shaded areas for J1 > 0 correspond to the known spin-liquid
regime, and for J1 < 0 to another spin liquid region. The frustration
angle is given by φ = tan−1(J2/J1).
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Fig. 2. Classical energies E(q∗) as a function of the frustration angle
φ in units of Jc. Solid line: FM, q∗ = 0; dotted line: NAF, q∗ = (π,π);
dashed line: CAF, q∗ = (π,0); long-dashed line: four sublattice state
for q∗ = (π/2,0).

takes on its minimal value. Here

γ1(q) = (cos(qx)+ cos(qy))/2
γ2(q) = cos(qx)cos(qy) (5)

z = 4 is the lattice coordination number for each type of bond
and S = 1/2 is the size of the spin.

this study
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plane [7]. In this case the ground state energy of the J1-J2 model
is minimised by an order parameter with wave vector q = q∗
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plings J2/J1 for phase boundaries as determined from the classical
ground state energy. The boundary between FM and NAF phase is
the line J1 = 0, J2 < 0 (J2/J1 = −× in the figure). Values of J2/J1
in parentheses show where zero point fluctuations destroy the relevant
order parameter at a semiclassical level, as discussed in Section 2.2.
The shaded areas for J1 > 0 correspond to the known spin-liquid
regime, and for J1 < 0 to another spin liquid region. The frustration
angle is given by φ = tan−1(J2/J1).

-1.0 -0.5 0.0 0.5 1.0

-0.5

0.0

0.5

φ/π

E(
φ)

FM NAF CAF FM

Fig. 2. Classical energies E(q∗) as a function of the frustration angle
φ in units of Jc. Solid line: FM, q∗ = 0; dotted line: NAF, q∗ = (π,π);
dashed line: CAF, q∗ = (π,0); long-dashed line: four sublattice state
for q∗ = (π/2,0).

takes on its minimal value. Here

γ1(q) = (cos(qx)+ cos(qy))/2
γ2(q) = cos(qx)cos(qy) (5)

z = 4 is the lattice coordination number for each type of bond
and S = 1/2 is the size of the spin.
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2 Nic Shannon et al.: Finite temperature properties and frustrated ferromagnetism in a square lattice Heisenberg model

Motivated by Pb2VO(PO4)2, in this paper we provide an
overview of the ground state and finite temperature properties
of the J1-J2 with mixed FM and AF couplings. We present a
comprehensive semiclassical analysis of the three dominant or-
dered phases of the model – a uniform FM phase, and q =
(π ,π) Néel (NAF) and q∗ = (π ,0),(0,π) collinear (CAF) an-
tiferromagnetic phases – together with an exact analytic diago-
nalization of an eight site cluster, and finite temperature Lanc-
zos results for the heat capacity and magnetic susceptibility for
16 and 20 site clusters.

We argue that, in addition to the known spin liquid region
for J1 > 0, J2 ∼ J1/2, where the NAF and CAF phases com-
pete, a new spin liquid regionmay exist for J1 < 0, J2∼−J1/2,
where the FM and CAF phases compete. We also propose that,
because of their low magnetic energy scales, diffuse neutron
scattering at finite temperatures can provide a very useful source
of information about the nature of the competing magnetic in-
teractions in these materials. With this in mind, we present the
first quantitative numerical estimates of the magnetic structure
factor S(q, T) for the J1-J2 model.

2 Zero temperature properties

2.1 Classical phase diagram and general arguments

We consider the spin 1/2 Heisenberg model on a square lattice

H = J1 �
〈i j〉1

Si.S j + J2 �
〈ik〉2

Si.Sk (1)

where the sum on 〈i j〉1 runs over nearest neighbour and the
sum 〈ik〉2 over diagonal next-nearest neighbour bonds. We al-
low the exchange constants J1 and J2 to be negative (FM) as
well as positive (AF)

Since the properties of the J1-J2 model depend on the rela-
tive and not the absolute size of the exchange couplings J1 and
J2, it is convenient to characterize it by an overall energy scale

Jc =
√

J21 + J22 (2)

and a frustration angle φ such that

J1 = Jc cos(φ) J2 = Jc sin(φ)

φ = tan−1(J2/J1) (3)

As discussed in Section 3, Jc can in principle be determined di-
rectly from the asymptotic behaviour of heat capacity and sus-
ceptibility at high temperatures. However the different physical
properties of the model depend on the angle φ , and this is much
harder to determine from experiment.

Let us first consider the simplest possible classical analysis
of the model. We assume that the system orders at zero temper-
ature in such a way that all the spins are oriented in a common
plane [7]. In this case the ground state energy of the J1-J2 model
is minimised by an order parameter with wave vector q = q∗
such that the energy per spin

E(q∗) =
1
2
zS2 [J1γ1(q∗)+ J2γ2(q∗)] (4)

φ

Fig. 1. Classical phase diagram. Numbers are ratios of exchange cou-
plings J2/J1 for phase boundaries as determined from the classical
ground state energy. The boundary between FM and NAF phase is
the line J1 = 0, J2 < 0 (J2/J1 = −× in the figure). Values of J2/J1
in parentheses show where zero point fluctuations destroy the relevant
order parameter at a semiclassical level, as discussed in Section 2.2.
The shaded areas for J1 > 0 correspond to the known spin-liquid
regime, and for J1 < 0 to another spin liquid region. The frustration
angle is given by φ = tan−1(J2/J1).
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Fig. 2. Classical energies E(q∗) as a function of the frustration angle
φ in units of Jc. Solid line: FM, q∗ = 0; dotted line: NAF, q∗ = (π,π);
dashed line: CAF, q∗ = (π,0); long-dashed line: four sublattice state
for q∗ = (π/2,0).

takes on its minimal value. Here

γ1(q) = (cos(qx)+ cos(qy))/2
γ2(q) = cos(qx)cos(qy) (5)

z = 4 is the lattice coordination number for each type of bond
and S = 1/2 is the size of the spin.
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As discussed in Section 3, Jc can in principle be determined di-
rectly from the asymptotic behaviour of heat capacity and sus-
ceptibility at high temperatures. However the different physical
properties of the model depend on the angle φ , and this is much
harder to determine from experiment.

Let us first consider the simplest possible classical analysis
of the model. We assume that the system orders at zero temper-
ature in such a way that all the spins are oriented in a common
plane [7]. In this case the ground state energy of the J1-J2 model
is minimised by an order parameter with wave vector q = q∗
such that the energy per spin
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Fig. 1. Classical phase diagram. Numbers are ratios of exchange cou-
plings J2/J1 for phase boundaries as determined from the classical
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the line J1 = 0, J2 < 0 (J2/J1 = −× in the figure). Values of J2/J1
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where the FM and CAF phases compete. We also propose that,
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As discussed in Section 3, Jc can in principle be determined di-
rectly from the asymptotic behaviour of heat capacity and sus-
ceptibility at high temperatures. However the different physical
properties of the model depend on the angle φ , and this is much
harder to determine from experiment.

Let us first consider the simplest possible classical analysis
of the model. We assume that the system orders at zero temper-
ature in such a way that all the spins are oriented in a common
plane [7]. In this case the ground state energy of the J1-J2 model
is minimised by an order parameter with wave vector q = q∗
such that the energy per spin
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plings J2/J1 for phase boundaries as determined from the classical
ground state energy. The boundary between FM and NAF phase is
the line J1 = 0, J2 < 0 (J2/J1 = −× in the figure). Values of J2/J1
in parentheses show where zero point fluctuations destroy the relevant
order parameter at a semiclassical level, as discussed in Section 2.2.
The shaded areas for J1 > 0 correspond to the known spin-liquid
regime, and for J1 < 0 to another spin liquid region. The frustration
angle is given by φ = tan−1(J2/J1).
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φ in units of Jc. Solid line: FM, q∗ = 0; dotted line: NAF, q∗ = (π,π);
dashed line: CAF, q∗ = (π,0); long-dashed line: four sublattice state
for q∗ = (π/2,0).
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Motivated by Pb2VO(PO4)2, in this paper we provide an
overview of the ground state and finite temperature properties
of the J1-J2 with mixed FM and AF couplings. We present a
comprehensive semiclassical analysis of the three dominant or-
dered phases of the model – a uniform FM phase, and q =
(π ,π) Néel (NAF) and q∗ = (π ,0),(0,π) collinear (CAF) an-
tiferromagnetic phases – together with an exact analytic diago-
nalization of an eight site cluster, and finite temperature Lanc-
zos results for the heat capacity and magnetic susceptibility for
16 and 20 site clusters.

We argue that, in addition to the known spin liquid region
for J1 > 0, J2 ∼ J1/2, where the NAF and CAF phases com-
pete, a new spin liquid regionmay exist for J1 < 0, J2∼−J1/2,
where the FM and CAF phases compete. We also propose that,
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scattering at finite temperatures can provide a very useful source
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teractions in these materials. With this in mind, we present the
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Motivated by Pb2VO(PO4)2, in this paper we provide an
overview of the ground state and finite temperature properties
of the J1-J2 with mixed FM and AF couplings. We present a
comprehensive semiclassical analysis of the three dominant or-
dered phases of the model – a uniform FM phase, and q =
(π ,π) Néel (NAF) and q∗ = (π ,0),(0,π) collinear (CAF) an-
tiferromagnetic phases – together with an exact analytic diago-
nalization of an eight site cluster, and finite temperature Lanc-
zos results for the heat capacity and magnetic susceptibility for
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that’s all folks...



multiple spin exchange on the triangular lattice

Classical limit S = !  

Quantum limit S = 1/2 

Gapped

spin 

liquid

FM

FM NAF

NAFDisordered Scalar Chiral

?
Kagome

like ?

Gapless

RVB ?

[Mont-

unich]

He IIIHe III ...Lhullier et al.

...Momoi et al.

H = J
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〈ij〉

Pij + K
∑

〈ijkl〉

[Pijkl + Pijkl]
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1 + !σi · !σj
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