

ORIGINAL RESEARCH PAPER

A Spectroscopic Mechanism for Primary Olfactory Reception

Luca Turin

Department of Anatomy and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK

Correspondence to be sent to: Luca Turin, Department of Anatomy and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK

Abstract

A novel theory of primary olfactory reception is described. It proposes that olfactory receptors respond not to the shape of the molecules but to their vibrations. It differs from previous vibrational theories (Dyson, Wright) in providing a detailed and plausible mechanism for biological transduction of molecular vibrations: inelastic electron tunnelling. Elements of the tunnelling spectroscope are identified in putative olfactory receptors and their associated G-protein. Means of calculating electron tunnelling spectra of odorant molecules are described. Several examples are given of correlations between tunnelling spectrum and odour in structurally unrelated molecules. As predicted, molecules of very similar shape but differing in vibrations smell different. The most striking instance is that of pure acetophenone and its fully deuterated analogue acetophenone-d₈, which smell different despite being identical in

vertebrate olfactory receptor

.1436H

S **Could Humans Recognize Odor by Phonon Assisted Tunneling?**

Jennifer C. Brookes,* Filio Hartoutsiou,[†] A. P. Horsfield,[‡] and A. M. Stoneham[§] Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom (Received 10 July 2006; published 16 January 2007)

Our sense of smell relies on sensitive, selective atomic-scale processes that occur when a scent molecule meets specific receptors in the nose. The physical mechanisms of detection are unclear: odorant shape and size are important, but experiment shows them insufficient. One novel proposal suggests receptors are actuated by inelastic electron tunneling from a donor to an acceptor mediated by the odorant, and provides critical discrimination. We test the physical viability of this mechanism using a simple but general model. With parameter values appropriate for biomolecular systems, we find the proposal consistent both with the underlying physics and with observed features of smell. This mechanism suggests a distinct paradigm for selective molecular interactions at receptors (the swipe card model): recognition and actuation involve size and shape, but also exploit other processes.

DOI: 10.1103/PhysRevLett.98.038101

PACS numbers: 87.16.Xa, 82.39.Jn, 87.16.Ac, 87.14.Ee

AS \mathbb{Z} C

Molecular vibration-sensing component in Drosophila melanogaster olfaction

Maria Isabel Franco^a, Luca Turin^{a,b}, Andreas Mershin^b, and Efthimios M. C. Skoulakis^{a,1}

^aInstitute of Cellular and Developmental Biology, Biomedical Sciences Research Centre "Alexander Fleming," Vari 16672, Greece; and ^bCenter for Biomedical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139

Edited by Obaid Siddiqi, National Center for Biological Sciences, Bangalore, India, and approved January 14, 2011 (received for review August 19, 2010)

A common explanation of molecular recognition by the olfactory odor character could be distinct and identifiable, irrespective of the structure and chemical properties of the odorant molecules system posits that receptors recognize the structure or shape of the that carry it. Significantly, we used Drosophila as unbiased and odorant molecule. We performed a rigorous test of shape recogniobjective subjects to address this issue. They possess a relatively tion by replacing hydrogen with deuterium in odorants and asking well understood olfactory system (10–13), exhibit keen olfactory whether *Drosophila melanogaster* can distinguish these identically discrimination (14–16), and can be conditioned to selectively shaped isotopes. We report that flies not only differentiate beavoid or seek odors with the use of established methodology (17, tween isotopic odorants, but can be conditioned to selectively 18). We ask whether *Drosophila* can detect deuterium as a disavoid the common or the deuterated isotope. Furthermore, flies tinguishing molecular feature in odorant isotopes and a salient trained to discriminate against the normal or deuterated isotopes cue for conditioning. The results of these experiments provide of a compound, selectively avoid the corresponding isotope of a difsupport for the notion that flies can smell molecular vibrations. ferent odorant. Finally, flies trained to avoid a deuterated compound exhibit selective aversion to an unrelated molecule with Results a vibrational mode in the energy range of the carbon-deuterium Spontaneous Differential Responses to Deuterated Odorants. Alstretch. These findings are inconsistent with a shape-only model for though deuteration does not appreciably change molecular smell, and instead support the existence of a molecular vibrationshape, atom size, or bond length or stiffness, it doubles hydrogen sensing component to olfactory reception.

lfactory systems perform remarkable feats of molecular recognition, but although much is known about the neurophysiology of olfaction (1–5), how olfactory receptors "read" molecular structure remains unknown. Parts of odorant molecules (odotopes) have been proposed to engage particular receptors in a "lock-and-key" manner and this molecular shape recognition mechanism is thought sufficient for odor discrimination (2). An alternative hypothesis (6) posits that molecular vibrations of all atoms, or of particular functional groups of odorant molecules, contribute to odor recognition, and odorants responses (7) Molecules in which deuterium replaces nonex-

mass, thus affecting the overall vibrational modes of an odorant. Therefore, if recognition of molecular shape alone was the sole determinant for odor character (2, 3), then flies should not respond differentially to deuterated [d, where $d_{(x)}$ denotes replacement of x nonexchangeable hydrogens with deuterium atoms] and nondeuterated/normal (i.e., H-) odorants. To address this hypothesis, we took advantage of the commercial availability of acetophenone (ACP) carrying three, five, or eight deuterium atoms (d_3 , d_5 , and d_8) in place of the respective hydrogens in the normal molecule (h-ACP). Equal amounts (75 μ L) of each odorant were diluted to 1 mL in isopropyl myristate and we quantified (Fig. 1A) the response of groups of flies to with similar vibrational spectra should elicit similar olfactory ⁵ each odorant versus unscented air traversing the arms of a standard T-maze (*Materials and Methods*) (19–20) When given

NEUROSCIENCE

cyclopentadecanone [Exaltone ®]

Dimitris Georganakis & Klio Maniati

Simon Gane & Ian Smith

Molecular Vibration-Sensing Component in Human Olfaction

Simon Gane¹⁹, Dimitris Georganakis²⁹, Klio Maniati³⁹, Manolis Vamvakias², Nikitas Ragoussis², Efthimios M. C. Skoulakis³, Luca Turin³*

1 Royal National Throat, Nose and Ear Hospital, University College London, London, United Kingdom, 2 Vioryl S.A., Afidnes, Greece, 3 Neurobiology Division, Biomedical Sciences Research Centre "Alexander Fleming", Vari, Greece

Abstract

Whether olfaction recognizes odorants by their shape, their molecular vibrations, or both remains an open and controversial question. A convenient way to address it is to test for odor character differences between deuterated and undeuterated odorant isotopomers, since these have identical ground-state conformations but different vibrational modes. In a previous paper (Franco et al. (2011) Proc Natl Acad Sci USA 108:9, 3797-802) we showed that fruit flies can recognize the presence of deuterium in odorants by a vibrational mechanism. Here we address the question of whether humans too can distinguish deuterated and undeuterated odorants. A previous report (Keller and Vosshall (2004) Nat Neurosci 7:4, 337-8) indicated that naive subjects are incapable of distinguishing acetophenone and d-8 acetophenone. Here we confirm and extend those results to trained subjects and gas-chromatography [GC]-pure odorants. However, we also show that subjects easily distinguish deuterated and undeuterated musk odorants purified to GC-pure standard. These results are consistent with a vibrational component in human olfaction.

Citation: Gane S, Georganakis D, Maniati K, Vamvakias M, Ragoussis N, et al. (2013) Molecular Vibration-Sensing Component in Human Olfaction. PLoS ONE 8(1): e55780. doi:10.1371/journal.pone.0055780

Editor: Wulfila Gronenberg, University of Arizona, United States of America

Received October 4, 2012; Accepted January 4, 2013; Published January 25, 2013

Copyright: © 2013 Gane et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: Funded by the Greek Ministry of Education and Research. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors declare that authors DG, MV and NR are affiliated with Vioryl, a commercial company. The authors attest that no foreseeable commercial applications of the findings described in the paper exist at the present time, no intellectual property arises from it and no funding was provided by Vioryl to the other authors. This does not alter the authors' adherence to all the PLOS ONE policies on sharing data and materials.

* E-mail: turin@fleming.gr

• These authors contributed equally to this work.

G-protein receptor phylogenetic tree

From Kufareva et al. Structure, Volume 19, Issue 8, 10 August 2011, Pages 1108–1126

so maybe

so maybe

electrons in olfaction

Fig. 1 Principle of vibrationally assisted olfaction. The odorant molecule with characteristic frequency ω_0 binds to the olfactory receptor binding pocket forming an electron-donor-acceptor complex with donor energy E_D and acceptor energy E_A . Electron tunneling from the donor site to the acceptor site of the olfactory receptor is enhanced if the vibrational frequency of the odorant molecule matches the energy difference $\Delta \varepsilon = E_D - E_A$.

on 21 August 2012 12 on http://pubs.rsc.org | doi:10.1039/C2CP41436H effect of octanol on spin signal of Drosophila

Drosophila Electroantennagram

Courtesy of Alexandros Gaitanidis, BSRC Alexander Fleming

wrong time scale

effect of odorant on spin signal of Drosophila

some general anesthetics

 SF_6

Xe

CHCl₃

thiopental

halothane

cyclopropane

urethane

etomidate

alfaxalone

how general are they ?

Claude Bernard 1813-1878

the Meyer-Overton relationship

extracellular water

approx 7 nm lipid

intracellular water

pdb of bilayer courtesy of Peter Tieleman's Biocomputing Group, U Calgary

the cell membrane

PDB IDs: 1E78, 1E7A, 1E7B From Bhattacharya et al. (2000) J.Biol.Chem. 275: 38731

what the Meyer-Overton graph means

the concentration of anesthetic at the active site[s] sufficient for narcosis is constant regardless of the anesthetic

all anesthetics are equally potent

Xe

 SF_6

CHCl₃

thiopental

how is that possible ?

halothane

cyclopropane

urethane

theories of anesthesia: ion channels

J. Physiol. (1983), 341, pp. 429-439

> .5M in membrane !

ion channel block

Denis Haydon 1930-1988

theories of anesthesia: gas hydrates

methane hydrate

Linus Pauling 1901-1994

theories of anesthesia: enzyme inhibition

Credit: University of Rhode Island

firefly luciferase

Nick Franks (& Bill Lieb)

theories of anesthesia: receptors

the GABA-A receptor

Source: RSCB ID: 2VL0 and 3ZKR Spurny, R. et al. (2013) J.Biol.Chem. 288: 8355

the GABA-A receptor + Bromoform

meta-theories of anesthesia

OLFACTION*

BY

L. J. MULLINS

Few physiological processes remain today as elusive of analysis and as obscure in mechanism as those involved in olfaction. Such a situation is not the result of any dearth of experimental investigations nor because of any reluctance on the part of physiologists to speculate concerning such mechanisms. Rather, we may suspect that our lack of a working hypothesis is to be traced to certain broad gaps in our knowledge of nervous excitation at both the physicochemical and the physiological level. The discussion that follows is not intended to do more than examine the areas of both physics and physiology to which we must look for explanations, and to consider the nature of the difficulties that arise in any attempt at a precise formulation of a theory of olfaction.

Recent reviews that very adequately summarize present-day knowledge of the histology of olfactory cells, the types of phenomena that have been observed, as well as the various theories of olfaction, are available and may be consulted for various details not presented here.¹⁻ The olfactory cell is a primary neuron in contrast with the many specialized types of receptors that respond selectively to various physical stimuli. There are about 10 to 20 million such receptors in man² distributed over 5 cm.² of surface in the upper respiratory passages. This olfactory epithelium, as well as the rest of the nasal surface, also contains bare nerve fibers from the trigeminal nerve and these are generally considered as receptors which signal, by pain, the presence of many types of chemical compounds. The sensitive endings of the olfactory cell are a series of fine hairs (6 to 8 per cell in man, 10 to 14 in the rabbit) with dimensions about 2×0.1 microns. The endings of the olfactory cell are covered with a thin film of fluid, secreted by glands in the epithelium. Presumably this fluid is an ultrafiltrate of blood plasma. The fact that the nerve fibers emerging from olfactory receptors are short and nonmyelinated has discouraged any serious attempt to investigate the phenomena of olfaction by conventional electrophysiological methods. While it seems likely that, in the near future, technical improvements in neurophysiological technique will be such that direct recording in mammals will be possible, certain theoretical considerations, to be presented later, make the interpretation of such direct recording difficult.** One is faced,

*Aided by a grant (B-139) from the National Institute for Neurological Diseases and Blindness, United States Public Heaith Service, Bethesda, Md. **Doctor Lloyd Beidler has advised me that he has been able to obtain direct record-ing in animals.

249

1954a

I.	Introduction	289
II.	Narcosis and depolarization	290
III.	Thermodynamic principles	291
IV.	Gases as narcotics	292
V.	Some physical properties of liquids	295
VI.	The chemical stability of narcotics	298
VII.	Solids as narcotics	299
VIII.	The effects of pressure on narcosis	301
IX.	The behavior of narcotics in non-aqueous solvents.	302
х.	Narcosis at constant volume fraction	305
XI.	Liquids as narcotics	307
XII.	Membrane cohesive energy density	313
XIII.	Permeability of the membrane to narcotics.	313
XIV.	The mechanism for cut-off	314
XV.	The effects of molecular shape	315
XVI.	Narcosis at constant thermodynamic activity.	315
XVII.	Models of narcotic action	316
XVIII.	Non-narcotic effects of foreign molecules.	318
XIX.	Some remarks on general anesthesia	320
XX.	Conclusions	321
XXI.	References	322

In 1920, Miller (42) offered an explanation of how the addition of 2 per cent sodium chloride to aqueous solutions of phenol increased the toxicity of the phenol for bacteria. His explanation was that the sodium chloride raised the chemical potential of the phenol in solution and hence, effectively, the escaping tendency of phenol toward bacteria. Unfortunately there was no generalization of this suggestion to include phenomena other than toxicity, and it remained for Ferguson (16) to show that the use of thermodynamic indices (chemical potential; activity) was helpful in predicting the aqueous concentrations of various substances that were necessary for toxicity and for narcosis. As will be seen later, the suggestion of Ferguson did not contribute any new information to the understanding of narcosis, but it did free the discussion of such phenomena from the artificiality of the Meyer-Overton hypothesis by showing that the partition coefficient, the vapor pressure of narcotics in solution, and various solubility relationships of narcotics are all derivable in principle from the thermodynamic activity. There is no argument that the concept of partition coefficients is im-¹ This study has been aided by a grant from the Research Laboratories of Eli Lilly and

Company.

1954b

SOME PHYSICAL MECHANISMS IN NARCOSIS

L. J. MULLINS Biophysical Laboratory, Purdue University, Lafayette, Indiana

Received January 8, 1954

CONTENTS

I. INTRODUCTION

Lorin Mullins 1917-1993

Lorin died after a short illness at his retirement home in Chestertown on April 14 [....]. He was working on a new theory of Anesthesia.

What is the nature of gravity?

It clashes with quantum theory. It doesn't fit in the Standard Model. Nobody has spotted the particle that is responsible for it. Newton's apple contained a whole can of worms.

How do general anesthetics work?

Scientists are chipping away at the drugs' effects on individual neurons, but understanding how they render us unconscious will be a tougher nut to crack.

Is ours the only universe?

A number of quantum theorists and cosmologists are trying to figure out whether our universe is part of a bigger "multiverse." But others suspect that this hard-to-test idea may be a question for philosophers.

How do prion diseases work?

Even if one accepts that prions are just misfolded proteins, many mysteries remain. How can they go from the gut to the brain, and how do they kill cells once there, for example.

VOLUME 66, NUMBER 9

PHYSICAL REVIEW LETTERS

4 MARCH 1991

Imaging Xe with a Low-Temperature Scanning Tunneling Microscope

D. M. Eigler, P. S. Weiss, ^(a) and E. K. Schweizer^(b)

IBM Research Division, Almaden Research Center, 650 Harry Road, San Jose, California 95120

N. D. Lang

IBM Research Division, Thomas J. Watson Research Center, Yorktown Heights, New York 10598 (Received 19 October 1990)

We have obtained images of individual Xe atoms absorbed on a Ni(110) surface using a lowtemperature scanning tunneling microscope (STM). The atom-on-jellium model has been used to calculate the apparent height of a Xe atom as imaged with the STM and the result is found to be in good agreement with experiment. We conclude that the Xe 6s resonance, although lying close to the vacuum level, is the origin of the Fermi-level local state density which renders Xe "visible" in the STM.

FIG. 2. The Fermi-level conduction-electron density along a normal to the surface through the nucleus of a Xe atom adsorbed at a distance of 5 bohrs from a metal modeled as $r_s = 2$ jellium (solid curve). The bare-metal density (dashed curve) is shown in order to emphasize the form and extent of the conduction-electron density redistribution. The conduction electrons extend further out into the vacuum at the Xe atom.

FIG. 3. A comparison of theoretical and experimental normal tip displacement (Å) vs lateral tip displacement (Å) curve for Xe adsorbed on a metal surface. The experimental curve is derived by taking a slice out of the data presented in Fig. 1. The theoretical curve is calculated using the atom-on-jellium model of Lang (Refs. 2 and 3) as described in the text.

electron spin resonance [ESR] setup

melanin ESR

FIGURE 2 The e.s.r. absorption of squid melanin (first derivative trace).

Blois, Zahlan and Maling, Biophys J 4:471 (1964

two types of ESR measurement

spin changes during SF₆ anesthesia

spin change depends on magnetic field value

saturation behaviour of anesthetic signal

anesthetic signal size is independent of eumelanin

spin changes with different anesthetics

10⁴ a.u.

effect of freeze-thaw on anesthetic signal

data processing for analysis

control responses to general anesthetics

anesthetic

Yellow White

mutant responses to general anesthetics 1/3

anesthetic

anesthetic

anesthetic

mutant responses to general anesthetics 2/3

halothane resistant AGAR211 small CCl₃ Xe

anesthetic

mutant responses to general anesthetics 3/3

halothane resistant

AGAR52 no CCl₃ Xe awake

anesthetic

VOLUME 66, NUMBER 9

PHYSICAL REVIEW LETTERS

4 MARCH 1991

Imaging Xe with a Low-Temperature Scanning Tunneling Microscope

D. M. Eigler, P. S. Weiss, ^(a) and E. K. Schweizer^(b)

IBM Research Division, Almaden Research Center, 650 Harry Road, San Jose, California 95120

N. D. Lang

IBM Research Division, Thomas J. Watson Research Center, Yorktown Heights, New York 10598 (Received 19 October 1990)

We have obtained images of individual Xe atoms absorbed on a Ni(110) surface using a lowtemperature scanning tunneling microscope (STM). The atom-on-jellium model has been used to calculate the apparent height of a Xe atom as imaged with the STM and the result is found to be in good agreement with experiment. We conclude that the Xe 6s resonance, although lying close to the vacuum level, is the origin of the Fermi-level local state density which renders Xe "visible" in the STM.

FIG. 2. The Fermi-level conduction-electron density along a normal to the surface through the nucleus of a Xe atom adsorbed at a distance of 5 bohrs from a metal modeled as $r_s = 2$ jellium (solid curve). The bare-metal density (dashed curve) is shown in order to emphasize the form and extent of the conduction-electron density redistribution. The conduction electrons extend further out into the vacuum at the Xe atom.

FIG. 3. A comparison of theoretical and experimental normal tip displacement (Å) vs lateral tip displacement (Å) curve for Xe adsorbed on a metal surface. The experimental curve is derived by taking a slice out of the data presented in Fig. 1. The theoretical curve is calculated using the atom-on-jellium model of Lang (Refs. 2 and 3) as described in the text.

CH₃-terminated 5-gly alpha helix

VdW radii

PBE-DZP minimization, B3LYP single point

ball and stick

*Highest Occupied Molecular Orbital

effect of anesthetics on helix HOMO

effect of anesthetics on helix HOMO

propofol

effect of diving gases on helix HOMO

Xe

 SF_6

CHCl₃

thiopental

Così Fan Tutti

halothane

cyclopropane

urethane

etomidate

alfaxalone

in conclusion

- general anesthetics cause a change in electron spin
- they all perturb the electronic structure of proteins

which is sometimes absent or different in resistant mutants

- Landauer Limit: kT ln2 or ~ 18 meV at 300K
- ATP hydrolysis energy: ~ 600 meV ~ 33 times LL
- <u>Anesthetic-sensitive</u> energy consumption of 1 g of brain~ 10 mW or

$\sim 10^{17}$ bits/s

- 10⁸ neurons/g, so per neuron
- 10⁹ bits/sec as opposed to current 10³

Thank You