Are There Quantum Effects in Human Perception?

Ranxiao Frances Wang University of Illinois at Urbana-Champaign

Outline

> Quantum-like perception

- Is perception discrete or continuous?
 - Motion perception
 - Reaction time studies
- Quantum Zeno effects
 - Multi-stable perception
 - Quantum vs conventional explanations

> Test QM using human as detector

- Visual threshold
- > Provocative statements

1

I. Temporal Discreteness

t1

fast

t2

t2

- > Wagon-wheel illusion
 - Perceive reversed motion or stand still slow
- ➢ Why?
 - Can't happen if perception is continuous
- The explanation
 - Motion detection is inherently based on discrete "snapshots"
 - Resulting ambiguity: infinite possibilities
 - Need to use built-in heuristics to infer the most plausible cause
 e.g., shortest distance principle
 - Motion perception determined by sampling rate relative to stimulus temporal frequency

II. Quantum Zeno Effects

> Multi-stable perception

Ambiguous figures

<section-header>

Quantum-like Properties

- Co-existence of multiple potential states (superposition)
- Only one perceptual state is "realized" (collapsing by measurement)
- Dominance time is affected by relative salience of the two images (probability coefficients)
- One percept persists for a period of time, then switches (Zeno effect)
 - Atmanspacher, 2003; Manousakis, 2007

Simulation Results

With 3 free parameters can explain diverse human data

Conventional Model

Same or Different Models?

Quantum model	Conventional model
Potential conscious vs conscious percept	Unconscious vs conscious processes
Schrödinger eq.	Inhibition & neural fatigue
Measurement	Competition winner
inherent	Additional assumption
Conscious percept → neural state	Neural state → conscious percept
?	?
	Quantum model Potential conscious vs conscious percept Schrödinger eq. Measurement inherent Conscious percept → neural state ?

Human Single Photon Studies

(with Rebecca Holmes, Paul Kwiat & Tony Leggett)

Goal: to test quantum effects directly via the human visual system, using precise (single) photon sources

- 1. Testing the validity of QM in perceptual systems using human observers by looking for differences between superposition and mixed quantum states (Ghirardi,1999)
- Testing quantum nonlocality with one of the photon detectors replaced by a human observer.

The Critical Issue

- > Can humans see a single photon?
- Common answers
 - ~100
 - ~6 (Hecht et al, 1942; Brunner et al., 2008)
 - 1~2 (Sakitt, 1972)
 - 1 (Doan et al, 2006)

The caveats

- Cornea vs retina
- Criterion of "seeing"
- Photoreceptor vs perception
- Conscious vs un-conscious perception
- > Q: un-conscious perception of single photon at cornea?

Exp 1: Visual Threshold

> Methods

- N photons delivered to Left or Right test spots randomly across trials
- Observer judges whether the light was on Left or Right
- Measure accuracy, confidence
 of judgment, and reaction time
- Data analysis
 - If accuracy is statistically above 0.5, then humans can see N photon(s)

Exp 2: Superposition

Methods

- Two conditions
 - Superposition condition:
 1 photon at |L> + |R> state
 - Mixed condition: 1 photon at |L⟩ or |R⟩ with equal probability
- Observer judges whether a light was present on Left and on Right separately
- Data analysis
 - If the detection rates are different in the two condition, then standard QM is violated

Exp 3: Entanglement

- Design
 - Standard EPR experiment
 - One detector replaced by a human observer
- Theoretical analysis
 - · Optimal condition to detect a violation of the inequality
 - Prediction of QM: P_obs = 0.07
 - Prediction of LRT: $P_{obs} \ge 0.28$
 - If the human detection rate suggests that p_obs <0.28, then violation of inequality is demonstrated

Preliminary Results

- > The efficiency estimation
 - Single photon generator: ~30%
 - Eye (cornea \rightarrow rod): 3~10% (actually 2~6%)
 - Rod → percept: ??? (< 10%?)
 - Total: < .18%
 - Trials needed: ~500K → 3500 hrs
- Visual threshold
 - For mean N=30, 54% correct

Temporal Integration Window

- > Visual system integrates stimuli over a period of time to form a single percept
 - How long?
- Design
 - Constant rate (1 photon / ms)
 - Varying duration (100 ms ~ 1 sec)
 - Accuracy should increase until duration outside integration window

